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A theory of linear resonance of a domain wall in a thin magnetic film is developed on the basis of an 
approximate calculation of the magnetic dipole interaction, in an effective-demagnetizing-factor model. Both 
a uniform domain wall (of Bloch type for film thickness d z d o  and of N b l  type ford <do) and a wall periodic 
along its length are considered. For the uniform domain wall, a general equation of motion for the wall center 
is obtained from the Landau-Lifshitz equation, and it is shown how the resonance frequency and the damping 
parameter vary with the film thickness. It is established that the natural frequency of oscillation of the domain 
wall vanishes at film thickness d =do; that is, this oscillation is a "soft mode" of the structural phase 
transition from a Nb l  wall to a Bloch wall. A domain wall periodic along its length is investigated, it consists 
of alternating, oppositely magnetized Bloch or N b l  sections, separated by "domain walls" of internal 
structure. The frequency of oscillation of the "domain walls" of internal structure is studied, and the existence 
of a new type of resonance is established, resonance of the internal structure (RIS) of a periodic wall. The 
theory is compared with the experimental results of P. D. Kim, D. M. Rodichev, and I. A. Safonov [Izv. 
Akad. Nauk SSSR, Ser. Fiz. 36, 1499 (1972); Bull. Acad. Sci. USSR, Phys. Ser. 36, 1329 (1972)], who reported 
a resonant increase of the static susceptability in the presence of a weak radiofrequency field oriented normal 
to the plane of a domain wall. 

PACS numbers: 75.70.K~ 

INTRODUCTION. RESONANCE OF QUASISTATIC 
SUSCEPTIBILITY 

The dynamics of a domain wall in ferromagnets was 
f irst  considered by ~ l j r i n g . ~  He obtained the equation 
of motion of the wall center ,  introduced the concept of 
effective mass ,  and demonstrated the existence of 
resonance of uniform oscillations of a domain wall. 
This was a l l  done for the domain wall characterist ic  
of bulk materials ,  whose structure had been calculated 
ear l ie r  by Landau and ~ i f s h i t z . ~  A review of later  
work, theoretical and experimental, on the dynamics 
of the motion of a domain wall may be found in the 
monograph of ~ u b e r t . ~  It i s  appropriate to mention in 
particular the exact solution by walker6  of the problem 
of one-dimensional motion of a domain wall, and a 
s e r i e s  of papers by ~lonczewski*  on the structure and 
dynamics of domain walls of cylindrical domains. Non- 
uniform oscillations of domain walls in bulk materials  
were studied by winter8 and by Fartzdinov and ~ u r o v '  
within the framework of a general formulation of the 
problem of spin waves in magnetic materials  with a do- 
main structure. 

With decrease of even a single dimension of the 
specimen to values corresponding in order  of magni- 
tude to the effective thickness of a domain wall, the 
problems of the structure of a domain wall and of i t s  
dynamics become suddenly more  complex because of 
the increased role of the magnetic dipole interaction. 
In the presence of strong magnetic dipole interaction 
(and in thin f i lms i t  often dominates), the structure of 
the wall is described by a system of nonlinear integro- 
differential equations. Approximate (principally nu- 
merical) solutions of this s tat ic  system (a  review of 
them is given in Ref. 5) show that the actual s tructure 
of a domain wall in thin films i s  nonuniform in a l l  
three dimensions and i s  very complicated. It i s  natu- 
r a l  that in such a situation even the linear dynamic 
problem becomes extremely complicated, since it i s  

described by a system of integrodifferential equations 
in which the variable coefficients a r e  the solution of the 
stat ic  problem of domain-wall s tructure.  

The slight degree of development of the dynamic 
theory of domain walls in a thin film impedes their 
use in devices of high-frequency and of computer tech- 
nology. There a r e  a number of experimental results  
that cannot be understood on the basis  of the dynamic 
theory of a wall in bulk materials .  We shall discuss 
one such experiment," which exerted a stimulating in- 
fluence on the formulation of the present research.  

A solitary 180-degree domain wall, oriented along 
the easy axis  of a permalloy film, was observed under 
a microscope by means of the magnetooptical Ke r r  
effect, in the form of a boundary of contrast between 
light and dark fields. A low-frequency (Q- lo2 Hz) 
magnetic field was applied along the easy axis  and 
produced displacement of the domain wall a t  the same 
frequency. The amplitude of these forced oscillations 
(proportional to the displacement susceptibility xo) was 
measured with a photomultiplier, responding to the 
periodic change of the relation between the light and 
dark bands in the field of view of the microscope. A 
weak high-frequency (HF) field was applied perpendicu- 
l a r  to the axis; i ts  frequency f could be varied smooth- 
ly. It was found that a t  a certain frequency f =fo the 
amplitude of the forced low-frequency oscillations of 
the domain wall increased abruptly. The frequency of 
this resonance lay in the range 30-300 MHz and de- 
pended on the film thickness d (Fig. 1). 

We shall analyze the results  of this experiment. 
F i r s t ,  the value of the low frequency SZ plays no role 
in the physical mechanism of the observed effect; the 
s ame  effect could be observed also a t  SZ=O, since what 
occurred a t  f =fo was an increase of the quasistatic 
susceptibility x,; it is s imply eas ier  to measure  xo at  
Q+O. Second, the effect of an increase of the quasi- 
s tat ic  susceptibility on application of a smal l  HF field 
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FIG. 1 .  Experimental variation of the resonance frequency of 
a high-frequency field with film thickness, according to data 
of Ref. 10. 

is general for al l  hysteretic systems: such HF  shaking 
always causes the magnetization hysteresis  curve to 
approach the ideal curve,  and the lat ter  corresponds 
to maximum X, and to maximum linearity of the char-  
acterist ic  (this circumstance is widely used in mag- 
netic sound recording). Until now, however, a l l  that 
has been observed (and used practically) is nonreso- 
nant shaking of arbitrary frequency ( la rger  than the 
maximum frequency of the signal being recorded). 

Thus it i s  a resonant increase of the quasistatic sus-  
ceptibility that has been observed experimentally for  
the f i r s t  time in Ref. 10. Qualitatively i t  i s  c lear  that 
this  indicates the presence in the system of some reso-  
nance at  frequency f,, which amplified the effect of the 
HF  shaking many times. As a result ,  application of a 
smal l  HF  field at  f =f, led to such "idealization" of the 
magnetization curve as could have been produced in the 
nonresonant case  only by a considerably la rger  ampli- 
tude of the HF  field. It is c lear  that the primary prob- 
lem in this effect is the deciphering of the nature of the 
resonance observed a t  frequency f, and elucidation of i t s  
degree of universality. An attempt to describe it by 
use of the theory of resonance of a domain wall in bulk 
material  does not lead to either quantitative o r  qualita- 
tive agreement with experiment. 

The aim of the present paper is the development of a 
linear dynamic theory of the motion of a domain wall in 
thin magnetic films. Because of the complexity of the 
problem, the magnetostatic interaction i s  taken into 
account in the effective-demagnetizing-factor approxi- 
mation. This  leads to a substantially s impler  and 
cruder model of the s t ruc ture  of a domain wall. Such 
a model nevertheless conveys the basic features of the 
structure of a wall in thin films. It enables us to ob- 
tain approximate solutions of the linear dynamic prob- 
lem and to determine the resonance frequencies both 
for  a uniform domain wall and for  one that is periodic 
along i t s  length. The model developed has  enabled us, 
in particular, to explain the nature of the resonance 
observed in Ref. 10. 

1. GENERAL SYSTEM OF EQUATIONS 

Both the structure and the dynamics of motion of a 
domain wall ( a s  of any macroscopic formation in a 
ferromagnet) a r e  described by the vector Landau-Lif - 
shitz equation4 

E M = - - ~ I M X H ~ I  + - [ M X M ] ,  
M 11.1) 

where 5 is the damping parameter ,  g i s  the gyromag- 
mt ic  ratio, and the effective magnetic field is connect- 
e d  with the phenomenological Hamiltonian #by the 
relation 

We choose %and accordingly Hg on the form 

where (Y is the exchange constant, j3 is the anisotropy 
constant, 1 is a unit vector  along the axis  of anisotropy, 
H is the external magnetic field, and Hm is the mag- 
netic dipole field. 

The magnetic dipole field Hm depends on the distr i-  
bution of magnetization M in space and is determined 
by Maxwell's equations; the lat ter  a t  not too high f r e -  
quencies (when electromagnetic wave propagation ef - 
fects  may be  neglected) reduce to the equations for the 
magnetostatic potential cp : 

VZq=4n div M, Hm---grad q. (1.4) 

The system of equations (1.1)-(1.4) with appropriate 
boundary conditions is a closed system and describes 
a l l  the stat ic  and dynamic properties (in the approxima- 
tion indicated) of a domain wall in an ideal magnetic 
crystal .  

We shall further consider the following geometry 
(Fig. 2). A ferromagnetic layer of thickness d is lo- 
cated in the coordinate plane xz;  the axis  of easy  ani-  
sotropy, determined by the unit vector 1, is oriented 
along the z axis; the plane of the domain wall is located 
in the y z plane. 

If we suppose that the magnetization M within the 
layer is a function only of x and z ,  then the magneto- 
static problem (1.4) can be solved exactly in general 
form. By splitting (1.4) into a system of three equa- 
tions in three regions of space,  with appropriate con- 
ditions for  joining the potentials at  the boundaries of 
the layer,  and by expanding (o(x,y , z )  and M(x,y , z )  
a s  Fourier  integrals in x and z ,  we get an expression 
for  the Fourier  transform of the potential within the 
layer 

where 

e = x d l 2 ,  ~ ~ = k , ' + h . ~ ~ .  

Hence the components of the magnetic field a r e  de- 

FIG. 2.  
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termined; after  averaging over the thickness d of the 
plate (it i s  such an  average that will interest us  la te r ) ,  
they have the form 

H ~ ~ ( X ,  Z )  =-4x JJ vGy elck++kaz) dk ,  dk,, (1.6) 
k2 

Hzm(z ,  Z )  =-4n J JT(k i&=+k2kz )  (l-V)ei(klx+hlx) dk ,  dk,, 

where V =  [l -e"d] /nd,  and where the integration ex- 
tends between the limits *. 

We represent  the magnetization and the magnetic 
fields (both the external and the magnetic-dipole) in the 
form 

M (5. Z .  t )  =M (x, Z )  +m (x .  z, t )  . 
H ( x ,  Z, t )  =H(x, Z )  +h(x, z, t )  . 

We shall consider the dynamic par t s  m and h smal l  and 
shall neglect a l l  powers of them above the f irst .  After 
substitution of (1.7) in (1.1), the lat ter  spl i ts  into two 
equations: the nonlinear stat ic  Landau-Lifshitz equa- 
tion, describing the s t ruc ture  of the domain wall, 

[M X He]  =0, (1.8) 

and the dynamic equation 

describing the linear dynamics of the domain wall. The 
coordinate-dependent coefficients M and of equation 
(1.9) a r e  the solutions of equation (1.8). 

2. UNIFORM DOMAIN WALL 

For  a domain wall uniform along z , when M =M(x), 
the expressions (1.6) take the form 

It is c lear  that one cannot hope to obtain analytic solu- 
tions of the systems of differential equations (1.8) and 
(1.9) by substituting in them the magnetic dipole fields 
H m  and hm in the form (2.1); further approximations a r e  
necessary. 

A cardinal simplification of the problem i s  approxi- 
mate replacement of the integral expressions (2.1), 
which relate H"() to the unknown function M(x), by 
algebraic expressions : 

where the effective demagnetizing factors N' depend on 
the form of the functions Mi@) and on the thickness d of 
the film. Such a model for  approximate calculation of 
magnetic dipole interaction has already been used1' for 
calculation of the structure of a domain wall in a thin 
magnetic film. The model differs from the usual intro- 
duction of demagnetizing factors in that no averaging 
over the width of the magnetic pole is introduced in it;  
therefore there remains a possibility of seeking the 
form of the function M(x) from an appropriate differen- 
tial equation. 

The method (2.2) i s  based on the assumption that for  
the integral characterist ics  of the problem-energy, 
frequency-the dependence of the coefficients N' on the 
rat io of the effective width 1 of the magnetic pole to d 
plays a more  important role than do the deviations of 
the functional dependence (2.2) f rom (2.1). This a s -  
sumption was tested in Ref. 11 a s  follows. The energy 
density of a domain wall with a magnetization distri- 
bution -sechox was calculated by two methods: a )  sub- 
stitution of the expression (2.1) and subsequent numer- 
ica l  integration, and b) substitution of the expression 
(2.2) and direct analytic integration. Here the demag- 
netizing factors were  approximated by the expressions 

It was found that for calculation of the energy, the ex- 
pressions (2.2) and (2.3) a r e  completely satisfactory 
approximations to the exact expressions (2.1) over a 
wide range of rat ios d / l ,  if for the width of a pole of 
the form sechox one takes the value 1 =5/o. 

On substituting the expressions (2.2) in (1.8), we 
get a system of nonlinear differenttal equations, which 
describe approximately the s t ruc ture  of a domain wall 
uniform along z ,  in the absence of external magnetic 
fields; ei ther  a N6el wall, 

o r  a Bloch wall, 

may be a solution of such a system. Because of the 
dependence of o on N', the effective width of the pole 
is a function of the film thickness. On substituting 1 ,  
= 5/oi in (2.3), we get equations for  finding the depen- 
dence of N' on d (or  of o i  on d). F o r  a Bloch wall, 

for  a N6el wall, 

iVX[d+5a'"l ( p i -  N') '"1 =4nd. (2.6) 

The transition from one domain-wall s tructure to the 
other occurs  at  thickness d =do,  when Nr=NY = 2n; 
that i s ,  

Substituting one of the two solutions (2.4) of the static 
problem (1.8) in (1.9), we get a dynamic system of 
equations for  the corresponding type of domain wall. 
This  system describes a l l  the types of natural o r  forced 
oscillations that can occur in a uniform domain wall. 
It is c lear  that the magnetic dipole fields hm(r , t )  for  
most types of oscillations a r e  described by compli- 
cated functions and cannot be approximated by expres-  
s ions of the form (2.2). But such an approximation is 
admissible for  one very important oscillation, cor re-  
sponding to uniform displacement of the domain wall 
a s  a whole. In fact, in this case  the oscillation m ( r , t )  
is uniform along z and has  a width of order  1 along x ,  
and therefore we may assume, with the s ame  accu- 
racy a s  for  the static fields, that h: and h," a r e  con- 
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nected with the corresponding components of m by 
relations similar to (2.2). The field h, in this case is 
the mean demagnetizing field that acts in the specimen 
when all  i t s  domain walls a r e  displaced from the equili- 
brium position by some distance x,. For an ideal 
specimen, the coefficient of proportionality between 
h, and x, can be expressed3 in terms of the specimen 
geometry and the domain structure. For a real  speci- 
men there i s  an additional term to interaction of the 
domain wall with inhomogeneities; since at small  xo 
this term is a l s o  proportional to xo, we can write in 
the general case 

where k i s  the coefficient of elasticity of the domain 
wall. 

On substituting these expressions in (1.9), we find 
that, for example, for a Bloch wall one of the solutions 
of the system of differential equations is the following 
type of oscillation: 

m.-u(t) sch ax, mu-oxo(t) sch ax lh ox, 

m.-ox, ( t )  sch' ax, 
(2.9) 

where u and x, a r e  unknown functions of time. 

On comparing the components m y  and m, of this 
oscillation with the first terms of the expansion of the 
displaced function scho(x - x,) and tho@ - x,) a s  
se r i e s  in ox,, we see  that the oscillation (2.9) in fact 
corresponds to displacement of the domain wall. On 
eliminating u(t), we get the equation of motion of the 
wall center x,. This equation has the same form for 
a Bloch wall and for a NBel wall, i f  by o we understand I 
either o, o r  o, in accordance with (2.4): 

Equation (2.10) differs from the well known equation 
of IXring3 for a wall in bulk material, in that the effec- 
tive mass m, of the wall depends on the film thickness 
and has a singularity a t  a critical thickness d =do, cor- 
responding to the transition from a NBel wall to a Bloch 
wall: 

We have also retained in the equation a term C'ex- 
citation through damping" ), which is usually neglected. 
Here such neglect i s  incorrect near d =do, where this 
term may exceed the term describing direct excitation. 

Both the characteristic frequency w, of the wall oscil- 
lations and the damping parameter I' depend strongly 
on the film thickness , becasue of the dependence on d 
of the modulus of the difference of demagnetizing fac- 
tors .  The values of Nx, NY, and o a r e  determined from 
equations (2.5), (2.6), and (2.4). The elasticity coef- 
ficient k also depends on the thickness, but an explicit 
expression for it can be written only for an ideal film: 

where D is the domain width and L, is the specimen 
dimension along the z axis. For a rea l  s pecimen at 
small thicknesses, the interaction with inhomogenei- 

FIG. 3. Schematic variation of the characterist ic frequency 
uo of uniform oscillations of a domain wall with film thickness 
d. Solid curve,  ideal case; dotted, allowance for the effect 
of inhomogeneities. N and B a r e  the ranges of existence of 
~ 6 e l  and of Bloch domain walls. 

t ies becomes dominant, and the actual dependence of k 
on d may disagree completely with (2.12). 

The dependence of W, on thickness for an ideal film 
is shown in Fig. 3 schematically by the solid curve. 
The vanishing of the frequency a t  d =do indicates that 
w, is a "soft mode" corresponding to a structural 
phase transition, a change of the type of domain wall 
at a certain value of the film thickness. The vanishing 
of the frequency at d = 0 is correct  only for an ideal 
film; in this range of thicknesses, for real  films, im- 
portant differences from the solid curve of Fig. 3 may 
be observed (this is shown conventionally in Fig. 3, 
dotted curve). 

In harmonic excitation by an external magnetic field 
(h = hoeiWt ,x, =ae iwt ) ,  the complex amplitude a of the 
oscillations of the domain wall o r  the corresponding 
dynamic susceptibility x of the material is determined 
by the expression 

2M 2gM gMIW-Nul+iEo 
x=-a=- Dh, oD o 2 - o E + 2 i o r  ' 

Comparison of Fig. 3 with the experimental graph of 
Fig. 1 shows not even qualitative agreement between 
them. Thus the resonance of the static susceptibility 
observed in Ref. 10 is not related to resonance of the 
oscillations of the center of the domain wall. 

3. PERIODIC DOMAIN WALL. RESONANCE OF THE 
INTERNAL STRUCTURE 

A periodic internal structure of a domain wall ar ises  
in magnetic films to decrease the energy of magnetic 
dipole interaction. Very complicated configurations of 
the magnetic moment actually occur: but we shall con- 
sider only the simplest model," which reflects the prin- 
cipal properties of a periodic domain wall (Fig. 4). A 
domain wall periodic along the z axis, with period 2L, 
consists in this model of alternating NBel and Bloch 

FIG. 4. Periodic domain wall. Model of the structure of a 
periodic domain wall according to Ref. 11. 
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sections of different polarities. Figure 4 represents  
a wall with d >>do, when the Bloch sections form wide 
"domains" of internal s t ruc ture ,  while the NBel sec-  
tions form narrow "domain walls" between these do- 
mains. When d < do,  the Nee1 sections become longer 
than the Bloch, and now they can be interpreted a s  
domains of internal s tructure.  

By application of a magnetic field along the y ax is ,  
it is possible to magnetize a periodic Bloch domain 
wall. The magnetization process will proceed by dis- 
placement of the NBel sections, the domain walls of 
internal s tructure;  the Bloch sections oriented along 
the field will grow, and those oriented opposite t o  the 
field will diminish. Thus, many properties of the in- 
ternal s tructure of a periodic domain wall a r e  s imi lar  
to the properties of the ordinary domain structure.  

It i s  clear  that a periodic domain wall will possess 
a number of new dynamic properties that a r e  absent in 
a uniform domain wall. The most  important of these 
properties i s  the occurrence of a new resonance fre-  
quency, corresponding to oscillations of domain walls 
of internal s t ruc ture  with respect to their equilibrium 
positions. It i s  the investigation of this frequency that 
i s  the goal of the present section. 

The stat ic  s tructure of a domain wall has  been in- 
vestigated in a number of papers,  by use both of the 
method of perturbation theory1' and of numerical meth- 
o d ~ . ~  Not to mention the numerical resu l t s ,  even the 
analytic expressionsl1 obtained for  d >>do for the simp- 
lest model (Fig. 4) a r e  too complicated for  hope of 
solving the dynamic system (1.9), in which they occur 
a s  coefficients dependent on r. 

~ h i e l e , ' ~  i t  i s  t rue ,  succeeded in investigating ana- 
lytically spin waves in a periodic domain wall. But he 
treated the problem of a periodic domain wall in an in- 
finite material  and with neglect of the magnetic dipole 
interaction. This  is the gist of some internal contradic- 
toriness of the model investigated in Ref. 12,  since the 
very onset of a periodic internal s t ruc ture  of a domain 
wall is due to the finiteness of the specimen along they  
axis and to the magnetic dipole interaction. F o r  our  
purposes, the simplifications of Ref. 12 a r e  inappli- 
cable, and we shall make approximations of a different 
nature, not related to neglect of the magnetic dipole 
interaction. 

In the limiting case  d >> do ,  a periodic domain wall 
can be approximated by a plate of thickness 1, and width 
d ,  split into internal domains of width L, (Fig. 5a); 
in the limiting case  d << do,  by a plate of thickness d and 
width I,, split into domains of width L ,  (Fig. 5b). The 
values of L ,  and L, may be estimated by formula (7) 
of Ref. 13, which describes the width of a domain in a 
thin film : 

The widths I, and 1, of the main domain wall, which 
enter  here,  a r e  determined a s  functions of the f i lm 
thickness d by equations (2.5) and (2.6) respectively. 

In o rde r  to estimate the resonance frequency of do- 
main walls of internal s tructure,  we shall  use  the r e -  

FIG. 5. 

sul t s  of the preceding section, formula (2.10), but now 
substituting in them the characterist ics  of the internal 
domain walls. The widths of these walls (1, and I ,  in 
Fig. 5) a r e  connected with d and I ,  (or  I,) by relations 
analogous to  (2.5) and (2.6). The coefficient k in for- 
mula (2.12) is also renormalized accordingly. As a r e -  
sult we get an  approximate expression for the frequen- 
cy of resonance of internal s tructure (RIS) in the form 

It i s  evident that f a r  from the point do ,  the RIS frequency 
behaves in qualitative accordance with the experimen- 
ta l  resu l t s ,  in which resonance of the quasistatic sus-  
ceptibility was observed (see  Fig. 1): with increase of 
d ,  the frequency increases for  d << do and decreases 
for  d>>do.  

The question of the value of the RIS frequency in the 
vicinity of the point d =do of structural  phase transi-  
tion requires spec ia l  analysis. We shall  c a r ry  i t  out. 

We consider a domain wall that i s  periodic along i t s  
length with period 2L. Fo r  such a wall,  the magnetiza- 
tion can be represented a s  a Fourier  series with coef- 
ficients dependent on x :  

We shall extend the effective-demagnetizing-factor 
model also to the magnetostatic problem for a domain 
wall periodic along the z axis. In the expressions (1.6), 
we shall neglect the antisymmetric components of the 
magnetic field that a r e  induced by "foreign" poles: 
the contribution of the pole M ,  to the field HF and the 
contribution of the pole M ,  to the field H r ;  these effects 
a r e  beyond the l imits  of accuracy of the model. We in- 
troduce effective demagnetizing factors N', for  each 
t e rm of the Fourier  ser ies :  

H,"'(x, z )  =- N,fM,f(x)ei"qz, j-x, y, Z. & (3.4) 

The meaning of this representation cons is t s  in the fol- 
lowing, that we t rea t  each half-period of the nth har-  
monic of the domain wall a s  a triaxial ellipsoid, whose 
dimensions along the corresponding coordinate axes 
a r e  determined by the thickness 1 of the domain wall, 
the thickness d of the f i lm, and the "harmonic length" 
L / n  =r /nq .  How legitimate is the approximation of 
isolated ellipsoids for  description of the periodic struc- 
ture of the poles ? By replacing each half-period of a 
sinusoid by an  ellipsoid, we have neglected the interac- 
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tion between charges of adjacent half-periods. Such 
neglect is legitimate only when the half-period L/n is 
much larger than 1 and d .  This inequality cannot be 
satisfied for all terms of the Fourier series.  But we 
shall hereafter use only the first  few terms of this 
ser ies ,  and it is known from experiment that L 1, d;  
therefore the approximation (3.4) is admissible. 

To avoid using tables for determination of N', it is 
convenient to have analytical expressions that approxi- 
mate the demagnetizing factors of a triaxial ellipsoid. 
We propose as such  an approximation, for an ellipsoid 
with axes a ,  b, and c , the express ions 

where k , = l / a , k y = l / b , k , = l / c ; j = x , y  ,z .  

The expression (3.5) describes accurately all the 
limiting cases (sphere, cylinder, thin plate); for kc= 0, 
it becomes the well-known elliptic-cylinder approxima- 
tion (2.3); in intermediate cases it reproduces s atis- 
factorily (with maximum e r r o r  230%) the demagneti- 
zing-factor values given in Ref. 14. 

On substituting (3.4) in (1.8), we get a system of non- 
linear partial differential equations describing the 
structure of a domain wall in our simplified model. It 
is easy to show by direct substitution that a t  the point 
do, when Nx=NY, the exact solution of this system, 
satisfying the boundary conditions, has the form 

M.-M sch oz cos qz, M,-M sch az sin qz, M.=M t h  ax, (3.6) 

where the characteristic parameter o of the domain 
wall is determined by the express ion 

Thus when d =do, the magnetization distribution in the 
domain wall along the z axis has a simple sinusoidal 
form. Physically, this result is understandable, since 
when d =d, in our model, there is complete magnetic 
symmetry in the xy plane for magnetization in the do- 
main wall: the same value of the energy of magnetic 
dipole interaction (because Nf =Ni) and the same value 
of the anisotropy energy for any orientation of the vec- 
tor  M in the xy plane. 

The relation (3.7) connects o with q and with the phy- 
sical parameters of the magnetic film. Because of the 
simplified nature of the model, a second relation, 
which should determine q ,  is missing, and the period 
L =n/q remains undetermined. 

On departure of d from do, the symmetry in the xy 
plane is destroyed, and other harmonics appear in the 
magnetization distribution. Thus an approximate 
estimate shows that at small M = d  -do, the solution 
should have the following structure: 

M , c M  sch as[ (1-a) cos qz+a cos 3qz ] ,  

h l p M  sch as[ ( l + a )  sin qz fas in  3qz1, 
(3.8) 

where a - M/d. The form of this solution already sig- 
nificantly recalls Fig. 4: the projection M, forms the 
walls, while the projection My forms the domains of 
internal structure. 

We shall consider the dynamics of internal structure 

a t  the single point d =do. On substituting (3.6) in (1.9), 
neglecting damping, and introducing the cylindrical 
projections 

m*=m& im,, h*=h,&ib, (3.9) 

we get a dynamic system of three equations in the 
form 

s (m+e-'*+rn-e-'*) +2tm,=0, 

where the following notation has been introduced: 

s=sch ax, t r t h  as, 

e - o l a g M ,  cp=qz. 

On representing m,(s , z)  as a Fourier ser ies  of the 
form (3.3) and h; in the form (3.4), substituting in 
(3.10), and equating to zero the coefficient of each har- 
monic, we obtain an infinite chain o'f ordinary differen- 
tial equations. Cutting off the chain at terms corre- 
sponding to n = 2,  we have 

where 

The functions that occur in these equations a re  connec- 
ted with mi and m, by the relations 

The quantities ui have the form 

We solve for mi  in the last equation (3.12) and substi- 
tute it in f i rs t  and second. Introducing Yhe new functions 

we get a system for the components due to h*, in the 
form 

where c = (a: - 0:)/2. This system of equations de- 
scribes the resonance of oscillations of "domain walls" 
of internal structure. This type of "domain wall" dis- 
placement leads to a bias magnetization, periodic in 
time, of the main domain wall in the xy plane. For 
& = 0,  the system (3.16) describes the initial linear 
section of the process of magnetization of a domain 
wall by a static magnetic field h. 

Setting h*=O, we consider the problem of charac- 
teristic oscillations. When d =do and k,=nq/n << k,,k,, 
we have from (3.5) 

For q - 0,  the homogeneous equations corresponding to 
the system (3.16) reduce to degenerate (k = 1, where k is 
the modulus of the elliptic integral) Lam6 equations. 
The solutions of these equations satisfying the bound- 

1198 Sov. Phys. JETP 53(6), June 1981 V. A. lgnatchenko and P. D. Kim 1198 



ary conditions of the problem have the form 

v=a sch ox, p=b sch ox. (3.18) 

For  q $0,  equations (3.16) differ from Lam6 equations 
by the parameter q/o << 1. Now a and b a re  no longer 
constants but a r e  functions of x.  Approximate values 
of them a r e  conveniently sought in the form of power 
ser ies  in (tanhox)" o r  (ox)". In both cases one gets the 
same first approximation (corresponding to n = 0) and 
the same order of magnitude for the coefficients of the 
subsequent terms. Restricting ourselves to the first 
two terms of the se r i e s ,  we obtain two characteristic 
frequencies of the system: a low-frequency =o,q and 
a high-frequency c2 * 20'. The high-frequency oscilla- 
tion c2 does not disappear even when q = 0 and corre-  
sponds to oscillations of the domain-wall thickness. 
The oscillation c l ,  proportional to q , describes reso- 
nance of domain-walls of internal structure. If we use 
the expansions 

the characteristic oscillation at frequency c (with al-  
lowance for only the first two terms of each series) 
has the form 

m,=2 sch ox (ao sin' qz+bo t h . 0 ~  cos2 qz)  
do 

- -ox  sch ox(ao th ox cos' qz+bo sin' qz ) ,  
Lo 

Here the coefficients a l  and bl have already been ex- 
pressed in terms of a and b from the relations between 
the amplitudes for & = cl;  from these same relations we 
have 

The first terms in the expressions for m, and my, 
proportional to schox, describe the displacement of the 
domain walls of internal structure. This motion occurs 
at frequency c, with amplitude a,. The following two 
terms in the expressions for m, and my and the f i rs t  
term in m, describe bending oscillations of the main 
domain wall. In fact, their form with respect to x cor- 
responds to the expression (2.9), describing displace- 
ment of a domain wall; but now there i s  also a periodic 
dependence on z ,  which in sum leads to a bending mo- 
tion of the domain wall. The amplitude of this motion 
is smaller than a, by a factor ( d , / ~ , ) ' ' ~ .  

The subsequent terms,  with still smaller amplitude 
(a,d,/L,), correspond to oscillations of the thickness of 
the main domain wall [this can be shown by comparing 
their structure with the expansion in Aux of functions 
of the form sech(o + ~ o ) x ,  where Ao is a correction 
due to change of thickness of the domain wall]. Final- 
ly, the last terms in the expressions for m, and my 
are already small corrections to the bending oscilla- 
tions. Thus in actuality, the oscillation of the spins 
in a domain wall with characteristic frequency c1 has 
a very complicated structure; but when d,/L, << 1 ,  the 

basis of this oscillation consists in displacement of 
domain walls of internal structure. 

If we seek an approximate solution of the system 
(3.16) by expanding a(x) and b(x) a s  ser ies  in powers of 
tanhox, the expressions obtained differ from (3.20) by 
replacement of ox by tanhux, and by a coefficient h in 
front of the small  terms proportional to d,/L,. But the 
same form and frequency of the basic motion, oscilla- 
tion of domain walls of internal structure,  a r e  obtained 
by use of any expansion. 

On substituting into the expression for the character- 
istic frequency of these oscillations the values of o,, 
q ,  and a ,  expressed in terms of do for ~3 << 2n from the 
relation (2.7), we have 

For  g =  1.7- 10' s"/0e, M = l o 3  G ,  do =lom5 cm, and 
Lo  - 10" - cm,  we have 

which corresponds to the frequency range of the ex- 
periment .lo 

CONCLUSION 

The theory developed here for linear resonance of a 
domain wall in a thin magnetic film is based on an ap- 
proximate calculation of the magnetic dipole interac- 
tion, in the effective-demagnetizing-factor model. The 
results that follow from this model for the structure 
of a domain wall-both uniform and periodic-are a 
crude representation of the actual complicated situa- 
tion; the model conveys only the main structural fea- 
tures of a domain wall and does not describe such de- 
tails a s  the broad" wings" that extend beyond the main 
maximum in the magnetization distribution, propor- 
tional to sechox, a s  "binding," etc. (see Ref. 5). But it 
enables us to solve the dynamic problem over a wide 
range of thicknesses, both for uniform and for periodic 
domain walls. 

For a uniform wall, a general equation of motion 
(2.10) for the wall center was obtained, and it was 
shown how the resonance frequency and the damping 
parameter depend on the film thickness. It was estab- 
lished that the frequency of this oscillation vanishes 
when d =do; that is, this oscillation i s  a "soft mode" of 
the structural phase transition from a N6el wall to a 
Bloch wall. 

For  the periodic domain wall, the existence of reso- 
nance of a new type was established: resonance of 
"domain walls" of internal structure (RIS) of a periodic 
wall.    his new resonance frequency exists in a perio- 
dic wall along with the old one, due to oscillation of the 
wall a s  a whole; the latter frequency, for a periodic 
wall, differs little from the corresponding expression 
(2.10) for a uniform wall, i f  d/L << 1.1 Formulas (3.2), 
which show the trend of the dependence of the RIS f re-  
quency on the film thickness for the limiting cases d 
<< do and d >> do,  and formula (3.22) for the value of the 
frequency at d =do enable us to asser t  that it is this 
resonance that was first  observed in Ref. 10 by an in- 
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direct method, a s  resonance of the increase of the 
static susceptibility in the presence of a weak H F  field. 

There is still another argument in favor of this suppo- 
sition. In Ref. 10 the HF  field was applied in the plane 
of the film a t  various angles to the direction of the do- 
main wall. It was found that the maximum of the effect 
corresponds to orientation of h along the x axis and the 
minimum to orientation along the z axis; a s  is evident 
from (3.16), precisely this result should be character- 
istic of resonance of the internal structure (for reso- 
nance of the whole wall, the direct opposite). 

Thus the effect observed in Ref. 10 is apparently 
due to the resonance, described here theoretically, of 
the internal structure of a periodic domain wall. This 
resonance should be obsewed whenever the domain 
wall has a periodic internal structure; and this is 
characteristic also of certain types of cylindrical do- 
mains. 

It would be interesting to investigate the RIS pheno- 
menon experimentally in various situations, and prin- 
cipally to elucidate the question: does an abrupt in- 
crease of the static susceptibility always result from 
this resonance ? This last effect might find application 
in practical devices that use thin magnetic films. 

The authors thank V. I. Yakushevich for help in 
carrying out this research. 
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also the preprint, Ref. 2. 
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