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An analysis is made of a new type of plasma source of high-frequency electromagnetic oscillations in which 
the energy is stored by fast electrons and it is converted "explosively" into electromagnetic radiation. The 
oscillator consists of a magnetic trap filled with a cold plasma and placed in a quasioptical resonator. This 
background plasma in the trap acts as a nonlinear element which maintains a high excitation threshold in the 
energy accumulation process and is then rapidly deactivated, giving rise to "giant" electromagnetic radiation 
pulses. A theory is developed and used to interpret the experimental results on explosive generation of 
electromagntic radiation in laboratory magnetic traps. 

PACS numbers: 42.52. + x, 42.50. + q, 52.75. - d 

1. INTRODUCTION 

The capabilities of modern pulsed electronic devices 
in respect of the accumulation of energy in their "ac- 
tive substance" and feasibility of control and duration 
of the resultant radiation a re  very limited. This is 
due to the fact that generation of electromagnetic oscil- 
lations in such devices is mostly based on transit ef- 
fects so  that the power and duration of emission of 
electromagnetic radiation a r e  governed entirely by the 
electron beam parameters. 

The theoretical capabilities of electronic devices can 
be greatly extended by accumulating the energy of the 
active substance (electrons) inside a resonator and by 
releasing this energy in the form of electromagnetic 
radiation. However, we can easily see that simple 
accumulation of energetic electrons (even when their 
space charge is compensated by a background of ions) 
is practically impossible because realistic accumula- 
tion times a re  many orders of magnitude greater than 
the characteristic times for the development of insta- 

ground plasma by two methods. 

The f i rs t  method is in many respects analogous to 
that used in lasers  and i t  consists in the following. 
In the presence of a sufficiently dense cold plasma the 
excitation threshold is governed by the bulk attenuation 
of waves because of the Coulomb collisions. An im- 
portant feature is the fact that the frequency of colli- 
sions in a totally ionized plasma decrezses rapidly on 
increase in the electron temperature. The radiation, 
which appears in the system when the instability thres- 
hold i s  exceeded, heats the background plasma and 
this reduces greatly the excitation threshold causing 
explosive growth of the instability. A large proportion 
of the electron energy is then converted into electro- 
magnetic radiation. The pumping is simply provided 
by the accumulation of energetic electrons inside the 
trap, which is already filled with a sufficiently dense 
cold plasma. The energy can be provided by direct 
injection of fast electrons into the trap, and also by 
high-frequency and cyclotron heating of the plasma. 

bilities even in the case of fairly low densities of a non- The second method is based on the characteristics of 
equilibrium plasma. propagation of electromagnetic radiation in a magneto- 

On the other hand, i t  is known that energy can be 
accumulated in an active substance in a laser emitting 
giant pulses. This accumulation is possible because of 
the presence of a nonlinear element which maintains a 
high excitation threshold during the energy accumula- 
tion process and is then rapidly deactivated ("satura- 
tion'~) establishing favorable conditions for an abrupt 
release of a large amount of energy in the form of radi- 
ation. A cold background plasma can act a s  a similar 
nonlinear element in electronic devices. 

We shall consider an electronic device in the form of 
a magnetic trap with energetic electrons and we shall 
assume that the trap is inside a quasioptical resonator. 
Generation of waves in systems of this kind is based 
on the cyclotron instability resulting from the trans- 
verse anisotropy of energetic electrons. A prototype 
of such an electronic device with a very low plasma 
density is a cyclotron resonance maser, which is a well 
known source of centimeter and millimeter wave- 
lengths. ' The accumulation and release of energy in 
devices of this kind accumulation and release of energy 
in devices of this kind can be controlled with a back- 

active plasma. In the case of quasioptical systems of 
size 1 >> h (A is the radiation wavelength in the medium) 
the direct emission of radiation into vacuum from a re- 
gion with a high refractive index is possible only in the 
case of a sufficiently rarefied plasma, when the follow- 
ing inequality is obeyeda 

up'< wCQ', 

where wpL = (4re2nL/m)'12 is the plasma (Langmuir) 
frequency a t  the center of the trap; nL is the plasma 
density; w is the radiation frequency; 52, is the electron 
gyrofrequency in the central section of the system. In 
the case of a denser plasma with w, > aL the radiation 
cannot escape into vacuum from the region where i t  is 
generated. '' Therefore, if energetic electrons accumu- 
late in a magnetic trap filled with a cold plasma placed 
inside a high-Q resonator, and if the inequality w, >aL 
is obeyed, significant generation of radiation begins 
only from the moment when the amplification length be- 
comes comparable with the length of the system. On 
the other hand, if the density of the particles in the 
trap is reduced sufficiently rapidly and i f  the inequality 
w, < a L  is obeyed, the appearance of feedback via the 
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resonator due to the free escape of radiation into vacuum 
gives rise to explosive generation of waves and en- 
sures conversion into radiation of a considerable pro- 
portion of the energy of the particles stored in the trap. 
Then, the duration of an electromagnetic pulse governed 
by the velocity of passing through the "cutoff pointv 
S1, = w, may be very short because the necessary rela- 
tive change in the plasma density is just a few percent. 
Escape from the cutoff point can be accelerated greatly 
by nonlinear effects, particularly by the deposition of a 
hot plasma at  the trap ends during growth of the insta- 
bility. The velocity of passing through the cutoff point 
is then governed by the stability growth increment. The 
cutoff point may be crossed in a natural way in the pro- 
cess of plasma decay. A convenient method of pumping 
energy into a trap and of crossing the cutoff point is 
provided by magnetic compression of a plasma. In the 
case of adiabatic magnetic compression the electron 
gyrofrequency r ises  more rapidly then the plasma fre- 
quency [SZ,/W, B;l2(t), where BL is the magnetic 
field a t  the center of the trap] s o  that when we initially 
have (CiL/wpL),< 1, the cutoff point is crossed auto- 
matically during compression. 

We shall analyze theoretically the above effects and 
give a quantitative interpretation of some of the labo- 
ratory observations of "explosive" generation of elec- 
tromagnetic radiation in magnetic traps. It is interest- 
ing to note that similar but giant oscillators occur in 
space, particularly in the radiation belts of the Earth. 

2. QUALITATIVE THEORY 

We shall assume that a magnetic trap placed inside a 
resonator contains a two-component plasma consisting 
of a fairly dense, cold, equlibrium plasma (density n, 
and temperature T,) and an anisotropic admixture of hot 
electrons (density n and average temperature T). We 
shall be interested only in the case when 

When the inequalities (1) a re  satisfied, a small pro- 
portion of the energy of the active substance (energetic 
electrons) is used to control the nonlinear element 
(background plasma). Moreover, if n, >>n, then the re- 
active component of the impedance of the system 
changes only slightly during relaxation of a hot plasma, 
which ensures frequency stability in the generation of 
electromagnetic radiation. The inequality T >> T, al- 
lows us also to ignore the collisionless gyroresonant 
absorption of waves in the background plasma. 

In a relatively dense plasma the branch of oscilla- 
tions most suitable for the generation of microwave 
radiation is the electromagnetic branch with frequen- 
cies o <ae ,  i. e . ,  the branch for which the frequencies 
a re  less than the electron gyrofrequency, and this 
branch reduces to helicons (whistlers) for high refrac- 
tive indices. The propagation of this branch along 
a magnetic field corresponds to a circularly polarized 
wave and the direction of rotation of the polarization 
vector is the same a s  that of the rotation of an elec- 
tron. As already mentioned, the advantages of this 
branch include the feasibility of direct escape of radia- 

tion into vacuum from a region characterized by 
v =  wi/wa 6 1 (up is the plasma frequency). The escape 
of radiation from a plasma with v > 1 is more proble- 
matic and usually the intensity of the emitted radiation 
is very low. 

It is known from Ref. 4 that in the case of transverse 
anisotropy of a hot plasma, the oscillation branch under 
consideration should exhibit an instability due to the nor- 
mal Doppler effect2' 

where k, and u, a r e  the components of the wave vector 
and velocity of a particle projected onto the direction of 
the magnetic field B. Certain important conclusions can 
be drawn from a linear theory of the cyclotron insta- 
bility. We shall obtain specific estimates by assuming 
that the distribution function of hot electrons is 

where p = (BL/2B)< is the adiabatic invariant; v, is the 
transverse (perpendicular to B) component of the parti- 
cle velocity v; v = ( v l ;  mvv2 = T ; the index L identifies 
the values in the central section of the trap. The index 
a, in Eq. (3) represents the degree of transverse aniso- 
tropy. When the anisotropy is due to the presence of a 
loss cone, the index cu can be expressed in the following 
way in terms of the mirror  ratio u: 

Substituting Eq. (3) into the general expression for 
the instability growth increment y and assuming that 
k 11 B, we find that3s4 

It follows from the system (5) that the frequency w, 
corresponding to the maximum increment y, and its  
value for a given ratio nL/n, a r e  governed by two 
parameters: the anisotropy cu and 6 = g/Piw:. . We 
shall be interested in the case when both cu >> 1 and 
6 >> 1, and the radiation frequency is close to the elec- 
tron gyrofrequency. As shown below, this corresponds 
to the maximum efficiency of the system. 

Applying the system (5), we find that the average 
increment is 

where v, is the group velocity and I i s  the trap length. 
We then have 

As shown in the Appendix, the relationships (6) and (7) 
represent correctly the radiation characteristics also 
during the nonlinear stage of the instability. We shall 
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now estimate the efficiency q of the system under dis- 
cussion. We shall do this using the laws of conser- 
vation of energy and momentum for the wave-particle 
interaction in a magnetic field: 

where p, and p, are  the components of the momentum of 
a particle, and ti is the Planck constant. The following 
expressions a r e  obtained from Eq. (8) subject to the 
cyclotron resonance condition (2): 

We can thus see  that if w << a,, the energy of a parti- 
cle is conserved to within w/n, and a high efficiency can 
be expected only a t  w = SZ,. In this case i t  follows from 
Eq. (9) that the change in the transverse momentum 
predominates. Then, the maximum possible efficiency 
can be estimated a s  the relative change in the energy 
of the particles along the v, = const lines when these 
particles reach the boundary with a loss cone in the 
process of emission. If the initial distribution function 
is approximated by a triangle with legs Av, = vo and 
Av, = (o - l)112uo, we find that 

One-third of the energy is carried away by the ener- 
getic electrons reaching the loss cone. However, this 
has a positive aspect because the "spentv active sub- 
stance is driven automatically out of the oscillator. 
This circumstance makes i t  possible to utilize fully 
the whole store of the energetic electrons in a mag- 
netic trap. Moreover, a constant degree of aniso- 
tropy is maintained in the system during the instability 
growth and, consequently, the emission frequency re- 
mains stable (see the Appendix). 

3. GIANT PULSE EMISSION 

The condition for the self-excitation of an oscillator, 
derived allowing for the bulk attenuation and for the 
finite Q factor of the resonator, can be written in the 
following way in the case of interest to us: 

where v is the attenuation due to collisions in the 
background plasma; 7, is the time of group propaga- 
tion between the ends of the trap; R is the reflection 
coefficient of the ends. If v, = w;,/w2<1, the value of 
R is governed by the quality of the resonator mirrors  
and in the case of a denser plasma (v, > I )  the value of 
R is much smaller (R << 1) and i t  is governed by the 
fine effects in the interaction wave. 

The self-excitation threshold (11) can be reached in 
the process of accumulation of fast  electrons in a trap 
(i. e . ,  during the growth of y,) o r  by relaxation of the 
background plasma (i. e. ,  by reduction in v or  v,). 

The structure of the equations describing the nonli- 
near stage of the instability growth is governed by the 
degree of monochromaticity of the radiation and homo- 
geneity of the magnetic field. In the case of a suffi- 
ciently wide (on the frequency scale) wave packet o r  in 

the case of a sufficiently strong inhomogeneity of the 
magnetic field, when there a r e  no particles trapped by 
the wave potential, we can use the well-known quasi- 
linear theory of relaxation of an anisotropic plasma, 
which includes the kinetic equation for the velocity dis- 
tribution function of the particles and the equation of 
energy transfer for the waves. 

Under real  conditions we frequently encounter the 
case when the characteristic relaxation time 7, of a 
hot plasma is considerably greater than the time of the 
bounce oscillations of electrons between magnetic mir-  
ro r s  7, and the time of group propagation of an electro- 
magnetic signal between the trap ends 7,. In this case 
the quasilinear equations can be averaged over the short 
times 7, and rB. The necessary calculations a r e  made 
in the Appendix. The final form of the system of equa- 
tions describing the cyclotron instability in the "two- 
level " approximation is 

where the following dimensionless variables a r e  intro- 
duced: 

q is the efficiency of the system, N is the number of 
hot electrons in a magnetic force tube with a unit cross  
section a t  the end; No and yo are  the initial values of N 
and of the instability increment of Eq. (19); w is the 
relative density of the wave energy; i is the source; the 
res t  of the notation is explained in the Appendix. 

The system (12), (13) is outwardly identical with the 
equations describing the dynamics of a two-level laser 
considered in the rate approximation. ' The presence 
of a plasma is manifested by the nonlinear relationships 
of c, and cR with x and w ,  which determine the feasi- 
bility of generating giant pulses in a cyclotron resonance 
maser.  Depending on the ratio of the parameters &, 
and c,, we obtain one of the regimes mentioned in the 
Introduction: when E, >> cR and the instability threshold 
is suppressed nonlinearly, o r  when c, << &, and the 
escape from the cutoff point takes place. We shall use 
the system (12), (13) in developing a quantitative theory 
of these two oscillation regimes. 

a. Regime with nonlinear supression of instability 
threshold (c, >> c~ , v~ < 1) 

Suppresion of the instability threshold is due to re-  
duction in v caused by heating of the background plasma 
by electromagnetic radiation. In a totally ionized 
plasma the collision frequency is 

The system (12)-(14) can be closed by adding an equa- 
tion describing the process of heating of the back- 
ground plasma: 

where ro is the characteristic temperature relaxation 
time in units of yil. 
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We shall consider the case when i = O  and when the 
excitation threshold is reached a s  a result of slow 
relaxation of the cold plasma density: 

If time is measured from the moment corresponding 
to the attainment of the excitation threshold of Eq. ( l l ) ,  
then 

In an analysis of fast processes on a time scale of 
Y;' << T,, T,,, we can drop the term O/T, from Eq. (18): 
the terms -t/7, in Eqs. (16)-(18) a re  important only a t  
the moment when the instability begins to grow. We 
shall ignore these terms and assume that c, <<&,; then, 
we obtain the following energy integral from Eqs. (16)- 
(18): 

The second integral can easily be found from Eqs. (16) 
and (18): 

where a=  28d5q and 4 = ( 8 / 0 , ) ~ / ~ .  

The intensity of the radiation can be expressed in the 
following way in terms of 8: 

The time dependence of 5 is given by the equation 

The relationships (19)-(22) describe fully the radiation 
and plasma characteristics. In accordance with Eq. (1) 
we assume that a << 1. In this approximation, we find 

where w,, is the maximum intensity of the radiation 
inside the resonator, which is reached in a time 
TB -yo1. Outside the resonator the radiation charac- 
teristic w is governed by the value of c,. If c, << 1, 
then 

b. Regime with emission of radiation at cutoff point 
(c,+O, V' -1) 

As pointed out above, the oscillation conditions change 
radically when the plasma frequency corresponding to 
the total density of the cold and hot components de- 
creases and becomes comparable with the gyrofre- 
quency: w, -C QL. Then, unstable waves can escape 
directly into vacuum and can be amplified repeatedly 
by reflection from the resonator mirror .  

In the linear approximation the characteristic time of 
activating the instability on passing through the cutoff 
point is governed by the draft time 7, of the plasma fre- 
quency across the gain profile of Eq. (6) [or Eq. (A. 12)] 
during plasma decay. The change in the plasma density 
necessary to cross the half-width of the gain profile 

from the threshold value of the increment y =y, -0 to 
y =y, can be obtained from Eq. (A. 2). 

The time to cross the gain profile is 

where 7, is the relaxation time of the plasma density 
in the absence of the instability. 

The activation time of the instability can be reduced 
considerably by rapid deposition of the hot plasma a t  
the trap ends in the process of instability growth. 
Clearly, these effects become important when the hot 
plasma density exceeds a critical value given by Eq. 
(24): 

This regime can be described qualitatively employing 
the following model (i = 0): 

yth exp ( - y ' ) .  0GyG0.55 
( )  0 .  ~ 2 0 . 5 5 ,  

where, a s  before, we have = 6'/3(1 - w/S1,). The 
function q(x) represents the dependence of the growth 
increment on the plasma density when the radiation 
escapes on attainment of the cutoff point. The incre- 
ment reaches its maximum value and remains constant, 
and the emission frequency during the subsequent re- 
duction in the plasma density changes slightly in ac- 
cordance with the equation y(x, w) = 0.55. 

Bearing in mind that on crossing the cutoff point we 
have w = wpL, we shall represent y in the form (n c<n,) 

where w:;) = (4re%~,drn)'/~ and n,, is the density of the 
background plasma a t  the center of the trap corre- 
sponding to the moment when the instability is acti- 
vated ( y =O). In the process of instability growth the 
value of n varies within the limits: 0 S n/2nx, S A, 
which corresponds to 0 < y < y, = ~ 6 ' ~ ~  = 0.55. 

Using Eqs. (28) and {29), we can rewrite the equa- 
tions in the system (27) in the form 

where 5 = n/2n,, and go = nd2n,. If &, << 1, we can use 
the approximate integral w + qt;/go= const. We then 
obtain the equation 

The characteristic duration of the leading edge of radia- 
tion pulse can be estimated by assuming that the quantity 
5, which occurs a s  a separate factor on the right-hand 
side of Eq. (31), is constant. Integrating Eq. (31), we 
find that 

cow0 =- exp (cash V1*r). 
2qeR 
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If we bear in mind that (g,61/3)1/2 -Yk12-1, we find that ~ ( 1 - 0 .  25)x109n/n,. We now have to  satisfy the in- 
the characteristic instability growth time is equal to the equality y ,  >> ti'= lo7 sec-', s o  that n/n, = O .  1-0.03, 
maximum value of the increment (6) a t  the cutoff mo- which i s  in agreement with the experimental results of 
ment. Ref. 8 [in this case the linear time for passing through 

We have assumed above that in the case of a dense 
plasma (u, >1) the radiation does not escape from the 
generation region to the ends of the trap. However, 
i t  is known2 that if the angle $ between the wave vector 
k and the magnetic field B is sufficiently small, the 
waves in question can escape from the region where 
v, > 1 into vacuum because of the interaction of normal 
waves in the case when uL = 1. The effect is character- 
ized quantitatively by the transmission coefficient 
D=exp(-2p), where the interaction parameter p in the 
S2,/w > 1 case is given b y :  

where ICi, is the value of J, in the vL = 1 interaction re-  
gion and &' =Nm'n/dz.  The upper limit of the leakage 
effect can be found by taking the minimum angle 
$-A,/d, where A, is the central section of the trap and 
d i s  the transverse size of the plasma. Then, allowing 
for refraction, we find that q0= $kc/o = Add, where 
A, = 2nc/w is the wavelength in vacuum. Consequently, 
we have 

We can ignore the leakage effect i f  2p > 1. Under the 
experimental conditions of Ref. 8, when A, -d, this 
criterion is known to be satisfied. However, when the 
ratio Add is sufficiently small, the leakage effect must 
be allowed for. 

4. DISCUSSION 

An abrupt activation of the instability and generation 
of intense and short radiation pulses during plasma 
relaxation in a magnetic trap has been observed in a 
number of experiments. We shall consider particularly 
the experiments of Alikaev, Glagolev, and Morozov8 in 
which these effects have been manifested most clearly. 
In their experiments a magnetic trap was placed in a 
high-Q resonator and a plasma was created in the pro- 
cess of microwave breakdown at  a frequency o, = 252,. 
This created both cold and hot components of a plasma 
with nJn,,<<l inside the trap. The energy of fast elec- 
trons was T - 10-40 keV. The cold plasma had initially 
a density of n,, - 1012-101S ~ m ' ~  and then i t  decayed slow- 
ly (with a characteristic time T, = 10' psec). During the 
decay stage a t  the moment when o, = QL an intense 
electromagnetic pulse of duration t, - 0.1 l s e c  appeared 
a t  a frequency o = (0.6-0. 9)52,. Practically the whole 
energy of the hot plasma (-80%) was transformed into 
radiation and directed partly to the trap ends. 

These experimental results can be explained satisfac- 
torily by the model of giant pulses in the case of passing 
through the cutoff point, discussed in Sec. 3b. Under 
the experimental conditions of Ref. 8 i t  was found that 
6 =B: - 10-40 s o  that in accordance with Eq. (A. 14) the 
radiation frequency should satisfy the ratio w/QL 
=1-0.556-113=0.7-0.9. Using the value 52L=1.4~10'0 
sec", we find from Eqs. (6) and (A. 13) that y, 

the cutoff point rd of Eq. (25) is -10 psec>> t,]. We 
shall now estimate both u and 7;': a t  T,= 10 eV, we have 
un lo8 sec" and T;'=(I/u,)-'= 5X 10' sec-'. It follows 
that in order to excite giant pulses in the case when 
y ,  >ril 1lnR I under the experimental conditions of Ref. 
8, we have to satisfy the condition R >0.9, which has 
indeed obeyed in these experiments. Our theory al- 
lows us to explain also finer effects, such a s  the ex- 
citation of lower frequencies a t  latter moments, i. e. , 
according to  Eq. (7), at  lower densities. 

It should be pointed out that when energetic electrons 
escape to the trap ends, the plasma becomes charged 
and this may have a significant effect on the instability 
growth. This effect can be ignored if the time for the 
emission of a pair consisting of an energetic electron 
and a cold ion from a Debye boundary layer of the back- 
ground plasma is less than the instability growth time 
y;,'. Under the experimental conditions of Ref. 8 the 
Debye radius is r,< 10" cm and the velocity of a pair 
is v,,,,c:(T/M)~~' -10' cm/sec. It follows that the time 
of escape of a pair t,,,-10'9 sec is comparable with 
the time taken by an energetic electron to cross the 
trap and is considerably less than the pulse duration 
t, - sec. 

In the systems with crossing of the cutoff point the 
maximum gain in the resonator length is limited: 
rly, < I ;  there is also a limit on the minimum ratio 
n/n, 2 b'I3. There a re  no such restrictions in the 
case of nonlinear suppression of the instability thresh- 
old (Sec. 3. a). However, i t  is quite difficult to ensure 
that the collision frequency is sufficiently high, since 
the cold plasma density is limited by the inequality 
W,, $2,. 

Nevertheless, estimates indicate that in the case of 
nonlinear suppression of the instability threshold we 
can, in principle, generate high-power electromag- 
netic radiation of millimeter and submillimeter wave- 
lengths. 

The authors a re  grateful to E. V. Suvorov for a valu- 
able discussion. 

APPENDIX 

We shall now write down a system of quasilinear 
equations describing the cyclotron instability of an 
anisotropic plasma in an inhomogeneous magnetic trap. 
We shall assume that a quasimonochromatic electro- 
magnetic wave of circular polarization with a frequency 
w 5 QL and a wave vector k I( B (helicon) is excited 
during the instability growth. 

In the approximation of weakdiffusion, when the elec- 
tron velocity in a single transit between magnetic mir- 
r o r s  changes only slightly because of the interaction 
with the radiation and the amplification experienced by 
the waves over the length of the system is weak, the 
initial quasilinear equations6 can be averaged over the 
period of the bounce oscillations of the particles and 
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over the period of oscillations of a wave packet between 
the mi r ro r s  of the system (for details see Ref. 3). We 
thus obtain 

(A. 1) 

dI" 
- = ( ( y ) - v - ~ , - ~ l l n  RI) I., I.=BW,kz/Bm,, 
dt (A. 2)  

16nS 
( y ) - - j d u d P G ( z . )  

mvsT8 
(A. 3) 

where integration is carried out over the region 
I v, (2- (4 - w)/k; f is the electron velocity distribu- 
tion function; W, is the spectral energy density of 
cyclotron waves (W= 1 WJE2dk is the energy density of 
waves per unit volume); p = (BL/2B)v:; mu = m(4 + v,2)/2 
is the energy of a particle; z* is the coordinate of the 
cyclotron resonance where w - kv, - St,=O; St, is the 
electron gyrofrequency in the central cross  section of 
the trap; R is the reflection coefficient of the trap ends 

j is the source of particles; the coefficient G(z*) is 
given by the expression 

In systems with a small  mi r ro r  ratio o - 1 < 1, we can 
assume approximately that z* * 0. The values of T, and 
of I a(w - kv, - a,)/& 1, which depend on the actual geo- 
metry of the magnetic field, will be assumed-for sim- 
plicity-to be given by 

where L is the characteristic longitudinal dimension of 
the system. 

Going over in Eqs. (A. 1)-(A. 3) to variables of one- 
dimensional diffusion 

p=p, q=u- ( o / Q r )  II ,  (A. 4) 

we find that 

(A. 5) 

(A. 6) 

In the case  of a sufficiently short trap,' Eq. (A. 5) 
should be solved subject to the following initial and 
boundary conditions: 

t=0, f = f o ( p ,  q ) ,  P = P I ( Q ) ,  f=0, p-pm, afldp-0, (A. 7) 

where p, = u/a = q/(o - w/SZL) is a boundary with a loss 
cone. The general solution of Eq. (A. 5) can be repre- 
sented a s  a sum of eigenfunctions 2, of the diffusion 
operator (d/dp)p(d/d@). If this sum is confined to the 
function with the smallest eigenvalue Z,,, we can write 
the solution of Eq. (A. 5) in the form 

f ( t ,  p, q )  = N ( t ) @ ( q ) z . . ( ~ ,  q ) ,  (A. 8) 

where N(t) is the number of particles in a force tube 
with a unit cross section a t  the end off satisfies the 
normalization condition 

2no J ~ ~ d q d p m  (q)Z,(p,  q )  = i .  (A. 9) 

The function Z , ( p ,  q )  is 

Z..(p, q )  - - ~ S ~ [ J ~ ( ~ S ~ ~ L I '  )No(2sop%) -No (28op.* Jo(280p'~) I ,  
(A. 10) 

'j z.dP= 
P" 

where Jo and No are ,  respectively, zeroth-order Bes- 
s e l  and Neumann functions, and the eigenvalue is 

so-0,i5n (p2 -it' )-I. (A. 11) 

Assuming that 

@ ( q )  = (n"olq0"') -' exp (-q/qo) 

and using (A. lo), we find the approximate value of the 
increment 

(A. 12) 

where 6 = S Z ~ / P 2 ~ ~ L ,  B2 = 2q0/c2, y = 61J3(1 - w/SZL), and 
the coefficient A is given by 

The expression (A. 12) has a maximum in i ts  dependence 
on w: 

(A. 13) 
(A. 14) 

It follows that the inequality 1 - @/aL <<I assumed above 
can be satisfied if 6 >> 1. 

Bearing in mind the small  width of the spectrum of 
the excited waves, and also using Eqs. (A. 8)-(A. 13), 
we shall write Eqs. (A. 1) and (A. 2) in the form 

(A. 15) 

dW 
-I ,, (ym-v-~.-'Iln RI) W ,  (A. 16) 

where 

" ~ t r i c t l ~  speaking, weak transfer of radiation to vacuum is  
possible because of the linear and nonlinear interactions be- 
tween the waves ( s e e  below. Sec. 3b). 

%rider these conditions we can expect also a convective in- 
stability of electrostatic waves with frequencies close to har- 
monics of the electron gyrofrequency and of the upper hybrid 
resonance. but i n  the w p g  61, case  the increment of this in- 
stability is less  than for electromagnetic waves ( s e e  Ref. 5 ) .  
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