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We investigate analytically the spectrum of the hydrogen atom in an electric field E( t )  = E, cos or + F, 
where FIE,. In the case when the splitting in the time-averaged field < E(t) > coincides with (21-1) 0 ,  where 
I = 1,2, 3..., an effect called dynamic resonance is produced. The resonance occurs between the quasienergy 
states and is multiparticle and multiphoton. The hydrogen spectral lines undergo additional splitting under 
these conditions. The theory of dynamic resonance provides a physical explanation of the results of the 
numerical calculation of the L, spectrum in crossed electric fields E, cos o t  and F, as reported by Cohn, 
Bakshi, and Kalman [Phys. Rev. Lett. 29, 324 (1972)l. We show also that fields with fixed phases and fields 
with random phases can exert different resonant action on the hydrogen spectral lines that start from levels 
with n 2 3. The dynamic resonance effect can be experimentally observed ad used both in laser physics and in 
plasma physics (in particular, to detect Langmuir solitons). 

PACS numbers: 32.60. + i 

5 1. INTRODUCTION 

Stark splitting of hydrogen line under simultaneous : 

action of a static field F and a dynamic field E,(t) i s  of 
practical interest both for nonlinear optics and for plas- 
ma  resonance spectroscopy." In a preceding paper3 a 
similar problem was solved analytically for dynamic 
fields with random phases 

The case considered in Ref. 3 was 

where the field F determines the quantization of the 

make the results less  general), and observe as a result 
a new effect called dynamic resonance. 

The physical meaning of the effect i s  explained in 82 
and the resonance condition for arbitrary n i s  derived. 
In 8 3 i s  calculated the resultant splitting of QES with n 
=2  and the spectrum of the La line i s  obtained. The lim- 
i t s  of the validity of the obtained solution a r e  determin- 
ed in 84. In 8 5 we explain qualitatively and quantitative- 
ly the features of the La line spectrum calculation of 
Kohn, Bakshi, and Kalman (CBK),1° which remains in- 
comprehensible to this day. In 86 are  discussed the re- 
sults and the prospects of their practical application 

52. THE GIST OF THE EFFECT 
atom and splits the states with the principal quantum We choose the z axis of the immobile coordinate sys- 
number n into 2n - 1 sublevels spaceda) 3nF/2 ' w, apart. tem along E, and the x axis along F. We change over to 
At resonance (wr w,) the field splits each Stark a mtlting frnme dylzl ,  whose z t  is directed at each 
sublevel into two quasi-energy states (QES) with quasi- instant of time along the resultant field E(t )  makes 
energies 

an angle q(t) with the z axis (see Fig. 1). 
*a'-* [ema-+ (o-oF)2] ". 

The Hamiltonian of the atom in the x'y'z' system i s  of 
In particular, if the distribution of the amplitudes of E, the form 
i s  one-dimensional and E , I  F, then If=H.+V,( t )+Vl( t ) ,  V , ( t ) = z E ( t ) ,  V,( t )=l , ip( t ) ,  

(2 ) 

As a result, numerous dips appear on the hydrogen- 
line profile and their distances from the line center a re  
multiples of 3F/2. The theory of resonance dips on hy- 
drogen lines was further developed in Refs. 4-6 and 
found application in the diagnostics of cosmic4 and lab- 
o r a t ~ r y " ~  plasma. We investigate in this paper the 
splitting of hydrogen lines in a field 

E ( t )  =F+Eo ( t ) ,  

where the phase of the dynamic field is fixed 3): 
FIG. 1. Geometry of crossed fields. The x axis of the immo- 

ED ( t )  =E, cos a t .  bile coordinate system xyz is  directed along the static field F. 
and the z axis along the dynamic field Eo cos wt.  The coordinate 

Starting from the results of Ref. 9, one can expect the framex'y1#rotates with angular velocity + ( t )  relative to ~e 
nonadiabatic effects to be maximal a t  FIE,. We there- system xyz. The z'axis i s  directed along the resultant field 
fore analyze below only the case F I E ,  (this does not E(t), and the y and y' axes  coincide. 
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Here Ha i s  the Hamiltonian of the isolated atom in the 
xyz system; I,, i s  the projection of the angular momen- 
tum on the y axis. The dc component V,(t)  of the per- 
turbation splits the states with equal n  into 2n - 1  sub- 
levels with a spacing between them 

o r = = 3 ~ - ~ n ( P + E , ~ ) " E ( k ) ,  (3) 

where k ~ E , ( P + E ~ , ) - " ~ ,  and E ( k )  i s  a complete elliptic 
integral of the second kind in its normal form. 

If we put V,(t)=O in the Hamiltonian (I), then the solu- 
tions of the Schriidinger equation can be chosen to be 
QES with wave functions (WF) 4 , ( t ) :  

Here a a (3, n,, m) are  the parabolic quantum numbers; 
O;(r) are  Fourier coefficients. We obtain thus QES 
with the spacing of their quasi-energies equal to 

The "magnetic" perturbation V 2 ( t )  has the following 
Fourier expansion: 

It i s  clear that at  Q= (2v - 1)w multiphoton resonance 
sets in between many QES harmonics and is  due simul- 
taneously to all the harmonics of V 2 ( t ) .  The possibility 
of multif~equency resonances between QES was indicated 
by Anosov." In our case the resonance condition can be 
written in the final form 

The physical meaning of the effect is  most evident in 
the case E,>>F, when the dc component of the field i s  
E = ( I ~ ( t ) l ) = 2 E , / r .  Condition (5) means then that an odd 
harmonic of the dynamic-field frequency coincides with 
the splitting 0,-3 ( % ) n . 2 ~ d n  due essentially to the same 
dynamic field. This i s  why the effect is  called dynamic 
resonance. We note that although the static field does 
not enter in the resonance condition at E,>>F, it deter- 
mines the amplitudes b,  of the harmonics of the magnet- 
ic perturbation V,(t)  [see Eq. (4)] and the produced QES 
splitting. 

' 

$3. SPECTRUM OF THE La LINE IN DYNAMIC 
RESONANCE 

The equations for the matrix elements of the evolution 
operator take in the interaction representation the form 

Using the resonance approximation, we obtain the solu- 
tions of Eqs. (6) for the QES with n -2 .  The stark states 
from which the matrix elements T , ~ I  are  calculated 

will be designated in the following manner: 

We expand E ( t )  in a Fourier series: 

Using (5) ,  we obtain 

o-'E2.(1) =2(21-1) [n .n (F ,  Ea) I-'  .fdr(P+Ez w s a  z ) ' ~  cos 2qz. 

The maximum value lE,,(l)/wl,,, i s  reached at F=O: 
nlz 

Io-*E-(l) lmu=1/*(21-l) 1 dzlcos zlcos 2qz =4(2Z-1) [3n(4qa-i )  ]-I. 
-rla 

I 
* 

( 8 )  
We confine ourselves in (5) to the resonances for L = 1  

and 1 =2. It follows from ( 8 )  that 
J/,IE,(l)/o~m~=l/15n<y/21E,(i)io1,-2/3n; ( 9 )  

VI,IE,(2)1w )m..=1/5nas/aIE,(1)lo I,,-2/n. 

The inequalities ( 9 )  allow us to represent the perturba- 
tion, after simple transformations, in the form 

v.:. ( t )  = (I ,) , .  expii(2l-1) ( z a - ~ . , . ) o t / 3 ]  

. , -. 
Since z a a  = 0, *3, nonoscillating components a re  con- 
tained in (10). We can confine ourselves to them in the 
calculation of the values of VLar(t) in the resonance ap- 
proximation. In addition, inequalities (9) give grounds 
for retaining in (10)  only the Bessel functions numbered 
u=O at I = 1  and u = O  and *I  at 1 = 2 .  The nonzero matrix 
elements VA,l are  then 

V,~=V21'=V,,'--Vsr'=V,/=V,,'=V,,'=V,,'-ia(l), 

i a ( i )  =-lob,/4=-b,/4, ia(2) = ( - l o b ; + J , b 1 ) / 4 ~  (3E2bl/40-bs)i4. 

Equations (6) take the form 
IT,...=P,,..=a(T,..+Tsa,,), f',..=f'*,.=a (TIa~*+T,m~.) (aU=l ,  2, 3, 4 ) .  

(11 
Taking the initial conditions T a a ~ ( 0 ) = b a a ~  into account, 
the system (11) has the following solution: 

T I l = T ; , = T s s - - T , r = ( l + ~ ~ ~  Qt ) /2 ,  Ta3=T1,=(co~ Qt-1) /2 ,  

T,.=T,s=T,,=Ta,=1/8(-1)z+1 sin Qt, T=,.=Taar. 
(12) 

The oscillation frequency G!(I)= 21a(l)l i s  given by 

The spectrum of the La line can be represented in the 
form 

where Aw is the distance from the line center 

~ . ( t )  = exp[i lvq( t )  lexp [ - i z j  d t ' ~ ( t ' ) ]  T ( t )  Y . ( O )  
0 

are  the WF in the immobile coordinate system [it is as- 
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FIG. 2. Spectrum of L, line in dynamic resonance for the case 
I = 2, Eo= w. For the static f ie ldF and the resonance splitting 

we have in this case E 0.73w and 0 0.23~. The distances 
2n between the new components of the spectrum are indicated 
only in the red wing of La, since the spectrum i s  symmetric 
about A w  = 0. The observation direction is perpendicular to the 
vectors F and Eo. The intensities a r e  given in a linear scale. 

sumed that f,(O) coincides with the WF of one of the 
four Stark states (7)]. Using the formula 

exp(ilycp)r exp(-ibcp) = ~ ( z  sincp+z cos cp)+e, y+e,(z cos cp-z sin cp), 

we obtain as  a result (in the case of observation trans- 
verse to F and E,) 

The obtained spectrum of the La line i s  shown in Fig. 2. 
Thus, under dynamic-resonance conditions the QES 

undergo a splitting that adds to the hydrogen-line spec- 
trum new components spaced 2Q(2) apart. The value of 
Q(I), which i s  the analog of the Rabi frequencyta i s  de- 
termined in the case of n =2 by Eqs. (13) and (4). 

84. VALIDITY LIMITS 

The validity limits within which the resonance approxi- 
mation i s  valid for the calculation of the dynamic reso- 
nance can be obtained for arbitrary n in the following 
manner. In first-order adiabatic perturbation theory 
(APT-see, e.g,, Ref. 13), we have for the probability 
w ,., of a transition within a time AT between neighbor- 
ing Sta* states a'a: 

A1 

( )  , s/,nj dtl E(t.) w...= I Jdtl(t) 1'. I(t)=(lv)ara- 
3nE (t) 

0 0 

[the matrix elements (l,),~, are  given in Ref. 14 for m 
3 1  and in Appendix I1 for m*O]. We consider the case 
when the oscillations of the integrand in the formula for 
wan, cancel each other over the greater part of the in- 
tegration region. The cancellation i s  worst near the 
end points t=O and  AT, as  well as  near the quasi-sta- 
tionary phase points t,+ (2, - l)lr/2 w ( j= l ,  2,. . . ) , where 
the derivative of the argument of the exponential i s  a 
minimum. 

We expand the argument if ( t )  of the exponential in a 
Taylor series near the points t,, and recognize that 

where K , , ~ Q  i s  a modified Bessel function of kind i. 
It i s  easy then to calculate w,ta. For the case of the 
resonance (5), in particular, we obtain 

The second term in (17), which increases jumpwise in 
time at the instants  AT=^,, i s  a manifestation of the 
resonance effects in the transition probability. For the 
resonance effects to be cumulative it i s  necessary that 
the quantization in the rotating coordinate frame be 
valid for least over several half-periods, i.e., over 
times AT 2 n/o. To this end, in turn, the probability 
w,,,, which is determined at A T <  n/2w by the nonreso- 
nant contribution w',~,, must be much less than unity, 
i.e., W(n)<< 1 if (18) i s  taken into account. The require- 
ment W(n)<<l, which reduces at not very large n to the 
condition q<< 1, ensures simultaneously a correct deri- 
vation of (17h4' 

As the condition for the validity of the analytic calcu- 
lation carried out for n=2 in 83 in the resonance ap- 
proximation, we can stipulate that the calculated fre- 
quency Q(2) be formally small compared with w. It turns 
out that this requirement i s  automatically satisfied un- 
der  the condition 

W (2) C l ,  W(2) -'/,(50Eo/36F') I, (1 9) 

FIG. 3. Comparison of the analytic results of the present 
paper with the numerical calculationsi0 for the La line. The 
plots of the "reduced" shifts (or splittings) ko/w vs. the reduc- 
ed static field S /w for eight values of the reduced dynamic 
field D/w a r e  taken from Fig. 1 of Ref. 10. The dynamic- 
resonance-theory results of the present paper a r e  represene 
ed by circles. Concerning the dashed line (see footnote 5 in 
the text). The dependence of ko/w on S /w was obtained analy- 
tically not only near the resonances, but also a t  s /w << 1 (see 
Appendix 12). The corresponding curves, however, agree 
very well with those calculated in Ref. 10; they a r e  therefore 
not shown, to make the drawing less cluttered. 

1 124 Sov. Phys. JETP 53(6), June 1981 V. P. Gavrilenko and E. A. Oks 1124 



which ensures relative smallness of the nonreso- 
nant effects. 

Thus, for dynamic resonance to exit the static field F 
must not be too small F>>(E,~/'. This attests once 
more to the essential role of the static field even if E, 
>>F, when it does not enter in the dynamic-resonance 
condition(5). It i s  therefore not surprising that if we 
put formally F - 0 in the La spectrum at  the dynamic 
resonance (15), this spectrum will not become the known 
Blokhintsev s p e ~ t r u m ' ~  whose form for La (in the case 
of transverse observation) 

At first  glance this difference can be due to the use of 
a rotating frame, in which the quasi-energy spectrum i s  
determined by the expansion of exp(3iEolcoswtl/w), 
whereas for the Blokhintsev spectrum we must expand 
exp(3iEo coswt/w). It i s  shown in Appendix 1.1, however, 
that the Blokhintsev spectrum (20) can be obtained also 
if a rotating frame is used (at F=O). Thus, the substan- 
tial difference between the spectra (15) and (20) is due to 
another cause, namely, the impossibility in principle of 
dynamic resonance a t  F<<  WE,)^^. 

85. COMPARISON WITH COMPUTER CALCULATION 
OF THE L, SPECTRUM 

In the CBK paper, the splitting of the La line in cross- 
ed fields F and Eo cos wt was computer-calculated for 
eight values of the parameter E,/w. It turned out that a t  
certain values of F/w the Eo/w structure of the L, line 
changes radically: some components vanish and a re  re- 
placed by others (at new positions). This effect re- 
ceived heretofore no physicalAexplanation. 

We change over now to the CBK notation so a s  to com- 
pare their results with those of 83, namely 3F=S and 
3E0=D. In the new notation the resonance condition (5) 
for n =2 becomes 

~o-'-(21-l)n(2(i+S~D~~)"~E(k)}-', 1=1, 2, . . . (k=D(Sa+~z ) - '"1 .  

In the CBK paper the results a re  represented graphical- 
ly a s  plots of k,/w vs. S/w at certain values of D / U  (see 
Fig. 3, in which the curves of Fig. 1 of the CBK paper 
a re  reproduced). The aforementioned radical changes 
of the La spectrum a r e  observed when the function ko/w 
reaches i ts  extrema. According to the CBK definition 
of the quantity k,, it should be connected with the addi- 
tional splitting by the equation k,= (- 1)'(S2 - w). 

The comparison with the CBK results was performed 
in the following manner. Let D/w=0.5, then the reso- 
nance condition (21) a t  1 =1 yields S/DZ1.87; conse- 
quently S/w"0.93. It is seen from Fig. 3 that the value 
S/w=0.93 does in fact correspond to an extremum of the 
function kdw at D/w=0.5. The splitting frequency cal- 
culated from (13) and (4) yields S2/w"0.25 and conse- 
quently ko/wZ0.75, which coincides with the value of 
kdw a t  the same extremum in  Fig. 4. The theoretical 
point with coordinates S/w=0.93, k0/w=0.75 i s  repre- 
sented by a circle, The other extremum on the D/w 
=0.5 curve agrees well with the theoretical point cor- 
responding to 1 =2, 

We calculated similarly the theoretical positions of 
the extrema and the extremal splittings for other values 
of D/w. We point out that in the cases I =1,3,. . . dy- 
namic resonance corresponds to the maxima of the fam- 
ily of functions ko/w, and a t  I =2,4, . . . to the minima 
of these functions. It is seen from Fig. 3 that in most 
cases the theoretical points of the dynamic resonance 
agree well with the extrema of the numerically calcu- 
lated ~ u r v e s . ~ '  

Thus, the previously incomprehensible results of the 
CBK numerical calculations a r e  accounted for  by the dy- 
namic-resonance theory both qualitatively and quantita- 
tively. 

Analytic calculations can be performed not only in the 
dynamic-resonance regions, but also far  from them. 
The La spectrum for the case w, << w, calculated analy- 
tically in Appendix 1.2, explains well the behavior of the 
curves in Fig. 3 in the region S/w <<I. In particular, it 
follows from Eq. (A.9) that the slope of the curves8' 
(ak0/as) - J,(D/w) a s  S- 0. It i s  clear therefore that the 
f i rs t  maximum of the family of the k d o  curves (in the 
region S /wcl )  vanishes when the parameter D/w in- 
creases  to a value D/w =j,,, =2.4; the first  minimum (in 
the region S/w-(3) vanishes a t  D/w=Jo,,=5.5, etc. [ j , ,  
and j , ,  a r e  zeros of the Bessel function J,(D/w)]. 

For the case D/w 3E0/w << 1, the spectrum of La out- 
side the resonances i s  analytically calculated in Appen- 
dix 1.3. Formula (A.10) shows, in particular that there 
i s  no additional E,-dependent shift a t  all. Comparison 
of this result with the CBK numerical calculation is, un- 
unfortunately, possible only for the k,/w curves with 
the parameters D/o  =0 and D/w ~ 0 . 5 .  The absence of 
a shift (in the considered approximation) means that the 
distance between curves should tend to zero off reso- 
nance, a s  i s  in fact observed. 

$6. DISCUSSION OF RESULTS 

The dynamic resonance effect observed in the present 
study via analytic calculation i s  quite unusual. In this 
effect, the dynamic field plays alone a double role: i t  
i s  an external force of definite frequency, and the same 
time tunes the system frequency proper to resonance. 
In addition, since the resonant states a re  not the usual 
energy states but QES, this resonance has many fre- 
quencies: i t  i s  produced not by the external force alone, 
but simultaneously by all i t s  harmonics. 

The dynamic-resonance theory provided a physical 
explanation of the CBK numerical-calculation results. 
The resonance condition (5), (3) and the dependence 
(13), (5) of the resonant splitting of on F and E,  make 
it  possible to choose suitable parameters for setting up 
an experiment aimed at observing the effect. We note 
that within the region of validity of the resonance ap- 
proximation [ ~ q .  (19)] the splitting frequency can reach 
values S2 5 0 . 5 ~ .  

The formulas obtained in 582 and 3 a re  valid for rela- 
tively weak dynamic fields E,  << F, when in essence only 
the fundamental resonance i s  left (l=l). In this case the 
dynamic resonance has a common physical basis with 
the results of Ref. 3 for dynamic fields with random 
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phases. Averaging over the random phases made i t  
possible in Ref. 3 to obtain a general formula for the 
splittings &, at arbitrary n [see Eq. (I)]. Unfortunately, 
for fields with fixed phase such a calculation is impos- 
sible in general form. 

The values of &, calculated for sublevels with n =2 all 
have equal values &=3E0/2, the same a s  the correspond- 
ing splitting Q(1) obtained from formulas (13) and (4) for 
E, <<F. 

For n = 3, a detailed spectrum calculation similar to 
that of 63 i s  extremely complicated. The splitting fre- 
quencies, however, could be obtained. At 1 = 1 they take 
on the values 

At Eo<<F we obtain Q,(l )=3Eo/2 and 52,(1)= 3E0. At the 
same time, there a re  three values of E, for  n = 3  (sl 
= 9 f i ~ , / 4  =3.18E0, & , = 9 6 ~ , / 4 %  3.90E0, and &,=9E0/2), 
none of which agree with n1(l) o r  52,(1). 

Consequently, resonant action of fields with random 
phases and of fields with fixed phase yield the same re- 
sult only for the L, line, while for the other hydrogen 
lines the resonance splitting depends on the  character 
of thephase shifts. In other words, by using hydrogen 
spectral lines starting with levels n 3 3  one can directly 
distinguish fields with random phases from those 
with fixed phase, even if their other parameters (w, E,) 
coincide. This result is of interest m t  only theoretical- 
ly, but also from the practical point of view: i t  can 
serve, for example, as a basis for a procedure for the 
diagnostics of Langmuir solitons, capable of distin- 
guishing them from oscillations with random phases. 

The dynamic-resonance effect can thus be experimen- 
tally observed and used both in laser  physics and in 
plasma physics. 

APPENDIX I 

L, spectra off resonance 

1.1. OBTAINING THE BLOKHINTSEV L, SPECTRUM 
USING A ROTATING COORDINATE FRAME 

In the case F = O  the Schrtidinger equation in the rotat- 
ing frame i s  of the form 

i aY la t=  [zE,  I C O S  o t l  + l&( t ) ]  Y ;  

cp(t) =O (max (4j-5.0) <2n-'ot<4j-3) ; 
(A.1) 

Assume that a t  0 G t < ~ / 2  w the atom in the rotating 
frame was described by the WF \k,,, =el&) 
xexd-(3iEo/w) sinwt]. At the instant t = n/2w the quan- 
tization direction i s  instantaneously reversed. In this 
case, in view of the suddenness of the perturbation 
I,$ (t) there is no time for anythingto happen to the atom- 
i ts  state (100) i s  only renamed (010) and remains the 
same up to the instant 3n/2w, when it i s  again renamed 
(loo), and so forth. We therefore seek the solution in 
the form 

I 

Y.o. = [z a. (cp) Y .  (r) ] exp(-3iE0o-' sin a t ) ,  
1-1 

in which the coefficients a, depend on the time via the 
discontinuous function q(t)  [the four states with n =2  
a re  numbered here in accord with Eq. (7)]. Substituting 
(A.2) in (A.1) and using the matrix elements (l,),tj cal- 
culated from the formulas of Appendix 11, we get 

ai,,==T3iE0( lcos o t  1 Tcos  a t ) a 1 . ~ f  'l,cp(az+a3), (A.3) 
a,. ,- i /z@(-ai+al) + (3iE0 cos o t ) a l , l .  

We seek a solution of (A.3) in the form 

a,--Ar+B1 cos cp(t) +Ci sin cp(t) .  

We use here important identities that play the central 
role the present section: 

In the upshot we get 
a I , r = i / r [ ~ *  cos q ( t )  I ,  ar*=as=-' IZs incp( t ) ,  (A.4) 

thereby determining the WF in the rotating coordinate 
system. 

The WF9,,,, in the immobile coordinate system is 

In what follows we need the relations 

2 e x p ( i l f l )  I i )=( l+coscp)  I l>+sincp(l2)+I3))+(i-coscp) 14),  

2exp(ilvcp) l2>=-sincp(ll>-14>)+(l+coscp)]2>-(l-.coscp) 13). 

2exp(il,cp) 13)=-sincp(Il)-14>)-(l-~oscp) 12)+(I+coscp) 13), 
(A.6) 

2exp( i&)  Irt)=(i-coscp) Ill-~inp((~2++~3))+(l+coscp) 14). 

Substituting (A.2) in (A.6) and taking (A.4) and (A.6) into 
account, we obtain ultimately 

Y , . . , = Y ,  ( r )  exp(-3 iEoo- 's in  a t ) ,  

which agrees with Blokhintsev's results>5 The L, spec- 
trum is determined by formula (20) (when observed in a 
direction perpendicular to Eo). 

1.2. L, SPECTRUM IN  THE CASE 3F= oF << w 

In the crossed fields F and Eocoswt, the Schrijdinger 
equation in the immobile coordinate system i s  of the 
form 

i ~ / a t =  (H.+zE, cos o t + z ~ )  Y .  (A.7) 

We seek the WF in the form 

where \k,(t) i s  the WF which i s  the solution of Eq. (A.7) 
a t  F=O: 

yt,,(t)='f't,,(r) exp (F ix  sin a t ) ,  ~ % , ~ ( t )  = I Y ~ , ~ ( ~ ) ,  x - ~ E . ( I , - ~ ,  

[the numbering of the states with n = O  corresponds to 
Eq. (7)]. For  the coefficients Ci(t) we have 

C,=-'lzioa(C2+C8) exp ( i x  sin o t )  =CL exp ( 2 i ~  sin o t ) ,  (A.8) 
Cz=CJ=-'ll ior[C, exp ( - i ~  sin o t ) + C ,  exp ( ix  sin o t )  1. 

The solution of the system (A.8) depends on the initial 
conditions. In particular, for Ci(0)= oil  we can obtain 

c i , ( t ) = { f  I + c o s [ o J o ( ~ ) t l  + f , , , ( ~ ,  t ) ) / 2 ,  

G ( t )  =Cs ( t )  =-i{sin [ o ~ J ~ ( x ) t ] + f , ( ~ ,  t ) } / 2 .  

  ere fi&, O)=O and limf,(~,  t)=O a s  (w,/w)-0, i=1,2,3,  
4. The obtained solutions of the system (A.8) enable us 
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to obtain the  following spec t rum of La (for observation 
t r a n s v e r s e  to F and E,): 

+((A" -(2p+l)u+oJo(x)) 1/21}. (A. 9) 

It follows f r o m  (A.9) that  at w,=O the  spec t rum I(Aw) 
goes  over into the Blokhintsev spec t rum (20), and when 
w, increases  the  even satellites of the lateral component 
do not split, while the odd ones split into two symmetr i -  
cal sublines with half the intensity. In part icular ,  at 
x =1.5 formula (A.9) d e s c r i b e s  well the region S/w << 1 
of the L, spec t rum shown in Fig. 2 of the CBK paper. 

1.3. La SPECTRUM IN THE CASE 3E0/w zx<< 1 

I n  this  case the s y s t e m  (A.8) can be solved analytical- 
ly, using only the f i r s t  two t e r m s  of the expansion of 
exp(* i y  sinwt) i n  powers  of X. A s  a resu l t  we obtain the  
following La spec t rum (observed perpendicular  to F and 

EJ: 
I ( A ~ )  u ([i-'/~~'o"(o'+2or') (o'-o~')-~I 6(Aa) 

+1/1[6 (Am-"#) +6 (Ao for) ] +'/sx2o'{(o+ up.)-' 

x[6(A0- ("+or)) +6(Ao+ (o+or) )I + (@--wF)-' 

x [ ~ ( A ~ - ( w - u ~ ) ) + ~ ( A ~ +  ( w - ~ F ) ) ]  +2oFZ(o'-o~')-' 

~[6(Ao-o)+6(Ao+m) III. (A. 10)  

We recal l  that Eq. (A.lO) does  not hold near the reso- 
nances (5), the condition f o r  which at y << 1 is of the 
f o r m  w, ~ ( 2 1 -  1 )w. 

APPENDIX II 

THE MATRIX ELEMENTS (I-),,, 

In  the presen t  paper  we  use  mat r ix  elements (1,),la 
determined f r o m  the W F  in parabol ic  coordinates. They 
can b e  obtained by s tar t ing f r o m  the values of the ma- 
t r i x  elements  (1-),ta. T h e  latter w e r e  calculated i n  Ref. 
1 4  f o r  the c a s e  of a magnetic quantum number  m zl: 

We presen t  the values of the mat r ix  e lements  (I-),,, at 
m 90: 

'1 Plasma resonance spectroscopy is defined here a s  inves- 
tigation of the effects produced in the optical line spectrum 
of a plasma by lifting the degeneracy of the atom + field sys- 
tem a s  a result of their interaction. The first pertinent 
e~per iments"~  have shown that, relaxation processes not- 

withstanding, the evolution of a two- or  multilevel atom in 
a plasma can have a dynamic character under conditions of 
resonance with a (quasi)monochromatic field. 

2)Here and elsewhere we use the atomic units R = rn = e = 1. 
')A field of this type is  produced, for example, when a plasma 
is acted upon by laser radiation (of frequency w > w ~ )  or  if 
strong Langmuir turbulence (solitons? with a quasi-one-di- 
mensional spectrum is produced in plasma. The static 
component of F is  due to the low-frequency electrostatic 
oscillations and (or) ion microfields. 

') Strictly speaking, for formula (17) to be correct it is  neces- 
sary to satisfy also the condition wp>>w, under which the 
integrals over the segments ( j  -1) r/w t jr/w can be r e  
placed by integrals such a s  (16) with infinite limits. We point 
out also that a t  y - q-i >> 1 we can put KIl3  b) (n/2Y)i/2e-y. 

')At D/W = 1.5 the minimum of ko/w indicated by CBK in their 
Fig. 1 does not correspond to the splitting shown by them in 
Fig. 2 of Ref. 10 for the same D/W = 1.5. Since the value of 
ko/w for D/w= 1.5 in Fig. 1 of Ref. 10 does not correspond to 
the smooth variation of the minima of the functions ko/w for 
different D/w, it appears that a t  D/w = 1.5 the correct values 
of &/w a r e  those corresponding to Fig. 2 of Ref. 10. They 
a r e  shown dashed in our Fig. 3. For the minimum of ko/w 
at  D/W = 1 the situation i s  similar. Since the condition, ex- 
pressed by (19), for the validity of theory i s  not fulfilled, the 
theoretical points a r e  not marked on the curves with D/W 
= 1.5 and D/W = 2 in the case I = 1, nor on the curve with ~ k d  

= 4.5 in the case L = 2. 
6, This circumstance was noted by CBK. 
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