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The connection is considered between the microscopic and phenomenological description of the flexoelectric 
effect in the smectic-C phase. The role of the known microscopic mechanisms of the flexoelectric effect, 
namely the steric interaction of asymmetric molecules and the ordering of the molecular quadruples, is 
discussed. The flexoelectric effect, which is essential for the description of the ferroelectric state in the chiral 
smectic-C phase, is discussed in detail, and it is shown that the steric interaction of the molecules is of no 
importance for the description of this effect in the vicinity of the transition point from the C phase to the A 
phase. A new microscopic mechanism of the flexoelectric effect (dipole-quadruple interaction of molecules), 
which manifests itself only in the smectic-C phase, is proposed. 

PACS numbers: 77.80. - e 

1. The flexoelectric effect (FE) in nematic liquid 
crystals is usually attributed to the s ter ic  interaction 
of asymmetric molecules having dipole moments. Un- 
der the influence of curvature strains in the liquid 
crystal, this interaction produces polarization in the 
crystal. This explanation was first  proposed by Meyer' 
and was subsequently developed by Derzhanski and 
petrot? and  elfr rich', where expressions were obtained 
for the principal flexoelectric coefficients in the ne- 
matic phase. In Refs. 2 and 3 they used a semipheno- 
menological methods of calculation, and a general mi- 
croscopic approach to the description of the FE in 
nematics was developed by S t r a l e ~ . ~  

Prost and Marcerous have proposed a new micro- 
scopic mechanism of the FE, based on the fact that 
the gradient of the average density of the molecular 
quadrupole moment in an anisotropic medium corres- 
ponds to the appearance of macroscopic polarization. 
Despite its being general, the mechanism considered 
in Ref. 5 has a major shortcoming, since it leads to 
identical (or to very close) values for the two flexo- 
electric coefficients in the nematic phase, in contradic- 
tion to  many experimental data." At the same time, it 
is possible in principle to separate the dipole and quad- 
r u p l e  contributions to the flexoelectric coefficients, 
since the dipole c o n t r i b u t i ~ n ~ ~ ~  is proportional to S2, 
where S is the nematic-order parameter, whereas the 
quadrupole contribution is proportional to S.5 

In a recent study, Marcerou and Prost7 investigated 
the temperature dependence of the flexoelectric coef- 
ficients and found that a s  a rule they a re  proportional to 
S, with the exception of substances with large dipole 
moments. A strong FE was observed7 in a liquid crystal 
consisting of symmetrical molecules that have no dipole 
moments. Thus, on the whole the question of the basic 
microscopic cause of the FE remains unclear, and a 
complete solution of this problem will apparently re-  
quire new experiments. 

The flexoelectric effect is present also in smectic 
phases. In the smetic-A and -C phases the polariza- 
tion can result from strains in the smectic layers." At 
the same time, in the smectic-C phase, in analogy with 
the nematic phase, the polarization can be linearly con- 
nected with the curvature of the director field. The FE 

in the smectic-C phase has recently been extensively 
discussed in the literature in connection with the des- 
cription of the ferroelectric state in the chiral smectic- 
C phase (C* phase)."" In the C* phase, owing to the 
chirality of the molecules, spontaneous helicoidal 
twisting of the long axes of the molecules takes place 
around the normal to the smectic layers. This leads, 
owing to the FE, to the appearance of additional spon- 
taneous polarization in the smectic-layer plane. Thus, 
the construction of the complete microscopic picture 
of the ferroelectric state in the C* phase is impossible 
without clarification of the microscopic nature of the 
FE in this phase.') 

It is usually assumed that the FE in the C-phase is 
similar to the FE in nematics." One of u s ,  however, 
has shown13 that the s ter ic  interaction of the molecules 
makes no contribution to the FE along the z axis in the 
vicinity of the point of transition from the C phase to the 
A phase. In the present paper this question is dis- 
cussed in detail in Sec. 4. In addition, we consider a 
new microscopic mechanism of the FE, which mani- 
fests itself only in the smectic phase, namely dipole- 
quadruple  interaction of molecules. 

In Sec. 2 we present the results of a phenomenological 
theory of the FE in the C* phase.2) In Sec. 3 is devel- 
oped a general microscopic approach to the description 
of the FE in the smectic C* phase. In Sec. 4 we dis- 
cuss the role of the s ter ic  and dipole-dipole interac- 
tion of the molecules. In Sec. 5, finally,we calculate 
the flexoelectric coefficients on the basis of the dipole- 
quadrupole interaction and discuss possible methods 
of experimentally verifying the results of the present 
paper. 

2. We consider now a phenomenological approach to 
the description of the FE in the C* phase. In weak 
electric fields E<< E,, where E ,  is the orientational- 
helix untwisting field, the induced polarization P in the 
C* phase does not necessarily coincide with the axis 2 
(the d axis in Fig. I), and generally speaking, contains 
three independent contributions : 

The vector Po is oriented here along the axis 2, i.e., 
along the direction of the spontaneous polarization in 
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the smectic layer, the vector P II is oriented along the 
crystal axis z ,  and the vector P, is perpendicular to  the 
vectors Po and P !. 

We note that P o #  0 also in the absence of an external 
electric field, owing to the spontaneous twisting of the 
orientational structure; this spontaneous FE corres- 
ponds to the presence of the following invariant in the 
free energy of the systemg: 

where go is the flexoelectric coefficient, 0 and q a r e  
the polar and azimuthal angles in the distribution 

&=Sin 8 COS cp, h=sin 8 sin cp, n,=cos 8. 

The spontaneous polarization Po resulting from the FE 
is described by the expressiong 

In the presence of a homogeneous external field E, the 
initial distributions 0 = 0, = const and 0 = 9, =qoz a r e  sub- 
jected to inhomogeneous perturbations q(z) - cp,(z) and 
9(z) - 8,; in a weak field these perturbations a r e  small  
and independent of each other. Accordingly, we can 
write for the C* phase the additional flexoelectric con- 
tributions to the free energy in the form 

where g, and gll a re  the flexoelectric moduli. Thus, 
the coefficients g, and gll connect respectively the 
quantities P, with 00/az and PII with the derivatives 
of the angles 0 and rp with respect to  the coordinates 
x and y. The indicated invariants contain the lowest 
powers of the small  polar angle 9. On going to  the A- 
phase, the angle 0, vanishes, and the directions Po and 
P , become equivalent, i.e., the coefficients go and g, 
should differ by an amount proportional to 82, if 8 2 , ~  1: 

3. We proceed now to the microscopic description of 
the FE in the C* phase. In the nematic phase, a con- 
sistent microscopic approach was developed by Straley4 
and we shall apply it with slight modifications and gen- 
eralizations to the smectic phase. The f ree  energy of 
the liquid crystal per molecule, in the molecular-field 
approximation, can be written in the form 

F=p 5 f (vi, ri) U(vi, vj, r.-rj)f (vj, rJdvr dvj dri drj 

- kT j f (v, r)ln f (v, r) dv dr. (4) 

Here U(v,, v,, r,- r,) is the potential of the interaction 
of the molecules i and j, located a t  the points r, and r,; 
v, is the se t  of angles that specify the orientation of the 
molecule; p is the number of molecules per unit volume. 

We represent the distribution function f in the form 

where fo is the single-particle distribution function for a 

liquid crystal without strains. This representation is 
justified because in the description of the FE it suffices 
to consider only terms linear in the gradients. 

Minimizing expression (4) with respect to f we obtain 
the following expression for Xu, r ) ,  which is similar to 
Eq. (9) of Ref. 4: 

Unlike in the nematic phase considered in Ref. 4, in the 
smectic phase the single-particle distribution function 
depends on the coordinates not only via the director 
r =n(r ) ,  but also indirectly, a fact reflected in (5), 
since the distribution functions fo(v, r) have not been 
taken outside the integral with respect to r,,. We a re  
interested here in the linear connection between the 
polarization and the derivatives of the director. There- 
fore in the differentiation with respect to  r, this addi- 
tional dependence on the coordinates is not taken into 
account, since it leads to the FE connected with the 
bending of the layers. 

Expressions (4) and (5) include the averaging of the 
molecule interaction potential over various directions 
of the intermolecular vector r, ,. In the nematic phase, 
the gravity centers of the molecules a r e  randomly dis- 
posed, and the averaging over r,, is simply integration 
with respect to a l l  the r,,. In smectic phases, the 
gravity centers of the molecules a r e  on the average 
located in the planes of the smectic layers,  and differ- 
ent directions become nonequivalent. In the general 
case, the averaging over r,, can be carried out with the 
aid of the following interpolation proposed in Ref. 14: 

Here (cos u) is the smectic-order parameter, e is 
the normal to the smectic layer, and a is the fraction 
of the nearest neighbors of the given molecule located 
in the same smectic layer with it. The second and 
third terms in (6) a r e  respectively the contributions 
from the interactions of the nearest neighbors within 
the limits of one smectic layer and between neighboring 
layers. Expression (6) is exact in the limiting cases 
(COS U) = 0 (nematic phase) and (cos U) = 1 (ideal smectic 
order). 

We shall find it convenient to  characterize the orien- 
tation of a given molecule i by the unit vectors a, and b, 
of the long and short axis of the molecule, respectively. 
Recognizing that a,. b, = 0, we have 

The polarization produced in the liquid crystal under 
the influence of the curvature strains can then be written, 
after averaging with the aid of the function f = fo +$, in 
the form 

where d ,  and dl,  a re  the components of the dipole mo- 
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ment of the molecules. No account was taken in (7) of 
the contribution made to  the polarization by the gradient 
of the average quadruple  moment in accordance with 
Ref. 5. This will be considered separately in Sec. 5. 

Substituting (5) in (7), we can obtain with the aid of 
(6) a general expression for the polarization P in both 
the nematic and the smectic phases. When describing 
the smectic-C phase we can approximately assume the 
translational and orientational orders to be ideal, since 
the order parameters S and (cos n) a r e  close to unity. 
We therefore put a, =n, ,  i.e., 

and neglect also the first  t e rm of (6). Taking the fore- 
going into account, we obtain the following expression 
for the polarization produced in the smectic-C* phase 
on account of the FE: 

We have introduced here the function 

V(n.,  n,, b,, u,,)- U(n., nj, bi, bj, riju,j)S(bjn,)r,," drij dbj, (9) 

which represents the averaged effective interaction for  
molecules i and j. It is this interaction which is decis- 
ive in the microscopic description of the FE. 

T o  obtain the flexoelectric coefficients, it is now suf- 
ficient to substitute the actual molecule interaction 
potential in the general formulas (6) and (9) and carry  
out the corresponding integrations. However, we shall 
consider first in general form the FE component of the 
type (2), which is essential for the description of the 
ferroelectric state in the C* phase, a s  noted in Sec. 1. 
The general expression for the FE of the type (2) can be 
obtained from (8) and (9) by considering the gradient 
only along the z axis which is parallel to the normal to 
the smectic layers: 

In (10) we took into account only the perpendicular 
component of the dipole moment of the molecule d,, 
since the longitudinal component makes no contribu- 
tion to the polarization perpendicular to  the director a. 

The arbitrary function V(q ,n j ,b f , e )  can be expanded 
in accordance with Ref. 15 in eigenfunctions, the so- 
called spherical invariants, which a r e  polynomials of 
different degress of various scalar combinations of the 
vectors n,, n,, b,, and e. We shall consider for sim- 
plicity the interaction of nonchiral molecules, since the 
FE, generally speaking, is not connected with chirality. 
In this case the function V(. . . ) can be represented in 
the form of an expansion in all  possible powers of only 
scalar products of the indicated vectors. We now dif- 
ferentiate each term of such an expansion with respect 
to z j  and put after the differentiation n, =nj  =n, since 
we a r e  considering terms linear in the gradients. Then, 
after differentiation, the considered expansion will con- 
tain only scalar products 

since 

an 
n - - 0 and bm=O. 

az 

Thus, after differentiation, the quantity (a/azj)v(. . . ) 
can be represented in the form of a ser ies  (or of a finite 
sum), each term of which is a product of the indicated 
scalar  products raised to different powers. Each term 
of the se r i e s  can contain only one scalar product that 
includes an/az. In addition, the averaged interaction 
potential V(. . . 1, and consequently, also i ts  derivative 
(a/azj) V(. . .), must be even in n because the states 
with nand -n a r e  indistinguishable. In the quantities 
(8/azj)V(. . . ) it suffices to take into account only the 
contributions odd in b,, which do not cause the integrand 
of (8) to  vanish identically. 

Taking the foregoing into account, we can represent 
the quantity (B/B~,)v(. . . ) after differentiation in the 
form 

+ ( b ,  4) ( b . e ) ' z  MIA (ne)Y+l(bce)z)Y 
dl 

I k 

where M and L a re  numerical coefficients. 

In (11) we have specially separated in the last term 
al l  the expansion terms that do not contain the product 
b, e , since it can be shown that to describe an FE of 
the type (2) only this last term of (11) is of significance. 
Indeed when describing the ferroelectric state, one 
uses for the FE expression (1) in which the flexoelec- 
t r i c  coefficient go, generally speaking, does not vanish 
at 8 =0, i.e., at n. e=  l.g At the same time, the quan- 
tity b,. e - s in6 ,  since b, = k s i n y + n l  cosy, where k 
and n' a re  unit vectors lying in a plane perpendicular 
to  the long axis of the molecule a,, n' . e =O (see Fig. I), 
y is the azimuthal angle of rotation of the molecule 
around the long axis, and b, . e = k .  e siny =sin 8sin y. 

Therefore the first  two terms in (11) yield only small 
corrections to the flexoelectric coefficient go in the 
vicinity of the A-C* transition, where 19 is small. 

4. All the expressions and results  obtained in the 
preceding section a r e  valid for any interaction potential. 
We consider now s ter ic  interaction of the molecules 
and show that it makes no contribution to the ferroelec- 
t r i c  coefficient go in (2) in the zeroth approximation in 

FIG. 1. Positions of the orthogonal vectors n'. k, and n re- 
lative to the crystallographic axis e in the smectic C phase. 
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0. When account is taken of the s ter ic  interaction, the 
quantity U(. . . ) must be rewritten in the form4 

BU(a,, a,, bi, bj, rtj) =Q(Sii-rij), 

where a ( .  . . ) is the step function, f , ,  is the closest 
approach distance of the molecules i and j with their 
orientations specified. We have ~2([,, - r,,) = 1 if the 
volumes of the molecules overlap, and a([, , - r,,) = 0 in 
the opposite case. For s ter ic  interaction, the function 
V(. . . ) then acquires the form 

Thus, the effective potential of the s ter ic  interaction 
is proportional to  the fourth power of the molecule 
closest-approach distance and is averaged over the ro- 
tations of the molecule j around the long axis. We note 
that the definition (9) of the effective interaction pden- 
t ia l  V(. . . ) does not contain averaging over 4,. We con- 
sider now the s ter ic  interaction of the molecules at 0 =0, 
i.e., at n, lln, lie. This molecule configuration is shown 
in the figure of Ref. 13. As seen from this figure, the 
closest-approach distance E l ,  is equal to the length of 
the molecule and does not depend on the direction b, of 
the short axis of the molecule i. We arr ive  therefore 
at the conclusion that under these conditions the averaged 
potential of the s ter ic  interaction V(. . . ) does not 
depend on the direction b, of the short axis at 0 =O. But 
then expression (9) should likewise be independent of 
b ,  at 0 = 0 in the case of s ter ic  interaction. The result 
can be explained as  follows. At 0 =0, the C* phase goes 
over into the A phase, in which all the directions per- 
pendicular to the crystal axis z become equivalent. 
Therefore the direction of the short axis of the mole- 
cule does not influence in this case the s ter ic  interac- 
tion of the molecules along the z axis, since this inter- 
action is determined by the projection of the form of 
the molecule on this axis. 

As already noted, the first two terms in (11) vanish 
at 0 = O  for any pdential V(. . . ). At the same time, the 
third term in (11) depends on b,. Therefore, from the 
condition that the expression (11) be independent of the 
direction b ,  a t  0 = 0  it follows that the third term in (9) 
should also vanish a t  0 = 0. Recognizing that n . e =cos 0, 
we obtain the relation x MI (cos 0) "+I = 0 at 0=0. 

I 

It follows from (11) that 

where the function cp(0) is bounded at zero. 

We have thus shown that in the case of s ter ic  interac- 
tion of the molecules all  the terms in (11) tend to zero 
a s  0- 0, and consequently the s ter ic  interaction leads 
only to small corrections to the principal value of the 
flexoelectric coefficient go in (2) in a vicinity of the A- 
C* transition point, where 0 is small. The result means 
that the FE of the type (2) can be determined mainly by 
the ordering of the quadrupole moments of the molecules 
in accordance with Ref. 5, o r  by some other (non-steric) 
interaction of the molecules. A quadrupole FE un- 

doubtedly exists in the C* phase and will be discussed in 
the next section. 

We propose to consider a new microscopic FE mech- 
anism in the smectic-C phase, namely dipole-quadrupole 
interaction of the molecules. Indeed, from the fore- 
going analysis it follows that the s ter ic  interaction was 
of no importance for the description of the FE of type 
(2) in the vicinity of the A-C transition point, since it 
does not depend on the direction b, of the short axis a t  
the molecule arrangement shown in the figure of Ref. 
13. At the same time it is obvious that the mul t ip le  
interaction of the molecules under the same conditions 
depends generally speaking on the direction b ,  (e.g., if 
the dipole of the molecule i is directed along b,). At the 
same time, the dipole-dipole and quadruple-quadruple 
interactions, as well as  the corresponding induction and 
dispersion interactions, make no contribution to the 
FE, since the potentials of these interactions a r e  even 
in u,,, and the integrals with respect to 4, in (5) and 
(6) should vanish. It remains to  consider the dipole- 
quadrupole interaction of the molecules, which has all 
the necessary properties. In this case the interac- 
tions of the higher multipoles make apparently a 
small  contribution. 

We assume for simplicity that the axes a, and b ,  coin- 
cide with the principal axes of the quadruple-moment 
tensor of the molecule j, and the dipole of the molecule 
i lies in the a,b, plane. Then the dipole-quadrupole in- 
teraction of the molecules i and j can be written in the 
formg) 

ud-q(i, j )  = r i j - i ( ~ i ! a + ~ T i q ) ,  

Here l = x , y , z ,  1, =a,, b , ,  c , ,  the unit vectors a , ,  b,, 
and c, a r e  directed along the axes z, x ,  y, and q,, a r e  
the diagonal matrix elements of the quadrupole moment 
of the molecule. 

Substituting the interaction potential (15) in (10) and 
averaging over b ,  and r,,, we obtain an expression for 
the effective potential V(. . . ) in the form 

where Q is the asymmetrical part of the quadrupole of 
the molecule, Q =q,,- (q,, +q,,)/2. 

Substituting in (16) u,, =e, a, =n,, and a, =nj, and 
comparing with the general expansion ( l l ) ,  we verify 
that the averaged potential of the dipole-quadruple 
interaction, in contrast to  the s ter ic  interaction, con- 
tains terms that depend on the b, direction and do not 
vanish a t  0 = 0. Therefore the dipole-quadruple inter- 
action contributes to  the FE of type (2) in the zeroth 
approximation in 0. The expressions for the correspond- 
ing flexoelectric coefficients will be presented in the 
next section. 

5. We note that the dipole-quadrupole interaction 
leads to the appearance of the FE only in the smectic-C 
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phase. It can be shown that in the nematic phase the 
corresponding contribution to the polarization vanishes 
identically on account of the higher symmetry of this 
phase. Indeed, putting in (6) (cos x) =0, we can easily 
obtain with the aid of (5)-(7) an expression for the pol- 
arization produced in the nematic phase on account of 
the FE: 

Integrating (1%) with respect to u,,, we obtain the 
simple result 

Vd-,(a,, bi, a,) ='Iz(q=+qw+qzz) (dLbi+d,~as). (18) 

Expression (17a) can now be rewritten in the form 

by virtue of the normalization condition 

j fa (a,. n,)da,=?, 

where 

We proceed now to  calculate the different contributions 
to the FE on account of the dipole-quadruple interac- 
tion in the smectic-C* phase. We calculate first the 
liquid-crystal polarization component proportional to 
the gradient along the z axis. T o  this end we substitute 
expression (16) for the function Vd-,(. . .) in the last 
term of (8), differentiate with respect to z,, and inte- 
grate over the direction of the b, axis. As a result we 
obtain 

Here n, =n.  e; the unit vector k is shown in the figure, 
k. e=s ine .  The first  term in (20) coincides in form 
with the phenomenological expression (2), and it is 
possible to write down immediately an expression for 
the flexoelectric coefficient go determined by the dipole- 
quadrupole interaction 

go--'/@'$ ( l -a )QdLz- - -a /~( l -a )  Bpd,'g,; (21) 

here g, s pQ is the quadrupole flexoelectric coefficient 
at S= 

In accord with (21), the ratio of the dipole-quadrupole 
and pure quadrupole contributions to the flexoelectric 
coefficient is determined, in order of magnitude, by the 
dimensionless coefficient ppd:. Assuming p = 101' cm-' 
and T = 300 K, we obtain the estimate Bpd; - 3 x loa  
x ld,I2, where Id,( is in decibels. Thus, for molecules 
with small dipole moments d, 5 1 dB, the contribution 
from the dipole-quadruple interaction is small com- 
pared with the pure quadrupole contribution. At the 
same time, to obtain the ferroelectric state in the chiral 

smectic-C phase one usually employs substances with 
large dipole moments, especially 2-chloropropylcyan- 
namate and TDOBAMBCC ,I4 where d, 2 3 dB. There- 
fore, when describing the ferroelectric state, the 
dipole-quadruple and quadrupole FE turns out to be 
commensurate. The dipole-quadruple interaction leads 
to essentially different values of the various flexoelec- 
t r i c  coefficients [see (20)], in contrast to  the quadrupole 
FE . 

In view of the importance of this difference, let us 
examine in greater detail the quadrupole FE in the 
smectic-C phase. In accordance with Ref. 5, the con- 
tribution to the polarization of a nematic liquid crystal 
is proportional to the average gradient of the quadrupole 
moment of the molecules 

where s, ,- 6,, is a tensor connected with the Lorentz 
correction. In the f i rs t  approximation, the presence 
of translational ordering in the smetic phase does not 
influence the quadruple  FE, since it is determined in 
practice by the sum of the signal-particle independent 
contributions from the individual molecules. Transla- 
tional ordering can influence only the anisotropic part 
of the Lorentz correction in the tensor s,,, but accord- 
ing to the estimates of Marcerou and Prost7 this cor- 
rection is small. Therefore the quadrupole FE in the 
smectic-C phase is completely analogous to this FE in 
nematics. The corresponding contribution to the polar- 
ization, which is proportional to the gradient along the 
z axis, takes in this case the form 

an. an 
p = g & ~ ~  + gfl,- az ' 

Comparing (20) and (23), we easily note that the two 
orthogonal polarization directions parallel to the vectors 
n and an/& correspond to  identical flexoelectric coef- 
ficients in the case of the pure quadrupole flexoelectric 
effect, and to different coefficients when account is 
taken of the dipole-quadrupole interaction. Therefore, 
a t  substantially different values of d, and dl, it is pos- 
s ible in principle to separate experimentally the dipole- 
quadrupole contribution against the background of the 
quadr upole contribution. 

We have considered polarization proportional to the 
gradients along the z axis. The remainder of the polar- 
ization, proportional to the gradients in the plane of the 
smectic layer, can be similarly calculated by substitu- 
titing the averaged potential (16) in the second term of 
the general formula (8), and by carrying out the appro- 
priate integrations. As a result we obtain the following 
expression: 

Despite the complicated structure of (24), as  8- 0 an 
important role is played in it only by the last term, 
since the remaining terms of (24) a re  proportional to. 
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sin 0 raised to various powers. If we disregard the 
quantities proportional to sin 0, then expression (24) 
can be approximately represented in the form 

Expression (25) corresponds exactly to the phenomeno- 
logical expansion (3b), and we obtain a formula for the 
contribution made to the phenomenological coefficient 
by the dipole-quadrupole interaction: 

A contribution to the flexoelectric coefficient of the 
type (24) may turn out to be particularly important for 
liquid crystals whose molecules contain the strongly 
polar nitryl group C = N, when dll - 5 dB.'' These mole- 
cules have a tendency to combine into pairs with anti- 
parallel dipoles, and this should decrease considerably 
the flexoelectric coefficient connected with the s ter ic  
interaction of the molecules, since it is proportional 
to the dipole moment raised to the first power. At the 
same time, the dipole-quadrupole contribution is pro- 
portional to d and remains practically unchanged when 
the pairs a re  produced. 

Taking (20) and (21) into account, we can also obtain 
the difference of the FE coefficients 

which corresponds to a phenomenological expansion in 
powers of 0 (see Sec. For a pure quadrupole FE 
this difference is equal to zero. 

The described FE introduces a definite correction to 
the linear response of the C phase to  an external field 
E (E is perpendicular to the z axis). In fact, action of 
such a field gives r ise  to the modulations 8(z)-0, and 
cp(z)-cpo, which introduce a correction 6x to the dielec- 
t r i c  susceptibility 

where K and G a r e  the elastic constants, a -  82 -(T, -T), 
p is the piezoelectric coefficient, and go is the wave 
vector of the helicoid. 

We note that in this case a contribution to  6xC is made 
not only by the piezoelectric effect, but also by the 
flexoelectric effect, and, just a s  in nematic liquid 
crystals,17 this contribution is determined by the com- 
bination of the coefficients go-g,. Experiment1' shows 
that go and g, have values comparable with p/qo. Since 

the moduli p and (go,g,,gll) have a different microscop- 
ic nature, one can expect in experiment situations in 
which the inequalitities p sgd082, and ~ d <  a a r e  satis- 
fied below the phase-transition point T,, and this should 
manifest itself in the temperature dependence of 6x,(T). 

"1n our preceding paper'2 the molecular model of the ferro- 
electric s ta te  in the C* phase was constructed without allow- 
ance for the FE. 

 he F E  by itself if not connected with the chirality of the 
molecules, and the expressions for the F E  coefficients ob- 
tained in the present paper a r e  valid both in chiral  and in 
non-chiral C phases. For  the sake of argument we refer  
throughout to the chiral  C* phase. 

"III liquid crystals,  the average intermolecular distances a r e  
comparable with the dimensions of the molecules, therefore 
the coefficients in (15) a r e  approximate and expression (15) 
i s  the f i rs t  nonvanishing approximation. This approach i s  
usually used in the microscopic description of liquid crystals.  

4 ' ~ e  note that the s ter ic  interaction of the molecules also con- 
tributes to expression (27). since the flexoelectric coeffi- 
cients corresponding to i t  a r e  of order  0'. 
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