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We study the stochastic motion of particles in the field of an electrostatic wave which propagates at an angle 
to the external magnetic field. We elucidate the conditons under which the interaction between the particles 
and the wave has effectively a collision character. We obtain for that case a kinetic equation for the particle 
distribution function and we study it in the stochastic region; we consider on the basis of this equation the 
problem of the heating of particles by a monochromatic wave. 

PACS numbers: 52.35.F~. 52.25.Fi, 52.25.Dg, 52.40. - w 

1. The interaction between waves and energetic overlap of the resonances may occur when the wave 
charged particles i s  one of the fundamental problems amplitude and the particle energy increase. In the 
of the theory of collective processes in a relativistic case considered i t  i s  therefore in contrast to the tra- 
plasma. In the case of monochromatic waves propagat- ditional consideration of the interaction between waves 
ing in a magnetoactive plasma such an interaction i s  and resonant  particle^,^ to take into account the rela- 
well known to proceed most effectively with resonant tivistic nature of the particles and the possibility of a 
particles for which transition of the motion into a stochastic regime. 

where k,, and v, ,  are  the components of the wave vector 
k and the particle velocity v along the direction of the 
external magnetic field B,, w, =eB,/mc is the cyclo- 
tron frequency (-e and m a re  the electron charge and 
mass, c the speed of light) and y = (1 - U ~ / C ~ ) " / ~  i s  the 
Lorentz factor. For finite wave amplitudes the reso- 
nances (1) have a finite width and the motion of the 
particles has a completely different character, de- 
pending on whether or  not the resonances overlap. 
For instance, in the case of isolated resonances the 
particle motion i s  regular in character, while when 
the resonances overlap a stochastic particle motion 
occurs. The idea of resonance overlap, of the stoch- 
astic instability of particle motion, the criteria for 
resonance overlap, and other fundamental ideas in this 
field were introduced and studied in the basic papers 
by Zaslavskii and Chirikov. '1' 

In the last few years the problem of stochasticity has 
drawn the attention of many people in connection with 
work on cyclotron heating in mirror traps, on ion heat- 
ing by radiation in the lower -hybrid resonance band, 
and on a number of new theoretical studies (see, e.g., 
Refs. 3 and 4, where there a re  also references to 
the above -mentioned experimental work). Apart from 
the cited laboratory studies we note satellite obser- 
vations in which powerful electrostatic waves were de- 
tected a t  frequencies close to the frequency of the up- 
per hybrid resonance and propagating almost at right 
angles to the geomagnetic field. As far a s  their spec- 
t ra l  composition i s  concerned, these waves a re  prac- 
tically monochromatic and a s  regards to the amplitude 
of the electrical field they a re  among the strongest 
waves in the magne t~sphere .~  Turning to the reso- 
nance conditions (1) we see that for small k,, only par-  

It i s  natural to assume that the emission observed 
in Ref. 5 is excited a s  the result of an instability of 
the particle distribution function in the magnetosphere. 
Elimination of this instability may occur a s  the result 
of stochastic heating of the particles in a weil-defined 
region of phase space. It is necessary to know the 
particle distribution function in the stochastic region 
for a consideration of this problem and for a deter- 
mination of the saturation amplitude. At the same 
time in the majority of the studies of stochastic motion 
the treatment is restricted to a determination of the 
stochasticity threshold, and the remainder of the 
analysis i s  performed n u m e r i ~ a l l y , ~ ~ ~  since an analyti- 
cal description of the particle motion a t  large times i s  
impossible in that case. 

In the present paper we pay basically attention to an 
analytical description of the particle distribution func- 
tion in the stochastic region. We shall show below that 
if we assume phase mixing i t  i s  sufficient for our aim 
to solve the equations of motion of the particles for 
times of the order of the cyclotron period (Sec. 3). 
In Sec. 4 we derive a kinetic equation for the parti- 
cle distribution function and on the basis of this we 
consider the general character of the evolution of the 
distribution function in the stochastic case. Moreover, 
we determine the region of applicability of the diffusion 
equation which i s  often used in the stochastic region on 
the basis of phenomenological considerations? In Sec. 
5 we construct a WKB solution for the distribution 
function and we consider the important problem of par- 
ticle heating in the stochastic region. One should note 
that the general analysis of the equations of motion, 
discussed briefly in Sec. 2, differs from that of 
Ref. 3 only in that the relativistic character of the par-  
ticles is taken into account. 

ticles with a sufficiently large longitudinal velocity 2. We consider an electrostatic wave propagating a t  
can interact resonantly with the wave. Moreover, an angle to the external magnetic field B, which i s  di- 
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rected along the z-axis of a Cartesian system of coor- 
dinates. We shall assume that the wave vector k lies 
in the ( x , y )  plane. The equations of motion for the 
electrons then take the form 

where the electrical field of the wave is 

Taking as the units of velocity, mass, and time, r e  - 
spectively, the speed of light, the electron mass,  and 
the reciprocal of the wave frequency, we rewrite (2) 
in dimensionless variables 

dr p dp. 0.  
---' -=k,ecose--p , ;  
dt y ' dt 7 

dpv as dpz 
-=- p,; - -k,e cos e ,  

dt y dt 

where 

y=(l+pZ)'" 

while & = eE,/mc?k is the dimensionless wave ampli- 
tude. 

The interaction between the electrons and a mono- 
chromatic wave, described by the se t  (31, can be 
completely different in character, depending on the 
values of the parameters E and o, and on the charac- 
teristic values of the particle momenta. In a wide 
range of the parameters it is convenient to charge for 
the analysis of the set (3) to the canonical variables 
when there i s  no wave, using the relations 

k,z+k,,z=kl,q+k,(2Z/o,)" sin 8; 

pz=pll. pZ=(2Zo,)" cos 8, p,=(210,)'" sin 0. 

In the new variables we can write the set (3) in Hamil- 
tonian form with a Hamiltonian H ( p , , , q ;  I, 9 ; t ) :  

H= ( l+pt+210c)"-e  sin(kllq+p sin 0-t )  

where p = k,(2 ~ / o , ) " ~ ,  and J,(p) is a Bessel function 
of order n. As the variables q and t occur in (5) only 
in the combination k,,q - t ,  the quantity 

is an integral of the motion. 

From (5) we get the conditions for the resonant in- 
teraction of particles with the wave 

y-k,,p,,=no,. (7 

In contrast to the nonrelativistic case, the resonance 
conditions (7) contain the total energy y besides the 
longitudinal momentum. We shall in what follows con- 
sider the case when the change in the quantities y, 
and p, , /k , ,  a s  a result of the interaction with the wave 
is much larger than E .  We can then use instead of (6) 
the approximate integral 

and write the resonance conditions a t  fixed h in the 
form 

It is well knowns that when c i s  sufficiently small we 
can retain in the sum in (5) only one slowly varying 
term. In this approximation, called the approximation 
of isolated resonances, the equations of motion a re  in- 
tegrated by quadrature and this case has been studied 
very fully (see, e.g., Refs. 3, 6, 7, 9, 10, and the 
literature cited there). The approximation of isolated 
resonances is violated when the change in particle mo- 
mentum during a single cyclotron period is larger than 
the distance between resonances. In that case the 
particle motion has a stochastic character. 

To derive a quantitative criterion for the overlap of 
resonances (sometimes called the Chirikov criterion) 
we turn to the equation for p,, which follows from (5): 

dp,,ldt-ek, cos(k,q+p sin 8 - t ) .  (10) 

It is clear that the change in momentum A p , ,  is rather 
large when the quantity k,, q + p sin 8 - t has a stationary - 
phase point determined by the equation 

We note that in dimensional variables Eq. (11) is 
equivalent to the condition w - k o v  = 0 where v is the 
particle velocity, s o  that the interaction between the 
particles and the wave is most effective if the phase 
velocity of the wave is less  than the speed of light. 

We shall assume in what follows that the condition 

is satisfied, meaning that the time for the particles to 
pass through the stationary phase point y/p '12wc,  
which i s  equal to the effective time of the change in the 
particle momentum, is much shorter than the cyclotron 
period. In that case the longitudinal particle momen- 
tum changes by an amount [see (lo)], 

Recognizing that according to (9) the distance between 
resonances i s  

we get from (13) the condition for overlap of the reso- 
nances A p , ,  2 p n  in the form 

where we assume for the sake of argument that kt < 1. 
In deriving (14) and in what follows we use the ap- 
proximate integral (8). Comparing (8) with the exact 
integral (6) we check that this is justified when 

y / p ' L o , ~  1. (15) 

It is clear that inequalities (12), (14), and (15) a re  
compatible only when w,<< 1. 

When the indicated conditions a re  satisfied the action 
of the wave upon aparticle has thus the character of im- 
pacts which occur twice during a cyclotron period. 
These collisions a re  characterized by a mean free 
path time ry/w,, a collision time 

and a change in momentum which is of the order of (13). 
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3. For the analysis of the evolution of the particle 
distribution function in the stochastic region we shall 
need an exact calculation of the change in the particle 
momentum during a single impact. To do this we 
turn to the set  (3) and write the equations for the phase 
6 and the quantity 5/2 which we denote by u: 

(k,p,ly+k,,p,/y-l). 

From (3) we have 

du- e cos E 
3-2.; ---[kz- 
dt  dt 27 (16) 

where k2 = k: + k:. The set  (16) i s  not closed, but in 
contrast to (5) i t  does not contain variable quantities 
in the phase. This makes i t  possible to simplify Eq. 
(16) appreciably near the stationary -phase point, where 
the quantities y and p ,  have a maximum change, by re - 
placing all the factors by their values a t  the resonance 
point u = 0. We have 

dE du e cos E k , ~ .  - =2u; - = -(k2-1) - --T- p,,, 
dt dt 2y, 27. 

where the index r indicates the values of quantities a t  
the resonance point, while p,, can be expressed in 
terms of y, and h through Eqs. (8) and (4) and the con- 
dition u = 0: 

With the accuracy used here we get from (3) 

dy/dt=s cos 9. (18) 

From (17) and (18) we get the relation 

which connects the changes in the quantities y and u a s  
a result of the ucollision". 

Apart from the notation, Eqs. (17) a re  the same a s  
the equations of motion of electrons in the field of a 
Lanqmuir wave in an inhomogeneous plasma, which 
were solved in Ref. 11. Introducing the notation 

we get, according to Ref. 11, when j3/1 a,/< 1: 

where $=u2 + a( - j3sin 5 i s  the conserved effective 
'total energy' of the particle, C(g) and S(t;) a re  the 
Fresnel cosine and sine integrals, and the index 0 
labels the initial values of the various quantities. The 
condition j3/ I a, I < 1 indicates the absence of particles 
captured in phase close to resonance. When p/ B/I a I 
<< 1 we can in the sum in (20) restrict  ourselves to the 
first  term and put J,  = p/2 I a, 1 .  Bearing in mind that a t  
the resonance point u = 0 and that up to and after reso- 
nance lu 1 >> 1 and 1 u, 1 >> 1, and using the expressions 
for the Fresnel integrals: C(0) =S(O) = 0, C(t;) =S(t;) 
=sign t;/2 as I b. I- m, we get from (19) and (20) 

(p/1 I ) ,  where 

t n  
Q,= - 2% +-, a ( y , ) = ~ ( ~ ) " ' ~ .  

la1 4 k -1 Ial 

Equations (21) determine in parametric form the + - 
dependence of the quantities y and yo. The region of 
applicability of (20) and (21) i s  determined from the 
condition that the coefficients in Eq. (16) for u in the 
resonance region differ little from the quantities j3 and 
a,, respectively. Elementary estimates lead to the 
following limitations : 

4. We now turn to a description of the particle dis-  
tribution function in the stochasticity region. We 
shall consider particles with a well defined value of 
the integral of motion h of (8) and we denote the 
boundary of the stochasticity region by y,. Under con- 
dition (12) the particles and the wave interact via col- 
lisions while in the stochasticity region the particles 
lose memory of their phase within a time of the order 
of a cyclotron period. For fixed h the ucoarse- 
grainedA distribution function then depends only on y 
and the time and can be determined from the particle 
conservation law: 

where 6N is the particle density in a phase volume 
element 651 

6Q=nk,, (mc) 'dyZdh, 

g(51 - SZf)d51' i s  the probability that per unit time a 
particle goes from a state S2 into a phase volume ele- 
ment dC2' and the quantity 6N i s  connected with the 
distribution function f(t, y, h) through the relation 6N 
= f(t, y, h)651. As h is an integral of motion, b(51 - 0') 
cc 6(h -hf).  Using this and dividing (23) by 6Q we get 
the equation for the distribution function in the form 

To evaluate the transition probability P ( f -  y) we turn 
to the solution of (21) and put in i t  yo= y', and obtain 

Bearing in mind that transitions from the state y' oc- 
cur with a frequency w,/ryf and that all values of O in 
a 2 r  interval a re  equally probable, we have for the 
transition probability 

w ldQ,l+ldSzl 
P(y',y)dyz= 2 

ny' 2 n  ' 

where dO, and d02 a re  differentials corresponding to 
dy2. 

Differentiating the f i rs t  Eq. (25) and using condition 
(22) we obtain 

dy2/2y =a (y,)cos @dm. (27) 

From (27) and (25) i t  follows that 

Id@,] =dyZ/2y[a'-(y'-y)Z]". (28) 

Substituting (26) and (28) in (24) we get finally 
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When inequalities (22) a r e  satisfied we can consider 
the quantity 2 in (29) to be a function of y (rather than 
of y,), and a t  the chosen accuracy we can assume it  to 
be constant when y changes in an interval 2 1 a 1 . 

Equation (29) is applicable in the region y > yl > 7 
[see explanation of Eq. (45)]. It is thus necessary to 
impose upon the distribution function, apart  from the 
initial conditions, a condition guaranteeing conserva- 
tion of the particle density N, in that region. From (29) 
we have 

Splitting the integral in (30) into two and changing the 
order of integration in the f i rs t  one we get 

From the condition that f(?) be an even function of y,  
in the region y, - I a I c y < y, -+ I a I i t  follows that the 
sum (31) vanishes. We now change from the variable 
y to a new variable 

and we shall consider Eq. (29) in the whole region of 
w -values, supplementing for  w < 0 the definition of the 
collision frequency w,/ny and the transition amplitude 
a by the relations 

We then get instead of (29) the equation 

It is clear that the solutions of Eq. (32) which a re  even 
in w automatically guarantee conservation of the parti- 
cles in the stochastic region. 

As the coefficients of Eq. (32) a re  time-independent 
we can look for i t s  solution in the form 

j l ( t ,  W )  ==A (A, w)esp[-hat+i$(h, w )  1, (33) 

where A(A, w) is a function which varies slowly (as 
compared to JI). Substituting (33) in (32) and bearing 
in mind that the integration in (32) is taken over a 
small region 2 1 a 1 , we can neglect the difference be - 
tween A(wl) and A(w) and expand JI(wl) close to JI(w). 
Dividing then both sides of the equation by f,, we a r -  
rive a t  the ulocal" dispersion relation 

where Jo is a Bessel function with index zero and 

x (1 ,  W )  =a$ ( A ,  w ) / ~ w  

is the local "wave" number. It follows from (34) that 
all higher harmonics of the distribution function, cor- 

responding to small values of J,(ua), a r e  rapidly 
damped exponentially with a characteristic time T 

-(yl + I W  I )/we. At the same time i t  is clear from i t s  
derivation that Eq. (32) i s  applicable for times t > r .  
For such times we can restrict  ourselves to small 
values of x and expand J0(ua) in (34) near zero, which 
gives 

The dispersion equation (35) corresponds to an ex- 
pansion of the difference f(wt) - f(w) in (32) up to terms 
of second order in (w' -w),  i.e., to a change from the 
integral equation (32) to a diffusion type equation 

Thus, the distribution function evolves in the stoch- 
astic region in two stages. In the f i rs t  stage, during 
a time of the order of the cyclotron period, a 
usmoothingv of the higher harmonics of the initial dis-  
tribution occurs. In the second stage the evolution of 
the distribution function has a diffusion character. 

5. We now construct a WKB solution of Eq. (361, 
using the lucid premises of the theory of adiabatic in- 
variants. To do this we write f(t, w) in the form 

Substituting (37) in (36) we get an equation for cp: 

Equation (38) describes the oscillations of a pendulum 
with a slowly varying frequency. It is well known1' 
that in that case the ratio of the energy of the oscilla- 
tions to the frequency is the adiabatic invariant, i. e., 

where A is the amplitude of the oscillations. The fun- 
damental solution of Eq. (36) is then 

and the general solution of Eq. (36) takes the form 

where the function C(A) i s  determined from the initial 
conditions 

1 (t=o, W )  = F ( w )  = j l x ~ ~ , A ~ ,  I [ i  f x ( A ,  w , ) d w ~ ]  d l .  (41) 
- - 0 

We arrive a t  the problem of expanding an arbitrary 
function ~ ( w )  in the given set  of WKB functions r p ( ~ , w )  
of (39); this problem is solved as follows. Introducing 
the quantity 

which is a one-to-one function of w, we rewrite (41) in 
the form 
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which i s  the same as the standard form of the Fourier 
expansion s o  that 

Equations (41) and (43) solve the problem of the expan- 
sion of a given function ~ ( w )  in the WKB functions 
cp(h, w) of (39). (In the Appendix we consider the gen- 
eralization to the case of an arbitrary set  of WKB 
functions.) After substituting (43) in (40) and integrat- 
ing over A the WKB solution of Eq. (36) takes the form 

In conclusion we evaluate the quantity dn,/dt-the 
rate of change of the particle energy density in the 
stochastic region. The latter is an important char- 
acteristic of the process of interaction between the 
wave and the particles a s  it determines the absorbed 
wave power, the particle heating, and in the case of 
instability the saturation amplitude of the wave. Using 
the fact that 

6n,=nk, (mc) 3f (7,  h )  ydyzdh, 

we have from (29) 

Proceeding similarly as when deriving (31) and chang- 
ing to the variable w we get after simple transforma- 
tions 

The quantity in braces in (44) i s  positive s o  that, r e -  
gardless of the form of the distribution function, the 
particles a re  heated in the stochastic region-a fact 
known earlier from a number of papers. 3 * 4  We em- 
phasize that in the given case this result is obtained on 
the basis of the general equation (29). Taking the dis- 
tribution function from under the integral sign for w 
= O  and integrating over w we get finally 

The particle heating process i s  thus determined by 
the value of the distribution function at the boundary of 
the stochasticity region: 

It follows, in particular, from (45) that for sufficiently 
large t (and especially when t 7 a y,y2/w,a2, where 7 
is the characteristic energy with which the drop in the 
distribution function starts)  dn,/dt oc t"I2. 

In the present paper we have considered a concrete 
case of stochastic motion of relativistic particles while 
they interact with an electrostatic monochromatic wave 

which propagates a t  an angle to the external magnetic 
field. However, the approach expounded here, which 
led to Eq. (291, may turn out to be useful for an analy - 
sis of stochasticity also in other cases when the motion 
of the particles in the phase plane has the character of 
jumps arising as the result of some effective collisions. 

The author expresses his thanks to V. I. Karpman, 
B. I. Meerson, B. V. Chirikov, and D. L. Shepelyanskii 
for discussions and suggestions. 

APPENDIX 

The problem of expanding an arbitrary function F(w) 
in a given set  of WKB functions ar ises  when solving 
spatially inhomogeneous problems with initial condi- 
tions. The expansion obtained i n  Sec. 5 in terms of 
the functions p(A, w) of (39) i s  exact, since i t  reduces 
to  a Fourier expansion in a new independent variable. 
Here we consider a more general situation and obtain 
the appropriate approximate formulae. First  we glve 
the se t  of WKB functions. We specify the relation 

which defines a function X ( X ,  w) such that 

ax/ah>o. (A. 1) 

The single-parameter family of functions cp(A,w) i s  
defined a s  follows: 

$%[A, x(h, w ) ,  w ]  - '  
(D 

9 ( A .  w )  =AeS*; A (A,  W )  = 1 
ax 

I ; $ = J X ( A . W ~ ) ~ W ,  
0 

and we shall assume that the inequality 

is satisfied. We now prove that the following expan- 
sion holds: 

1 A (A, w )  dz$ (h, w')  
F ( W )  - - - ~ J ~ A ~ w ~ F ( w , ) -  2% A ( A , w ' )  ahawl 

xexp[i$(h, w)-i$(h,  w') I .  (A. 3) 

It is clear that the main contribution to the integral 
(A. 3) comes from a region of w' close to w . We 
therefore put in (A. 2)  A(A, w') =A(A,w), 

d$(h, w')  ( W - W ' ) .  
$(Cw)-rp(h,w')= a w ,  

It then follows from (A. 3) that 

(A. 4) 

which proves in fact the expansion (A. 3). In deriving 
(A. 4) we used the fact that when condition (A. 1) is 
satisfied the quantity aJl/aw changes in the interval 
( -00,  00 )  when A changes in that interval. We can re -  
write the expansion (A. 31, which now has been proved, 
in the form of the relations 
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i a*$ 
dwF(w)-- A (A, w) ahaw ex~[-i$(h8 W )  1, 

which solve our problem. Equation (A. 5) generalizes 
the formula for the Fourier integral transformation to 
the case when the above-defined WKB functions V ( X ,  w )  
serve as the basic system. 
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