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A study is made of the magnetic moment induced in molecules of the symmetric top type when degenerate 
vibrations are excited in them. An expression is derived for the electron contribution to the vibrational g 
factor. It is shown that the theory of the vibrational magnetic moment developed by Howard, Moss, and 
Perry is incomplete, since it does not take into account the perturbation of the electron shell by vibrating 
nuclei. 

PACS numbers: 3 1.90. + s 

1. INTRODUCTION 

We shall consider molecules with closed electron 
shell. It i s  well known that rotation of a molecule in- 
duces a magnetic moment, which consists of nuclear 
and electron contributions. The nuclear contribution 
can be readily calculated by means of a model of circu- 
lar currents corresponding to rotation of positive point 
charges around a given direction. The rotation of the 
nuclear core also induces currents in the electron shell, 
which determine the electron contribution t o  the mag- 

ation. We denote by Q, and Q, the real normal coor- 
dinates of the doubly degenerate vibration (see Fig. 1). 
In accordance with Jahn's rotations of the 
form of Q, and Q, a re  not stable when the molecule ro- 
tates around the e axis, which passes through the cen- 
ter  of mass perpendicular to the plane of the triangle. 
Indeed, if the vibration Q, i s  excited, the Coriolis force 
induced by the rotation of the molecule will mix it with 
the Q, vibration mode. The stable modes are  then the 
complex linear combinations 

netic moment. However, the currents in the electron Q . = ( Q . * ~ Q ~ ) / V ~  (1 
shell a re  by no means equal to the currents correspond- 
ing to rotation of a "frozen" electron shell as a rigid 
body with the given angular velocity. Usually, these 
currents are  much weaker,14 but in exceptional cases 
of molecules with neighboring excited states coupled to  
the ground state by an allowed magnetic dipole transi- 
tion the currents may be stronger than in the case of 
rotation of the electron shell as  a rigid 

The coordinates Q, correspond to rotation of each nu- 
cleus around its position of equilibrium in a circle whose 
radius is equal to the vibration amplitude of the given 
nucleus and with frequency equal to the frequency of the 
degenerate vibration (see Fig. 2). The instantaneous 
positions of the neighboring nuclei on their circular or- 
bits a re  displaced in phase by +2r/3. With such rotation 
there i s  associated an angular momentum, called the - 

The extent to which the electrons are  carried along by vibrational angular momentum of the molecule. Like 
the rotating nuclear core i s  the central problem in the the rotational angular momentum, it makes a definite 
theory of the rotational magnetic moments of molecules. contribution to the magnetic moment of the molecule and 
Although the formal solution of this problem in the form it has the same order of magnitude (-1 nuclear magne- 
of an infinite perturbation sum is well known,'** practi- ton) as  the rotational magnetic moment. 
cal calculations of the electron currents in a rotating 
molecule (and their contribution to the magnetic mo- 
ment) present a rather difficult problem which can be 
solved only approximately. The general analysis of this 
problem merely tells us that the electrons of the inner 
shells of atoms having clouds with dimensions small 
compared with the radii of the circles described by the 
rotating nuclei a re  almost completely carried along with 
the rotation of the nuclear core, whereas the picture of 
the currents induced in the outer shells of the atoms in . 
the molecule i s  very complicated. 

The nuclear contribution to  the vibrational magnetic 
moment of the molecule can be readily calculated, since 
the motion of the nuclei i s  determined by the amplitude 
and frequency of the degenerate vibration. More com- 
plicated i s  the question of the electron contribution to 
the vibrational magnetic moment, i.e., the magnetic 
moment resulting from the currents induced in the elec- 
tron shell of the molecule by excitation of a degenerate 
Q+ (or Q-) vibration. Therefore, the central problem in 
the theory of the vibrational magnetic moment, as in the 
case of rotational magnetic moment, is the calculation 

In their comparatively recent papers Refs. 9 and 10, 
Howard, Moss, and Perry drew attention to a further 
source of the magnetic moment of a molecule with closed 
electron shells. This is the vibrational moment induced 
by degenerate molecular vibrations. The qualitative 
picture of the effect is very simple in the case of mole- 
cules of the symmetric top type." Let us consider a 
hypothetical triatomic molecule with the geometry of an 
equilateral triangle in the equilibrium nuclear configur- FIG. 1. 
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FIG. 2. 

of the electron contribution. 

Expressions for the electron contribution to  the vibra- 
tionalg factor were obtained in Refs. 9 and 10 on the 
basis of rather formal calculations; it was found that the 
electron contribution to the vibrationalg factor for 
molecules which a re  linear in the equilibrium configura- 
tion must be zero, and for molecules of the symmetric 
top type the contribution must be equal to the electron 
contribution to the rotationalg factor multiplied by the 
constant of the Coriolis interaction. Unfortunately, both 
these conclusions of the theory of Howard, Moss, and 
Perry a re  incorrect. This i s  indicated by the fact that 
the linear molecules HCN and OCS have an appreciable 
electron contribution to the vibrational g factor.13 Anal- 
ysis of the expression obtained by Moss and Perry in 
the case of symmetric-top molecules shows that it takes 
into account only the change in the angular velocity of 
the molecular rotation (for given total angular momen- 
tum) in the presence of vibrational angular momentum, 
i.e., the redistribution of the total angular momentum 
between the vibrational and rotational degrees of free- 
dom; the direct perturbation of the electrons by the vi- 
brating nuclei and the resulting additional electron cur- 
rents are not taken into account. 

In the present paper, we give a detailed derivation of 
an expression for the electron contribution to the vibra- 
tionalg factor of a symmetric-top molecule. A small 
modification of this derivation also gives an expression 
for the electron contribution to  the vibrational g factor 
of linear molecules. It will be clear from our treatment 
of the problem that Refs. 9 and 10 ignore an important 
term in the molecular Hamiltonian which describes the 
direct perturbation of the electrons by the nuclei partic- 
ipating in the degenerate vibration. 

2. ENERGY OPERATOR AND WAVE FUNCTION OF 
SYMMETRIC-TOP MOLECULES 

We introduce two frames of reference: the molecular 
coordinate system and the laboratory coordinate sys- 
tem. We attach the Cartesian axes x,(X =x, y ,  e)  of the 
molecular coordinate system to the nuclear core, fixed 
in the equilibrium configuration. We denote the Euleri- 
an angles that determine the rotation of the molecular 
frame relative to the laboratory frame by a, 8, and y. 
The vibrations of the molecules a re  described by the 
3N-6 vibrational coordinates Q, (N i s  the number of nu- 
clei); they determine the displacements of the nuclei 
from the equilibrium positions and satisfy the Eckart 

conditions, being orthogonal to  the translations and 
small rotations of the nuclear core a s  a whole. The 
positions of the n electrons in the molecular frame are  
determined by the 3n Cartesian coordinates x,, i s  
the projection of the radius vector of electron i onto the 
X axis). We assume that the origin of both frames i s  at 
the center of mass of the nuclear core (we shall ignore 
the small influence of the electrons on the position of 
the center of mass of the molecules). 

With this choice of the coordinates, the molecular 
state corresponding to total angular momentum Bj and 
projection Ern onto the Z axis of the laboratory frame is 
represented by a wave function of the formfc 

where D',,, are  Wigner functions defined in accordance 
with Ref. 16, and Em' i s  the projection of the total ang- 
ular momentum onto the z axis of the molecular frame. 

In the adiabatic approximation, the function f i ,  can be 
represented as  the product of a single electron wave 
function and certain functions XA,, which depend only on 
the vibrational coordinates, so that the sum (2) takes 
the form 

Here, $,, (Q,~x,,) i s  an eigenfunction of the energy oper- 
ator of the molecule with the operator of the kinetic en- 
ergy of the nuclei omitted; it depends parametrically on 
the nuclear coordinates Q,. In a state with closed elec- 
tron shells, the function $,, i s  real. 

It i s  readily seen that in the adiabatic approximation 
a closed electron shell makes no contribution to the 
magnetic moment, currents in the electron shell being 
absent because the function $, is real. The same re- 
sult can be obtained by calculating the expectation value 
of the operator of the magnetic moment of the electron 
shell, 

(L i s  the angular momentum operator of the electrons, 
and pg i s  the Bohr magneton), and again bearing in 
mind that the function +el is real. Therefore, the elec- 
tron contribution to the magnetic moment of a molecule 
with closed shells i s  an essentially nonadiabatic effecL4 
In the calculation of this contribution, only the nonadia- 
batic corrections which lead to the appearance of cur- 
rents in the electron shell, i.e., the purely imaginary 
corrections to the electron wave function, a re  impor- 
tant. 

We consider now in more detail the total Hamiltonian 
of the molecule. In the variables that we have intro- 
duced, it has the form (see, for example, Ref. 17) 

where V is the potential energy, and Td , T,, and T, 
are, respectively, the operators of the kinetic energy 

1129 Sov. Phys. JETP 53(6), June 1981 Braun et a/. 1129 



of the electrons and the rotational and vibrational mo- 
tion of the nuclei. The two last operators a r e  given by 

A 

Here, J ,  is the operator of the angular momentum pro- 
jection onto the X axis of the molecular frame; I ,  i s  the 
moment of inertia of the nuclear core with respect to 
the X axis (we assume that the axes of the molecular 
coordinate system are  directed along the axes of inertia 
of the equilibrium nuclear configuration, and we ignore 
the dependence of the moments of inertia on the nuclear 
coordinates); 3, is the operator of the projection of the 
vibrational angular momentum onto the X axis. Then 
the operator N i s  given by 

where the summation is over all normal coordinates, 
and the vector E,, , whose components a re  c numbers, 
characterizes the Coriolis coupling of the Q ,  and Q, vi- 
brations. The normalization factor in the kinetic ener- 
gy T ,  of the vibrations in (7) is taken equal to t i 2 / 2 ~ ,  
(M, i s  the proton mass) in order to make the normal 
coordinates and the displacements corresponding to 
them in the real space of the same order of magnitude. 
Then the rms amplitude of the vibrations is (Q:)"~ 
- nuo, where a. i s  the Bohr radius and n is the Born- 
Oppenheimer parameter. 

We now retain in T ,  and T, only the "vibrational" 
terms that correspond to the doubly degenerate mode. 
This i s  justified since the nondegenerate vibrations in- 
fluence the vibrational angular momentum only in the 
higher orders of perturbation theory." For simplicity, 
we shall assume that we have just a single doubly de- 
generate vibration: Then on the basis of Jahn's 
we can show that N, =I?, = 0, so that the vibrational ang- 
ular momentum has a nonvanishing projection only onto 
the symmetry axis of the molecule: 

For the degenerate vibration, we introduce the two- 
dimensional polar coordinates 

Q.=p cos cp; Q,=p sin cp. 

Then 

The wave function in the adiabatic approximation can 
now be written in the form 

Y,,=$.',"' (p ,  c p I z c r ) ~ ( p ,  cp)eim, (a, B. 71, (11) 

where the electron function i s  the solution of the equa- 
tion 

and the nuclear vibrational-rotational function X8i,,,, i s  
an eigenfunction of the operator T I O ' T ,  (here, 
T$' i s  the operator obtained from the operator T,  of the 
rotational kinetic energy by omitting the terms contain- 
ing the operator T,  of the electron angular momentum 

i). Bearing in mind that 

(13) 
we obtain the explicit form of the vibrational function X: 

where n is the principal quantum number of the degen- 
erate vibration, the quantum number 1 takes the values 
n,n - 2, . . ., -n, and R,,  i s  the radial part of the eigen- 
function of a two-dimensional oscillator in polar coor- 
dinates: 

The expression (1 1) contains one [and not 2j + 1, like 
the more general formula (4)] term, since the projec- 
tion of the angular momentum Em' onto the symmetry 
axis of the molecule is conserved in the approximation 
used in the derivation of (11). 

3. ALLOWANCE FOR THE NONADIABATIC 
CORRECTIONS 

Applying the operator H- E,, where H is the exact 
Hamiltonian of the molecule, to the function (11) of the 
adiabatic approximation, we find the "discrepancy" q 
= (H- Ed)*,, which characterizes the adiabatic approx- 
imation. The nonadiabatic correction to the wave func- 
tion in the first order of perturbation theory can be cal- 
culated in accordance with 

Here, E"' is the first-order correction to the energy of 
the molecule calculated in the adiabatic approximation, 
and H, i s  the energy operator of the molecule modified 
in such a way that the kinetic energy operator of the nu- 
clei does not act on the electron wave function. 

The calculation of the nonadiabatic corrections to the 
wave function can be simplified by recalling that the 
real corrections to the electron wave function (1 1) a re  
unimportant in the calculation of the magnetic moment. 
We write down only the important, purely imaginary 
terms in the expression for the function q: 

- i.&+3,2, 
q=[- I* 

- 
I .  1 .ad 

i a e i l .  a + ( - i - )  ( i -  p )  . (17) 
MPP' aiq ( 2 n ) "  aiq 

The first two terms a r e  associated with the contribution 
of the terms in the operator T ,  that we ignored in writ- 
ing down the operator T,!". The last term arises be- 
cause of the action of the kinetic energy operator T ,  of 
the degenerate vibrations of the nuclei on the electron 
wave function. Using the properties of angular momen- 
tum oDerators. we obtain 
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where L1 and L_' a r e  the spherical components of the 
electron angular momentum in the molecular frame: 

The nonadiabatic correction to the molecular wave func- 
tion responsible for the occurrence of the currents in 
the electron shell will therefore be 

I (1 )  I (1) I ( 1 1  
Y "'=x ( 8 , 4 ~  +8,,-1~*-1+8~~.+,cP.*+I), (20) 

where the correction electron functions #A!', JIIz, are  
solutions of the inhomogeneous equations 

4. MAGNETIC MOMENT OF THE ELECTRON SHELL 

In a state with fixed projection Em of the total mech- 
anical angular momentum of the molecule onto the Z ax- 
is of the laboratory frame, only the Z component of the 
magnetic moment will be nonzero. The electron contri- 
bution to this moment is 

where the matrix element is taken with respect to all 
(electron, vibrational, and rotational) coordinates. We 
express the operator e, in the laboratory frame in 
terms of the projections of the electron angular momen- 
tum in the molecular frame: 

~ Z - ~ o o l  ( a $ T ) i . + ~ o r l  (a$r)i ,+~,'_,(afi~)2-~.  (22) 

We substitute (22) in (21) and integrate over the rota- 
tional coordinates with allowance for  the structure of 
the correction function 9"' [see (20)J. Bearing in mind 
thatt8 

2s. 1, I, 8 ~ l '  I ,,m,p 

sin $dpdadyD,,*Dm,,*D,,m,e= - 2i,+l C I ~ J , ~ , ~ I ~ X * J , ~ , ~ ,  (23) 

and using the explicit expressions for the Clebsch-Gor- 
dan coefficients, we obtain 

I1nm ( 1 )  - (0) m' 
P z = - ~ [ j ( i + ~ ) ~  

h V i b l ~ ( p .  q) IL.I%I ) - 
[j( i+l)  I" 

(j+mr) (1-mr+1) +~V,,!li~i-l~IR:o') [ 
2i(i+l)  

(j-m') (j+mf+1) 
1" 

-($:!:ili,ltp#;ol) [ 2j,+1) 
I"} +c.c., (24) 

where the correction electron functions a re  defined in 
accordance with Eqs. (20a) and (20b). Expanding the 
solutions of these equations with respect to the eigen- 
functions of the electron Hamiltonina T,, + V, and de- 
noting them by Ik) (10)=JIL!'), we obtain the following 
expression for the Z projection of the magnetic moment 
in the laboratory frame: 

The right-hand side contains matrix elements with the 
electron functions 10) and Ik), which depend on the vi- 
brational coordinates p and cp. Once these matrix ele- 
ments have been calculated, we can set  p = 0 in the 
terms that do not contain ia#:;'/ap [this approximation 
has the same accuracy a s  the assumption used in the 
energy operator (7) that the moments of inertia a re  in- 
dependent of the vibrational coordinates]. In the equi- 
librium configuration of symmetric-top molecules, we 
have 

As a result, we obtain from (25) the following expres- 
sion for the electron contribution to the magnetic mo- 
ment of the molecule in the laboratory frame: 

where we have introduced the following notation for the 
g factors: 

If the doubly degenerate vibration is not excited, we 
have 1 = 0, and the expression (27) goes over into the 
well-known expression for the electron contribution to 
the rotational magnetic moment of a "rigid" molecule 
with nuclei fixed in the equilibrium positions (see, for 
example, the review paper of Ref. 8). When the mole- 
cule has vibrational angular momentum, I #  0. It can be 
seen from (27) that the presence of vibrational angular 
momentum leads to  two consequences: 

a) the contribution associated with the rotationalg 
factor, g :(e), is changed; 

b) a new contribution proportional to  g;(e1) (29) is in- 
duced. 

Effect a) is trivial. It can be readily deduced from 
the semiclassical theory of molecular gyromagnetism,'" 
and it is due to the circumstance that for fixed total 
angular momentum fij of the molecule the presence of a 
nonzero vibrational angular momentum leads to a change 
in the rotational angular momentum, i.e., a change in 
the angular velocity with which the nuclear core of the 
molecule rotates. Naturally, this changes the rotation- 
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a1 contribution of the electron shell to the magnetic mo- 
ment of the molecule. Only this effect i s  taken into ac- 
count in the theory proposed by Howard, Moss, and 
perry.'* '' 

A fundamentally new contribution to the electron mag- 
netic moment of a molecule in which a degenerate vi- 
bration is excited i s  the contribution proportional to 
g,Y(e') (29). We shall call it the intrinsic electron con- 
tribution to the vibrationalg factor. From the semi- 
classical point of view, g:(ef) corresponds to the mag- 
netic moment of the currents induced in the electron 
shell of the molecule when the nuclei rotate aroundtheir 
equilibrium positions in small circles with the angular 
frequency of the degenerate vibration. 

To estimate the order of magnitude of gi(e'), we con- 
sider an individual term of the infinite sum in the ex- 
pression (29): 

and we expand it in a series in powers of p. For this, it 
is convenient to return for the moment to the rectangu- 
lar normal coordinates Q, and Q,. We expand the elec- 
tron adiabatic wave function of the ground state in pow- 
e r s  of the displacements: 

The bar means that the considered quantities a re  calcu- 
lated in the equilibrium nuclear configuration for the 
electron ground state; the subscripts x ,  y , xy, etc., 
denote the derivatives with respect to Q, and Q,. For 
our chosen normalization of the coordinates Q, and Q,, 
these derivatives have zeroth order in the Born-Oppen- 
heimer parameter K. In polar coordinates, 

$,!:: (P, cplrii) =$("+p ($= cos cp+$, sin cp) 

+'/,p2(& cosa q1+2$=, sin cp cos cp+$,, sin2 cp) +. . . , (32) 

i-'$.~*'/acp--p($~~ cos cp-i6, sin cp) +'/,p2[sin 2cp(47uu-$-) +2$=y cos 2cp]+. . . . 
(33) 

Substituting (32) and (33) in (301, we find that the func- 
tion (30) has the expansion 

(r1.t IU> 
b ~ ( ~ ~ c p ) - ~ [ - i ( ~ ~ c p ( $ . ~ ~ ) - s i n c p ~ ~ ~ ~ ~ ) ) - + ~ . ~ . ] + ~ ~ ~ ~ ( c p ~ o ( ~ ~ ) ,  a - E o  

(34) 
where ~ , ( c p )  =$a2bJap2 lo.,, is a periodic function of cp 
and, in general, 

Further, substituting (34) in (29) and integrating over 
the vibrational coordinates with allowance for the fact 
that IX(p, cp) l 2  does not depend on the angular vibration- 
al coordinate cp, we find that the contribution from the 
term in the square brackets in the expression (34) van- 
ishes. Therefore, 

Since F,(cp) has zeroth order in the small x ,  the intrin- 
sic electron contribution to  the vibrational g factor also 

has zeroth order in x ,  i.e., the same order of magni- 
tude with respect to the Born-Oppenheimer parameter 
as  the rotationalg factor. It follows that the neglect of 
(29) i s  not justified and that this quantity can signifi- 
cantly influence the observed magnetic moment of a 
molecule. 

The above remark can be most readily illustrated for 
the example of the electrons of inner shells with radii 
small compared with the amplitude of the degenerate vi- 
bration. It i s  intuitively clear that these electrons a r e  
completely carried along with the vibrating nuclei. If 
the number of inner electrons in each of the atoms isno, 
and the charge of the nucleus of each atom i s  .To, then 
the intrinsic electron contribution to the vibrational g 
factor i s  at least -6zd~~)gi (n) ,  wheregib)  is the nu- 
clear contribution to  the vibrational g factor. The num- 
ber of inner electrons whose wave functions are hardly 
perturbed by the formation of the molecule is usually 
20-50% of the charge of the nucleus Zo (for neutral at- 
oms). Therefore, the quantitative predictions for the 
vibrationalg factor of some specific molecules made in 
Ref. 10 without allowance for the intrinsic electron con- 
tribution (29) to the g factor a r e  definitely incorrect. 

The quantum-mechanical expression for the intrinsic 
electron contribution to  the vibrationalg factor obtained 
here i s  evidently universal. In particular, it also ap- 
plies to linear molecules (for which, according to the 
theory of Moss et al., the electron contribution to the 
vibrational g factor must be absent altogether, which i s  
definitely contradicted by experimentt3). Indeed, bear- 
ing in mind that for a molecule which i s  linear in the 
equilibrium nuclear configuration the electron wave 
function satisfies the euqation 

(the e axis is directed along the axis of the molecule) 
and that 

we obtain from (27) the following expression for the 
electron contribution to the vibrational magnetic mo- 
ment of the linear molecule: 

rn P j(j+ i)  -1' 
gZn(e') + 

[ i ( i+ l )  I"' gZr(e') 1, (31) 

where the electron contribution to  the vibrationalg fac- 
tor i s  

and i s  equal to the intrinsic electron contribution. The 
dispersion sum on the right-hand side of (38) can be in- 
terpreted as  the electron contribution to  the vibrational 
g factor of a slightly bent linear molecule (it would be 
easy to show that the longitudinal moment of inertia of 
a deformed molecule is equal to ~ , p ~  in the normaliza- 
tion we have chosen for the coordinates of the doubly 
degenerate vibration). The expression (38), which con- 
tains averaging with respect to  the vibrational coordin- 
ate p, i s  the quantum-mechanical generalization of the 
semiclassical model of Kittner and ~ o r ~ e n s t e r n , ' ~  in 
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which the vibrational magnetic moment of a linear mole- 
cule is interpreted a s  the rotational magnetic moment 
of a slightly deformed molecule. 

The expression (27) found here for the intrinsic elec- 
tron contribution to  the vibrational magnetic moment of 
the molecule, and also the expressions for the correc- 
tion functions (20), which determine the distortion of the 
the wave functions in the field of nuclei participating in 
a circularly polarized vibration of the mode Q, (or Q-), 
can be used in various concrete problems associated 
with calculating the magnetic properties of molecules 
with nonzero vibrational moments. In particular, from 
the form of the correction functions $A1,), one can 
determine the currents induced in the electron shell by 
the vibrations of the nuclear core, and calculate the 
magnetic fields of the nuclei corresponding to  them. 
This procedure leads to expressions that describe the 
interaction of the nuclear spin in the molecule with the 
currents induced in the electron shell by degenerate vi- 
brations with nonzero mechanical angular momentum. 

In conclusion, we note a curious connection between 
the intrinsic electron contribution (29) to the vibrational 
g factor and the theory of molecular magnetic suscepti- 
bility and gyromagnetism. For  this, we note that the 
infinite perturbation sum in the expression (29) can be 
written in the form 

where f"' is the first-order correction of perturbation 
theory to the electron wave function of the molecule in 
the homogeneous magnetic field %described by the vec- 
tor potential 

Exactly the same correction function f'l' i s  encountered 
in the theory of the polarization magnetic susceptibility 
and in the theory of magnetic phenomena associated 
with the rotation of molecules having closed electron 

shells.45'7@is It can be seen from this that the intrinsic 
electron contribution to  the vibrational magnetic mo- 
ment can be calculated simultaneously with the electron 
contribution to  the rotational magnetic moment of the 
molecule. 

IG. C. Wick, Z. Phys. 85. 25 (1933). 
2 ~ .  C. Wick, Nuovo Cimento 10, 118 (1833). 
3 ~ .  C. Wick. Phys. Rev. 73, 51 (1948). 
4 ~ .  K. Rebane, Zh. Eksp. Teor. Fiz. 47, 1342 (1964) [Sov. 

Phys. J E T P  20, 906 (1965)l. 
5 ~ .  K. Rebane, Doctoral Dissertation, Leningrad State Univer- 

s i ty  (1965), Ch. 7; s e e  also T. K. Rebane and R. I. Sharib- 
dzhanov, Teor. Eksp. Khim. 11, 291 (1975). 

6 ~ .  A. Hegstrom and W. N. Lipscomb, Rev. Mod. Phys. 40, 
354 (1968). 

IT. K. Rebane, Vestn. LGU 4, 30 ( 1965). 
'w. H. Flygare and R. C. Benson. Mol. Phys. 20, 225 
(1971). 

'B. J. Howard and R. E. Moss, Mol. Phys. 19, 433 (1970). 
'k. E. Moss and A. J. Perry .  Mol. Phys. 25, 1121 (1973). 
"G. Herzberg, Molecular Spectra and Molecular Structure, 

Vol. 2, Infrared and Raman Spectra of Polyatomic Molecules, 
Van Nostrand, New York (1945) [Russian translation pub- 
lished by IIL, Moscow ( 1949). p. 6471. 

1 2 ~ .  A. Jahn, Phys. Rev. 56. 680 (1939). 
13w. HUttner and K. Morgenstern. Z. Naturforsch. 25a, 547 
(1970). 

145. 0. Hirschfelder and E. P. Wigner, Proc. Nat. Acad. 
Sci. USA 21, 113 (1985). 

l5c. F. Curtiss,  J. 0. Hirschfelder, and F. T. Adler, Chem. 
Phys. 18, 1638 (1950). 

1 6 ~ .  S. Davydov, Kvantovaya rnekhanika (Quantum Mechanics). 
GIFML, Moscow (1963), p. 748. 

1 7 ~ .  A. Kiselev, Can. J. Phys. 56, 616 (1978). 
B. ~ e r e s t e t s k i f ,  E. M. Lifshitz, and L. P. ~ i t a e v s k i f ,  

Relyativistskaya kvantovaya teoriya, Pa r t  I, Nauka, Mos- 
cow ( 1968). p. 480; English translation: Relativistic Quan- 
tum Theory, Part. 1, Pergamon Pres s ,  Oxford (1971). 

"T. K. Rebane. Zh. Eksp. Teor. Fiz. 38, 963 (1960) [Sov. 
Phys. J E T P  11, 694 (1960)l. 

Translated by J. B. Barbour 

1133 Sov. Phys. JETP 53(6), June 1981 Braun eta/. 1133 


