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A theory is developed of the behavior of the polarization of positive muons in spin glasses at low 
temperatures. It follows from the results that the muon method permits, for the first time ever, to obtain a 
rigorous verification of the main hypothesis of the theory of S. F. Edwards and P. W. Anderson [J. Phys. F 5, 
965 (1975)], to investigate phase transitions and internal magnetic fields in spin glasses, as well as to determine 
whether the muons are captured by the impurity paramagnetic centers or are stopped in the crystal lattice at 
randomly distributed points. 

PACS numbers: 61.40.Df 

1. Spin glasses have been attracting in recent years 
an ever increasing interest, as is attested by the large 
number of experimental and theoretical studies. One of 
the central problems of spin glasses is the verification 
of the Edwards-Anderson theory' and the study of the 
phase transition. The principal hypothesis of the Ed- 
wards-Anderson theory has not been directly confirmed 
so far. Various experiments performed with the aid of 
the muon method2" indicates only that a phase transition 
takes place in spin glasses a t  a certain temperature, 
but there is little said concerning i ts  character. 

It i s  known that the main hypothesis of the Edwards- 
Anderson model i s  that above the phase transition tem- 
perature T ,, the spin glass behaves like an ordinary 
paramagnet, and a t  T << T ,, the spins of the paramag- 
netic impurity centers a re  immobile frozen and a re  
randomly oriented in space. The degree of freezing is 
characterized according to Edwards and Anderson by 
the known order parameter (temporal correlator) 

low temperatures. We shall consider therefore here- 
after the case of mobile muons, recognizing that to 
verify the Edwards-Anderson model the experiment can 
be performed a t  helium temperatures. 

If the spins of the magnetic centers a r e  immobile be- 
low the phase-transition point, the muons a re  in a sta- 
tic magnetic field. Consequently, the frozen-spin hypo- 
thesis can be regarded a s  proved i f  the magnetic field 
a t  the muon is shown t o  be static. As indicated in 
Refs. 5 and 6, the character of the time dependence of 
the local field a t  the muon is simplest and easiest to 
ascertain in experiments with a zero external field. We 
begin our discussion with an analysis of this case. 

3. We assume in this section that the muons can be 
stopped in arbitrary interstices of the crystal lattice. 
A variant wherein the muon is captured by an impurity 
magnetic center will be considered in the next section. 
It is known that experimental investigations by the muon 
method yield the polarization P(t) averaged over the 

x=a tS ( t -m)S (O) ) ;  muon ensemble at a instant of time. In a theo- 
retical calculation of the polarization i t  must be borne here S is the spin of an individual magnetic center and 
in mind that in spin glasses the muons a re  in a stochas- 

cr is a normalization constant (urn,= 1). At low tem- 
peratures tic magnetic field produced by all  the paramagnetic 

centers. The random character of the field is deter- 
8 

x - 1- (%) "'& mined both by the random orientation of the spins and 
by the random spatial distribution of the centers rela- 

and since the characteristic values of TsG lie near 10 K, tive to the muon stopping point. 
there exists a sufficiently large temperature region in 

To calculate the observable polarization of an ensem- which the spins are  practically completely immobile. 
ble of muons we use Markov's method which i s  standard Withincreasing temperature, the parameter u decreases in such cases (see, e .  g. , Ref. 7). The same method 

monotonically, and vanishes a t  T = T ,,; ; near the transi- 
was used to solve a related problem-the theoretical cal- tion point (T s T ,,) 
culation of the line shape of an NMR signal in a mag- 

x=-'l,[i-(TsolT)21. netically dilute system. The results obtained there 

We confine ourselves in this paper to the region 
T << T sc, and show that an analysis of the behavior of 
the muon polarization a t  these temperatures makes it 
possible to check on the Edwards-Anderson model. The 
depolarization of the muons a t  T - TsG will be the sub- 
ject of a separate paper. 

were used by the cited authors of the experiments were 
muons. 'n3  I t  must be emphasized , however, that the 
NMR method requires by i ts  very nature the use of a 
strong external magnetic field. In addition, i t  was as- 
sumed in Ref. 8 that the quantization axes of the mag- 
netic-impurity spins a re  parallel to the external field. 
Therefore the results of Ref. 8 a r e  not applicable a t  

2. We note f i rs t  that in alloys, a s  shown by experi- all in a zero external field, and in the case of a strong 
ment (see, e. g., Ref. 4), and a s  follows from obvious field, a s  will be seen from Sec. 5, quantitative differ- 
considerations, muon diffusion is strongly suppressed. ences a r e  caused by the fact that the paramagnetic- 
In any case, the muons do not diffuse a t  sufficiently impurity spins a re  randomly oriented. 
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The experimentally observed polarization of the muon 
ensemble is determined by the formula 

P e ( t )  =M=fi(t)Po(O) (1) 

where 

0 M = B ( ~ ) -  (-+ ( 6 q - 7 )  cos ut+e,,-sin ut 
0 0 

Here w = 8.52 x 104B sec" is the vector of the muon spin 
precession frequency in a magnetic field B (in gausses) 
the averaging is over the distribution function W(w)  of 
the local field. If the field distribution has cubic sym- 
metry o r  is isotropic, formula (2) takes the simple 
form 

Obviously, i t  is precisely this variant which is realized 
in a zero external field in spin glasses, when the quan- 
tization axes of the individual spins a re  randomly 
oriented, and the crystal lattice has cubic symmetry. 

Following Walstedt and ~ a l k e r , ~  we write W ( w )  in the 
form 

The summation here is over all possible positions of 
the magnetic centers, c is the fraction of the occupied 
positions, and w j ( w j )  is the distribution density of the 
field produced a t  the muon by a center is position j. 
We assume that all possible positions a r e  crystallo- 
graphically equivalent. A generalization of (4) to in- 
clude the case when the paramagnetic centers have dif- 
ferent probabilities of being in crystallographically 
different sites (interstices) is trivial. 

We obtain now the Fourier transform of the field 
distribution 

We have 

At low impurity-center concentrations (c  << 1) 

The fields w, of an individual paramagnetic center 
consists, a s  is well known, of the field due to the in- 
teraction via the Rudeman-Kittel (RK) mechanism and 
of the dipolar field: 

Here A and B a r e  coefficients that determine the con- 
tributions of the RK fields and of the dipolar fields 
(with B =iiy, ,Ys,  where y, and y,  a r e  the gyromagnetic 
ratios for the muon and the magnetic center); fikp is the 
Fermi momentum; cpo is the phase of the RK interaction; 
r, is the vector connecting the muon, and the magnetic 
center in position j, a, =r,/rj; i, is a unit vector in the 

direction of the quantization axis of the spin of the mag- 
netic center, and m, is i ts  projection on this axis. 

The actual averaging in (5) and (6)  is thus over the 
possible directions of the quantization axes (of the vec- 
tor i,) and over the spin projections on these axes. 

When summing in (6) we recognize, following Ref. 8, 
that w, contains, besides the factor r;S that varies rela- 
tively slowly a s  a function of the distance from the 
muon, also a rapidly oscillating term that is propor- 
tional to cos (2k,rj +p,) ( k , ~  10' cm-l). Therefore in 
the summation over the positions r, belonging to one 
period of the RK field, the factor ri3 can be regarded 
a s  approximately constant. Under these conditions, 
the variables in fact separate and 

This equality holds better the larger R. 

Since we a re  considering the case when c << 1, the 
positions close to the muons obviously make a small 
contribution, s o  that this procedure can be extended to 
include all R. With this taken into account, Eq. (6) 
can be rewritten in the form 

where 
- mj(cp) = ( A  cos qij+B[ij-3a,(ajij) 1) mj/rj'. 

(9) 

Next, when summing over j in (8), we can approxi- 
mately go over to integration with respect to r: 

where p" is the volume per possible position of the im- 
purity center in the lattice. Obviously, the imaginary 
part  of the resultant integral vanishes when averaged 
over the directions of the vectors i. The real part of 
the integral with respect to r can be easily calculated 
by using the identity 

As a result we obtain 

A ( q )  =e-"', 

where 

As seen from (11), the depolarization rate A is direc- 
tly proportional to the bulk density pc of the paramag- 
netic centers and to the average modulus of the projec- 
tion of the spin center on i ts  quantization axis. Ob- 
viously, ((m() increases with increasing x .  In fact, 
in the considered low-temperature case we have ( ( m 1 )  
= [(m) [ZS. 
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The integral in (11) can be calculated in elementary 
fashion in two limiting cases: that of a pure dipolar 
field (A << B) 

and in the opposite case of a pure RK field (A >> B )  

~ ~ ~ - - ' / ~ n ~ c <  1 m I ) I A 1. (13) 

Estimates show that the characteristic values of the 
depolarization rate should be lo6 to lo7 sec". 

Using (lo), we easily obtain 

Substituting (14) in (3), we get ultimately 

~ ( t )  ='/,[i+2 ( 1 - ~ t )  e-":] P (0) .  (15) 

A plot of P(t)  is shown in Fig. 1. It is seen that over 
long times the polarization tends to the value P(0)/3. 
At t = 212'' the polarization goes through a minimum 
equal to 

A most important fact is that the minimum does not 
depend on the density of the magnetic centers, whereas 
the instant of time a t  which the polarization is a mini- 
mum is inversely proportional to the density [see Eq. 
(111. 

We estimate now the limits of the validity of (25). As 
already noted, i t  was derived with the summation in (6) 
replaced by integration over all  of space. Actually, 
however, i t  is necessary to integrate over the region 
r >ro, where ro is the minimum possible distance from 
the muon to the magnetic center. The main contribu- 
tion to an integral of the form 

is made by the region / a ( r 3 s l .  Therefore the exten- 
sion of the integration over all distances is legitimate if 
the condition 1 a 1 r,'3 2 1 is satisfied. Assuming 
a y,p,q, we find that expression (10) for the Fourier 
transform of the distribution density of the local field 
is valid a t  q 2 ?f$;'pa. Accordingly, Eq. (15) describes 
correctly the time dependence of the polarization when 
the similar condition t 2 r",y;'pil is satisfied. The char- 
acteristic values of ro amount to 1-2 A .  We conclude 
thus that Eq. (15) is valid a t  times t 2  10-8-109 sec, 

FIG. 1. Behavior of the polarization when the muon stopping 
points a re  uniformly distributed. 
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i. e . ,  practically in the entire region accessible to ob- 
servation. 

At short times t S lo-' sec  the P ( t )  dependence can be 
determined by expanding (3) in powers of the time: 

where 

in crystals with cubic symmetry 

where (m2) 3 W2 = S2. 
If there is no phase transition into the frozen state, 

the sample remains an ordinary paramagnet all  the way 
to TzO. The dependence of the muon polarization on 
the time can then have a qualitatively different charac- 
ter. In fact, in paramagnets the muons turn out to be 
located in a field that fluctuates in time. In order 
of magnitude, the characteristic local field a t  the muon 
is the same a s  the field a t  any impurity center. The 
correlation time for the local fields in the sample is 
rc w-,' (w, is the average precession frequency of 
the impurity-center spins in the local field). It is 
obvious that the muon spin precession frequency w, in 
the very same fields is smaller by two o r  three orders 
than w, . In paramagnets the frequency w, is practi- 
cally independent of temperature and is determined en- 
tirely by the averaging modulus of the local field. Tr i -  
vial estimates show that a t  a density c =  10" we have 
rc= 10-8-10-9 sec. Since w,rc << 1, the known condition 
that the correlation time be small is satisfied. Then, 
a s  is well known, 

(see, e. g . ,  Ref. 9, p. 3 of original, p. 684 of the 
translation). Thus, the muon polarization in para- 
magnets decreases monotonically to zero. 

According to the Edwards -Anderson theory,' the order 
parameter x in spin glasses is equal to unity only a t  
absolute zero. Therefore a t  any finite temperature a 
fluctuating field is present in addition to the static 
magnetic field. At low temperature, the amplitude of 
the fluctuating field component is small; i t s  mean 
square is given, obviously, by 

The interaction of the muon spin with the fluctuating 
part of the field leads to the appearance of another de- 
polarization mechanism. As a result, Eq. (15) takes 
the form 

P (t) = % [ I f 2  (1-At) e-&'] exp (-Ant) P ( 0 )  , 

&=2 ( 1 - x )  oo2.r.. 
(19) 

This formula is valid if 1 - H. << 1. It is clear that the 
additional factor exp(-Act) that appears in (19) is only 
a small correction to (15) a t  times of the order of the 
muon lifetime. In fact. we have 
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Uemura et al.  lo have recently reported an investiga- 
tion of the depolarization bf positive muons in AuFe and 
CuMn spin glasses in a zero external field. The ex- 
periment was performed at  temperatures T >iT,. 
The parameter H. is in this case not close to unity, s o  
that their results cannot be compared with our theory. 
In the theoretical interpretation of the behavior of the 
muon polarization, Uemura et al. lo propose that in spin 
glass the local field fluctuates a s  one whole with a fre- 
quency v =  rll, the only consequence of a temperature 
change is a change in v. This model does not agree 
with either the Edwards-Anderson theory o r  with the 
behavior of the paramagnetic states of the system. In 
spin glass, especially near the phase-transition point, 
the decisive factor should be the change of the ampli- 
tude of the fluctuating part of the field and, a s  indicated 
above, this amplitude should vanish a s  T - 0. In Ref. 
10 is given, in addition, a formula for the P(t) depen- 
dence in the static case (with a reference to a private 
communication from Kubol), which agrees with our Eq. 
(15) but in which the parameter A is not calculated. 

Equations (111, (15), (16), (18), and (19) provide a 
complete description of the low-temperature behavior 
of the polarization of positive muons in spin glasses in 
the absence of an external field and under the condition 
that the muons a r e  not captured by impurity magnetic 
centers. 

4. A number of recent experiments (see, e. g . ,  Ref. 
4) have shown that in many metals muons should be 
captured by impurities. One cannot exclude this pos- 
sibility in spin glasses, too. The field a t  a muon cap- 
tured by a magnetic impurity center consists of two 
parts, w = w, + w,, where w, is the field from the center 
closest to the muon, and w, is the field of all the re- 
maining centers, which a re  randomly distributed in the 
sample. At low impurity density, the distributions 
Wl(wl) and W,(w,) of the fields a re  practically indepen- 
dent. The distribution of the summary field is ob- 
viously given by 

This yields for the Fourier transform 

A (q) = J ebqW (lo)  do = [ S e i ~ l q ~ ~  (lol) d o l l  . [l e ' b 2 q ~ ~  (at) d*] (21) 

The distribution of the field due to the randomly lo- 
cated centers was investigated in Sec. 3. It was shown 
there that A,(q) -exp(-Aq), where A is given by (11). 
In the calculations that follow we confine ourselves for 
simplicity to the case when the distribution Wl(wl) [and 
correspondingly A,(q)] is spherically symmetrical. 
For  a complete determination of the polarization i t  is 
then sufficient, according to (3), to calculate (coswt),. 
Using (21), the assumption that A,(q) has spherical 
symmetry, and the explicit form of A,(q) i t  is easy to 
show that 

It is obvious furthermore that the overwhelming con- 
tribution to the polarization is made. by the center that 
captured the muon. Indeed, a s  seen from ( l l ) ,  the 

FIG. 2. Behavior of the polarization when muons are captured 
by impurity parmagnetic centers (case of a pure dipolar 
field). 

parameter A contains a smallness of order c.  The 
contribution of all the remaining centers can therefore 
be neglected in first-order approximation, i.e., we 
can put A=0 in (22). 

We calculate now (coswt),. We assume that a muon 
can be captured with equal probability by one of the n 
positions near an impurity center characterized by the 
vector r,, with r, = r,. Then 

where w,(r,, i,, m,) is given by (7). We average over 
the spin projections on the quantization axis under the 
assumption that the magnetic centers a r e  completely 
polarized (this corresponds to the case of low tempera- 
tures). As a result we get 

where S is the spin of the magnetic center. 

Figure 2 shows by way of illustration the P(t) depen- 
dence for the case of a pure dipole field (A= 0). The 
polarization is then determined according to (3) and (24) 
by the expression 

where 

It is seen from the figure that before i t  reaches the 
asymptotic value P(0)/3 the polarization P(t) executes 
many oscillations and even reverses sign. The f i rs t  
minimum P,,,= -O.l9P(O) is reached a t  Qt = 2.2.  Thus, 
besides the quantitative difference (faster damping) 
there is also a qualitative difference between the be- 
havior of the polarization in the case of muon capture 
by an impurity and in the case of a uniform distribution 
of the stopping points. An experimental discrimination 
between these situation should therefore be easily 
realized. 

5. We consider now the case of a strong external 
field. It is known that in this case the polarization 
component perpendicular to the external field is damped 
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much more rapidly than the parallel component. We 
assume as usual the external field to be directed along 
the z axis and introduce the notation P+ = P ,  + iP,. The 
complex polarization P+ is described by the formula 

P+ ( t )  =e"*'G ( t )  P+ ( 0 ) .  

where wo is the frequency of the muon spin precession 
in the external field, and G ( t )  is the relaxation function. 

If the muon stopping points a r e  uniformly distribu- 
ted, we can calculate G( t )  by using the results of Ref. 
8, subject to an additional averaging over the directions 
of the quantization axes of the spins of the magnetic 
centers. This averaging does not change qualitatively 
the relaxation function 

G ( t )  =e-*', (26) 

but the numerical value of the depolarization rate A is 
different and is determined by Eqs. (11)-(13). 

We mark with a prime the value of A a s  given in Ref. 
8. We then have in the pure dipole and in the pure 
Ruderman-Kitel cases 

The region where formula (26) is valid is the same a s  
that of (15), i. e. , t a 10" sec. For  short times G(t) 
= 1 - 4t2, with 0 2 1  =iu E, where 4 is given by (17). 

If the muons a r e  captured by impurities, then we 
easily obtain, in full analogy with the derivation of (22) 
and (23), 

G ( t ) =  e-At {+t <exp[iajz(rj ,  ij, n ~ ~ ) t ] > ~  ,-. , $ 1  (28) 
,-I 

where the summation is over the positions closest to 
the paramagnetic centers, and w,,(r,, i,, m,) is the 
projection of the field defined by Eq. (7) on the direc- 
tion of the external field. Averaging under the same 
assumptions a s  in the derivation of (23), we obtain ulti- 
mately 

1 
St 

G (1) = e-"' ! dx sin (,[ [ A  coa (2kzr0+rp0) + 81' 
ro 

+ 3B[B-2A cos (2k,rO+q,) ]xZ]"  I { $ [  [ A  cos (2kFro+po) + B I Z  

+ 3B[B-2A cos (2k,r,+cpo) ]x2]" (29) 

We see therefore that the relaxation function oscillates 
many times but, in contrast to the zero-field case, i t  
tends to zero a t  long times. 

6. Our results show that the muon methods offer 
wide prospects for the study of the properties of spin 
glasses. Most information will be provided by experi- 
ments in the absence of an external field. If i t  is ob- 
served that a t  low temperatures the polarization tends 
asymptotically to the value P(0)/3, and to zero with 
rising temperature, then this will be evidence of the 
pressure of a phase transition and that the spins of the 
magnetic centers a r e  immobile below the phase transi- 
tion point. The form of the P(t)  dependences leads to 
unambiguous conclusions concerning the character of 
the distribution of the muon stopping points. 

')We assume that the nuclei of the matrix have zero  spin. 
. Depolarization by nuclear spins has  been thoroughly investi- 

gated (see, e.g., Ref. 9)  and can be easily taken into account. 
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