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A method is developed for summing the quantum-chromodynamics perturbation-theory diagrams that 
contain for each power of the coupling constant a, (1 at least one large logarithm, namely, In q2, where q is 
the Cmomentum of the virtual photon, or In o (where the energy o is given by o = 2@q)/( - q2), in whichp 
is the Cmomentum of the target. The obtained system of equations makes it possible to calculate the structure 
functions D(o,q2) of deep inelastic scattering in an appreciably extended region of the leading logarithmic 
approximation: a:(qi) In o <In In q2, where q, is the momentum at which perturbation theory begins to be 
valid, and a,(qi)(l [Eq. (15)l. It is shown that at large o the multiladder diagrams (cuts in reggeon 
terminology) appreciably change the behavior of D(o,q2). With allowance for their influence, an expression is 
obtained for D(o ,q2) in the region of o not exceeding a certain limiting value o,,m(q2), In w <In o,;, a l/af (q2) 
[Eq. (29)l. It is shown that ~ ( w , q ~ ) a q ~  at o = o,,,, which corresponds to a constant cross section for 
absorption of the virtual photon. 

PACS numbers: 11.20.Dj, 11.80.F~ 

I. INTRODUCTION 

In this paper, we study the behavior of the structure 
function D(W,~ ' )  of deep inelastic scattering a t  super- 
high energies, when the Bjorken variable w = 2(pq)/ 
(-q2) is very large. In deep inelastic processes, the 
important region is that of short distances, where the 
coupling constant satisfies a, << 1, and we shall there- 
fore operate in the framework of perturbation theory 
for quantum chromodynamics (QCD), separating the 
diagrams in which the smallness of a, is compensated 
either by a large phase space dS2 cc ln w, ln q2, o r  a 
high parton density D(w, q2)/w. 

Hitherto, the structure functions D(w,q2) have been 
calculated in a restricted region w - const by summing 
the leading logarithms of the transverse rnoment~ml*~  
[~y,(q;) ln(qf/q:) - 1 but a,(q;)ln w << 1 ; region A in Fig. 
11. In addition, the structure of the vacuum singular- 
ity (i.e., the behavior a t  large w) of QCD was investi- 
gated by Kuraev et a1 .: who succeeded in summing the 
logarithms of the longitudinal momenta in the region 
cu,(q:)ln w - 1 but a , (q~) ln(q~/q~)  << 1 (B in Fig. 1). Now 
in both cases the problem reduces in a physical gauge 
in which only transverse gluon polarizations propagate 
(for example, in a planar gauge) to the consideration 
of ladder diagrams (Fig. 2a), and this has made i t  
possible for us to sum the logarithms of both types 
and appreciably extend the region oi applicability of 
the leading logarithmic approximation of QCD. The 
condition of applicability of the leading logarithmic 
approximation is now a:(q;)ln w << 1. The second sec- 
tion of the paper is devoted to this. 

FIG. 1. 

When w increases, s o  does the density D(w,q2) of 
the partons, and they begin to screen each other. The 
characteristic parameter 5 that determines the prob- 
ability of interaction of partons from different ladders 
is 

As a result, even for a,<< 1, i t  is necessary in the re -  
gion of very large lnw, 

when g -1, to take into account not only the leading 
logarithmic approximation but also multiladder dia- 
grams (cuts in the language of complex angular mo- 
menta). In the third section, we discuss the structure 
of such diagrams, and we show that in a wide range of 
In w < l/%(q2) the influence of the cuts reduces to the 
imposition of a new boundary condition in the principal 
ladder equation of the leading logarithmic approxima- 
tion [g a a,(q2) on the line In w = 0. 42na/Np2a~(q2): 
curve 2 in Fig. 11, and we investigate the behavior of 
the structure functions a t  these large w. 

FIG. 2. 
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II. EQUATIONS OF THE LEADING LOGARITHMIC 
APPROXIMATION WITH ALLOWANCE FOR TWO LARGE 
LOGARITHMS 

1. Selection of diagrams 

It is well known that diagrams in which there is a 
logarithm of the transverse momentum (or q2, the 
uvirtualityp) at each power of a, have ladder struc- 
ture's' in any physical gauge (in particular a planar 
gauge) in which only transverse gluon polarizations 
propagate. Moreover, the self -energy graphs and 
the corrections to the vertices change the unrenor- 
malized a,(p2) into the running coupling constant a,(q2). 

On the other hand, i t  has been shown3 that all longi- 
tudinal logarithms (In o) can be collected together by 
summing the ladder graphs in which the exchange in the 
t channel is realized by a reggeized gluon. This fact 
will enable us in the second part  of this section to find 
a system of Bethe-Salpeter type equations that sums 
all  graphs containing a t  each power of a, a t  least one 
large logarithm, namely, a, 1 n w or  a, ln qa, or  both 
a t  once: cy,wln$. 

For greater clarity and also to permit in what follows 
an estimate of the accuracy of our calculations, we 
shall now show that after a certain gauge transforma- 
tion the diagrams which collect together the longitudinal 
logarithms acquire a ladder structure, and the graphs 
concentrated entirely within one cell of the ladder 
correspond to gluon reggeization. 

We consider the first  corrections (-a,) to the (2 - n) 
amplitude for the production of n particles as shown in 
Fig. 2b; these corrections describe reggeization of 
gluons with momenta q, and q, (1 and 2) in the t chan- 
nel. We introduce the Sudakov variables5 

and, using the device of Ref. 6, express the total con- 
tribution of the graphs in Fig. 2b by means of the Ward 
identities in terms of the contributions of the diagrams 
concentrated entirely within the same cell (2). Sup- 
pose a gluon with momentum q' is emitted from line 
q,, and absorbed a t  some other point of the ladder; we 
close the contour of integration with respect to 8' 
around the pole l/q;, (for case 2b). One integration 
over q', longitudinal logarithms arise only because of 
the longitudinal part of the gluon spin matrix g,, 
=pB,pAv/(pApB). By virtue of the gauge invariance of 
the block in Fig. 2b surrounded by the broken line, 

the momentum p,, in the propagator p,,p,,/(p,p,) 
can be replaced by -q;,/at and, similarly, p,, by 
-q;,/,9'. As a result, in the spin part 2q;,q;,/a'Pts of 
the q' gluon propagator an extra power of l /a t  arises.  
Making the substitution p,,p,, - q,,,q,,,/c~~@~ in the 
propagators of the gluons ql and q,, . . . , we see that 
even in the most advantageous region el >> a' >> a, the 
integral over the da '  takes the form (a,/c~')~da'/a' 
(in this region, qi3 = at&s) and, of course, i t  does not 
give In w. The only exceptions a re  graphs of self-en- 
ergy or  vertex part type concentrated within one cell 
(Fig. 2c). Indeed, closing the contour with respect to 

,9' once more around the pole l/qhi (8' = (9:: -El,)/ 
as) ,  we see  that the largest contribution is made by 
the configurations for which gtv is left in the numera- 
tor  in one of the propagators of the gluons q' and q" 
=q, -9' and in the other, say q ' ,  the termp,,p,,/ 
( p d , )  = 2q;,q;,/atp's i s  left. [ ~ t  is not advantageous 
to replace g,, by 2q;,q;,/at~'s in all the propagators, 
since the product of the three-gluon vertex r,,(qt,q", 
q,) by i ts  transverse momenta vanishes, r,,(qt,q", 
ql)qLtqY;q:,,=O.] As a result, we obtain the logarith- 
mic integral 

da' q,' ql' da' q," 
---a- --- 
a08 a' $' a' q:l-q:ll ' 

which corresponds to reggeization of the gluon q;. 
Any other diagram encompassing several rungs (for 
example, Fig. 2d) will not contain longitudinal loga- 
rithms. 

In the region a,>> a'>> a, ,  the propagator of the glu- 
on qi introduces an extra factor l/al&s = a1/atq~,,, 
which destroys the logarithmic nature of the integration 
over a'. There remains the region a, >> I a'I >> a,. 
For negative a', the contour with respect to 8 '  can be 
closed around the poles l/q& l/qt2,  and l/(q, -q'j2, 
and for. positive a' there remains only the single pole 
l/qh; in the upper half-plane of p '. The contributions 
of this pole in the intervals -al << a' << -a, and a, 
>> a' >> a, cancel each other. The poles 1 /qt2 and 1/ 
(q, -9')' do not lead to logarithmic integrals over a' 
because the gluons a re  highly virtual: 

Thus, using the gauge invariance (i.e., canceling 
the diagrams with longitudinal polarization of the gluon 
q' - q;), we have been able to calculate the total con- 
tribution of the diagrams of the type in Fig. 2b cor- 
responding to reggeization in terms of the contribution 
of diagrams of ladder form: Fig. 2e. Integration 
with respect to the transverse momentum q; in these 
graphs gives the trajectory of the reggeized gluon 
ac(q2)=jC - 1 obtained in Ref. 3. By a similar meth- 
od, separating the transverse physical polarizations 
and replacing P,,P,, by qitvqit,/ai Pi,  we can show 
that only (2 - n) amplitudes of comb type, i.e., the 
ladder diagrams in Fig. 2a, give longitudinal loga- 
rithms on integration with respect to the momenta of 
the newly created particles. Moreover, the resulting 
square of the emission vertex for the following gluon 
exactly reproduces the sum of the contributions of all 
the diagrams containing the corresponding In w in the 
case of the Feynman gauge. Since the transverse 
logarithms lnqa can also be contained only in ladder 
graphs, we can, summing the ladder diagrams of the 
types in Figs. 2a and 2e, calculate the structure func- 
tions D(w, q2) of deep inelastic scattering to accuracy 
O(azln w). 

Indeed, no extra (not taken into account in our dia- 
grams) gluon (see Fig. 2f) gives a single logarithm on 
integration with respect to i t s  momentum but merely 
introduces an additional small a,, and the number of 
cells in which this extra gluon can be drawn is 
= a, ln w. Moreover, if this extra gluon intersects 
several cells, i t s  momentum q simultaneously destroys 
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the logarithmic nature of the integrations with respect 
to the momenta q2 of the cells i t  traverses. The point 
is that the ladders in Figs. 2a and 2e a r e  on the 
average white (color singlets). As a result, there is 
no charge emission of long-wavelength gluons (i << q,), 
and the dipole (and higher multipole) radiation contains 
the small ratio -q/q2. It i s  this factor q/qz that de- 
stroys the logarithmic nature of the integrations with 
respect to the momentum a and simultaneously with re -  
spect to the momentum g,. As a result, the character - 
istic values of the momenta and q2 a re  of order q,, 
and the entire block surrounded by the broken line in 
Fig. 2f can be regarded as a @pointv kernel AK of a 
ladder diagram (of higher order in a,), the kernel 
describing the emission of an entire system of quarks 
and gluons with nezrly equal momenta ;-q, -9%. 

Thus, to calculate the structure function D(w, q2) we 
must find the sum of the ladder graphs in Figs. 2a and 
2e, and to estimate the accuracy of the calculations i t  
is sufficient to consider how the result is changed by 
the addition to the kernel K of the ladder equation of a 
correction AK-O(KO,). 

2. Derivation of the system of equations 

Since the angular momentum j is conserved along the 
ladder, i t  i s  convenient to sum the graphs of Fig. 2a 
in the j ,  q2 representation: 

q(i, qa)= j ~ ( 0 ,  pa)  do. 

To make the gluons and quarks occur on an equal foot- 
ing in our equations, we shall not use the structure 
function D(o,q2) but the functions q~,(o,q'~) (respec- 
tively, cp,), which correspond to the cross sections of 
the processes in Fig. 2a when we fix in the uppermost 
cell a quark (respectively, gluon) with definite trans- 
verse momentum q;: 

The system of equations that describes the variation 
of the functions q16, qtZ) with increasing qr2 has the 
form (Fig. 3) 

FIG. 3. 

where N =  3 is the number of colors, C2 = (Nz - 1)/2N, 
and n, is the number of quark species. Because the 
spin of a quark is j, the cells with exchange of a fer- 
mion do not contain a singularity a s  j - 1 (i.e., In w ) .  
Therefore, all terms proportional to l / ( j -  1) a re  con- 
centrated in the first  equation of the system (2), which 
describes cells with gluon exchange. The purely gluon 
cells a re  described by the kernel ~ ( q ~ , q ' ~ )  (Ref. 3): 

where the f i rs t  term corresponds to the emission of 
one further gluon with momentum q -qr, and the second 
takes into account, by virtue of the identity 

the reggeization of the gluons [with trajectory j, = 1 
+ a,(q~)]. We emphasize that from the point of view 
of the integration with respect to the transverse mo- 
mentum q; the kernel K(3) has been written down ex- 
actly. 

The remaining kernels @:, @:, etc., describe cells 
in which a logarithm of the transverse momentum 
ar ises  but not In w .  These kernels a re  identical to the 
kernels 5 given in Refs. 1 and 9 if we separate from 
the kernels 5 the singularity l / ( j  - I ) ,  which i s  already 
included in the kernel K. We have 

For example, the sum of the second and fourth terms 
of the first  equation of the system (2) gives 4Cz/(j - 1) 
+ @: = @:, where @$ is the kernel calculated in Refs. 1 
and 9. Since cells with exchange of a quark contain 
only a logarithm of the transverse momentum, the 
right-hand side of the equation for qF can be ex- 
prested solely in terms of the kernels @: and @;, and 

9; = and @J = :,P. Strictly speaking, in Eqs. (2) 
we should add an inhomogeneous term, which is a func- 
tion which decreases faster than l/q2 for qz>>m2. In- 
stead of this, we shall seek the solution for the region 
q2 > q: >>m2, representing i t  in the form of the integral 
(12) with respect to the eigenfunctions of the homo- 
geneous system (2) and find the expansion coefficients 
using the boundary condition a t  the point qz =qt. 

3. Solution of the system (2) 

If the coupling constant a, did not depend on qz, Eqs. 
(2) would be homogeneous in the arguments q2 and qr2. 
Then the eigenfunctions of the system (2) would have 
the form 
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c p f  ( qZ)=(q2) f - ' ,  

and 

j K ( q a ,  qt')cpt (q") dql'-=x ( I )  cpt (q'), 
(5 

x ( f )  =-2Cs-$(f)  - $ ( I - f )  

(for more details, see Ref. 3); C, is Euler's constant, 
#(f ) = d  ln r(f)/df, r(f)  i s  the gamma function. Using 
this remark and substituting in (2) the explicit expres- 
sion for a,(q2), 

[B, = N - $,, Y = ln(q2/p2], we shall seek the solution 
in the form 

By means of relations obtained by integration by 
parts, 

we readily find equations for the expansion coefficients 
A(f): 

-B,fA'"=cDGGAG+AP[cD,o+4Cz/(j-1) 1, 

-$afA"=2nP~o"AG+A~[cDFF-4Nf~(f)I(i-1) I .  
(8 

In the region of large w, i.e., j - 1 << 1, in which we 
a re  most interested, the system (8) has the obvious 
solution 

In the case of finite w ,  the values off z 4N/@,r(i - 1) 
important in the integrals (6) a re  very small. This 
makes i t  possible to simplify Eq. (8) by expanding the 
function ~ ( f )  in powers off: fx(f )=l+O(fS)  a s  f-0.  
Then the solutions of the system (8) take the form 

A O ( f )  =AoGf', A F ( f )  -AoPfl, (10) 

where 

and y satisfies the equation 

(11) 
For numerically large w, when j - 1 << 1, the solution 

(10) coincides with (91, since in the limit j - 1 

Therefore, to good accuracy we can use the solution 
(lo), (6) in the complete range of j (or w). It only re-  
mains to choose the coefficients Af( j )  to satisfy the 
initial conditions for some fixed but large qa =qt(a,(q;) 

At large w and q;, the integrals (12) can be convenient- 
ly calculated by the method of steepest descent. The 
saddle-point value fo is determined from the solution 
of the equation 

It can be seen from this that Ao(j) is determined by 
the value of cp,(w,,q~) a t  

and this coefficient A,(j) determines the function 
cp(w,q2) simultaneously on the entire line j = const, 
i.e., 

(curve 1 in Fig. 1). Substituting the values of the co- 
efficients Ao(j) found in this way in a solution of the 
system of equations (2) of the form (121, we can cal- 
culate the structure functions of deep inelastic proces- 
s e s  in a wide range: 

a/ (q:) In o a l n  [a. (qo')la. ( n 2 )  1. (15) 

The restriction (15) is due to the fact that the system 
(2) does not take into account the corrections AK - a, 
to the ladder kernels K, i.e., the terms proportional 
to af In w must be small. 

4. Discussion of the corrections 

To get a better feeling for the part  played by the cor- 
rections to the ladder kernels, we consider the simpli- 
fied equation 

in which we retain from the system (2) only the term 
singular in j (the most dangerous a t  large In w ) .  In 
the case of the simplest kernel K = O(1) [see (3)] a solu- 
tion of (16) is the function 

where A'(f)=o, i.e., A(f)=Const. 

We add to the kernel K the correction AK =0(1) the 
= 0 (c~ , (q~) ) .~ '  Since the coupling constant in QCD i s  
dimensionless, the term. AK/a, i s  also a homogeneous 
function of the arguments qa and q". Therefore, 

r 

and, since all  the integrals logarithmic in q; have al- 
ready been taken into account, the ratio A X(f)/x(f) in 
the system (2) does not have singularities with respect 
to f a s  f-0.  

The equation for the coefficients A(f) now takes the 
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form 

and in our region j - 1 << 1 

or ,  for small f ,  

Thus, the influence of the following cr, corrections to 
the ladder kernel K(3) becomes important only a t  r and 
In o values for which the characteristic saddle-point 
values satisfy f = fa-  O(1) [see (1311. From this point 
of view, the most dangerous point on the trajectory 
with given j = c onst [see (14)] is the initial point. In- 
deed, along the trajectory (14) In w increases much 
more slowly than 1/a:(q2), so  that a t  w,, q, the value 
off i s  maximal, and f decreases with a further in- 
crease in q2. From this the restriction (15) arises. 
In principle, the correction A ~ ( f )  can be calculated and 
one can then specify the exact values of A( f) in the 
complete f interval. However, even where f = Q (1) the 
coefficients A(f) do not change too rapidly [by several 
times compared with A(O)]. Such a change of A(f) can 
be regarded as a renormalization of A(0) a t  the start  
of the trajectory. Therefore, without pretending to the 
exact finding of the pre-exponential factor, we pose the 
problem of the behavior of the functions cp(w,q2)(lncp) 
in the much larger region In w s; c ~ ; ~ ( q ~ ) .  

Unfortunately, we here cannot restrict  ourselves to 
the solution of the relatively simple system of equa- 
tions (2), since when In w increases the density of par- 
tons rapidly grows and one must take into account 
their mutual screening, coalescence (of two into one), 
and mutual multiple scattering. 

Ill. REABSORPTION AND SCREENING OF PARTONS 

1. The simplest diagrams 

We consider how the parton density D(wl, qt2)/w' 
"q'2cp(w',q'2) changes as the virtuality q" increases 
along the ladder in Fig. 2a or ,  which is the same 
thing, along the trajectory with given j (14). 

As follows from the relations (13), p 2 r ( j  - 1) 
=4Ny(f,), i.e., 

Substituting these expressions in Eq. (12), we obtain 

where f - 1 - x(f)/xl(f) = 0 at  f = 0.37. 

It can be seen from (18) that for f > 0.37 the deriva- 
tive -k i s  positive, -k > 0. This means that for suf- 
ficiently small j - 1 the function cp initially increases 
exponentially fast with 7 ,  and i t  is only when r has in- 

creased s o  much that fo becomes less than 0.37 (cor- 
responding to A r = r - r, -yo)  that cp begins to de - 
crease. At the same time, the parton density in the 
ladder comb D(w, q2)/w a: q2cp = e'cp increases mono- 
tonically with increasing virtuality. Since the trans- 
verse momenta also increase along the ladder (in the 
direction from the target to the virtual photon), there 
is no diffusion in the space of the impact parameters 
b,, and all the partons a re  concentrated in a region of 
the order of the geometrical dimensions of the target, 
(b : )  -R;;. Each particle with virtuality q2 occupies 
the a rea  -l/q2, and the interaction cross section of 
such particles is u(gg) - a,/q2. It i s  therefore natural 
to expect that once the parton density D/w exceeds the 
value ~ ; ~ / a ( g g )  the partons will begin to coalesce and 
screen one another. Indeed, in this region [D/o 
>~f , /o (gg) ,  i.e., c~ , (q~)cp(w,~~)  > 1] multiladder dia- 
grams (multipomeron cuts) describing screening pro- 
cesses come into play. The first  diagram which be- 
comes effective is the one in Fig. 4a. 

Since the vertex for the coalescence of two ladders 
into one (Fig. 4b) contains an extra coupling constant 
a,(qt2), which does not give rise to any logarithm, the 
consideration of such graphs takes us out of the frame- 
work of the leading logarithmic approximation [as does 
allowance for the corrections A K  - a, in the kernel of 
the ladder equations (2)}. But since here the small 
quantity a,(qt2) is multiplied by the large cp(w',qn), 
such diagrams play a fundamental part in the region C 
(to the left of curve 2 in Fig. I ) ,  where the cross sec- 
tion for interaction of the virtual gluon (quark) with the 
target is o(qn) - a,(q'z)p(w', qt2) and comparable with 
the target area rR&. 

We turn to the graph in Fig. 4a and choose a point 
w', q' lying on the trajectory along which the ladder 
(1, 2) develops, i.e., j(wl, ql)=j(w,q)=const.  By 
making this choice of the point w', q' we have in no 
way spoilt the integrations within this ladder. As can 
be seen from Fig. 4a, the integration with respect to 
the transverse momentum q,, running through the 
reggeons3' 2 and 3 i s  cut off by the target form factor, 
i.e., the characteristic values a re  (qi, ) - 1/R&; As a 
result, the contribution of the sum of the diagrams 
2a and 4a can be represented in the form 

where c~,(q'~)G,,, is the effective three-pomeron vertex 
(of coalescence of two ladders into one) described by 
the sum of the graphs in Fig. 4b. For what follows, 

a 

Wo> 90 
C d 

FIG. 4. 
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we only need to know that a t  qi ,  << qt2 i.e., a t  small 
momentum transfers through the reggeons, the value 
of G,, tends to a constant limit G,,, (q:, - 0) -- const. 
The contribution J, [the second term in (19)] reaches 
i t s  greatest value a t  r' = ln q" values for which the cor - 
responding f {=0.37, i.e., when the function cp(w',qn) 
is maximal. We emphasize that the condition qi ,  
<< qt2 is satisfied in the self -consistent calculation of 
the semienhanced diagrams of the type of Fig. 4c i r  - 
respective of the target form factor. 

Indeed, if the value of q,, is large, q,, > l/R,,, then 
the smallest 'initialB virtualities within the reggeons 
2 and 3 will be determined by q:,, and i t  is these vi r -  
tualities that limit the geometrical size of the region of 
impact parameters (bf)  in which our partons a re  con- 
centrated ((bf ) -l/q:,). Thus, qi ,  in the case of 
large q,, plays the part of a reciprocal 'size' of the 
target. On the other hand, as will be shown below, the 
summation of the graphs in Fig. 4c halts the growth of 
the functions cp(w',qt) (when w increases) a t  the level 
cp = cpmx - (bf )/cua(qn), when the probability of parton 
reabsorption 

becomes of order unity. As a result, the functions 
rp(w',qr2, q&) corresponding to the reggeons 2 and 3 de- 
crease with increasing q,, a s  l/q;, in the same inter- 
val of values of the arguments w' and q' in which the 
contribution J, [the second term in the expression (19)] 
ceases to be negligibly small compared with J,. 

Then the integral over the momentum transfer q,, 
takes the form 

It can be seen from this that the important values of 
q,, a re  determined by the lower limit of integration q", 
i.e., either by the initial virtuality o r  by the size of 
the target itself4': l/R,,. 

The contribution of the completely enhanced dia- 
gram of Fig. 4d, J,, i s  less  than J, since in the 
graph of Fig. 4d the section from r, to r", on which 
the function cp(wt, q') increased exponentially in the 
diagram of Fig. 4a, is not used (the estimate of the 
characteristic momenta q,, transferred through the 
reggeons 2 and 3 here repeats literally the case 4a.) 

Thus, we have seen that once the maximal value of 
cp(wt, q') somewhere within the ladder [i.e., some- 
where on the trajectory (14) with given j(wt, q') 
= const] reaches rp,, = l/G,,, cu,(qt2)(q;, ), the diagrams 
which come into play first  a re  the diagrams of Fig. 4a. 
We have denoted the trajectory with the largest j (the 
lowest) on which cp reaches the value cp,, by 3 in Fig. 
1. This curve bounds the region in which the contribu- 
tions of the multiladder diagrams a re  small and the 
results of the calculations made in the previous sec-  
tion a re  valid. Above curve 3, the semienhanced 
graphs of Figs. 4a and 4c, which determine the main 
corrections due to rescattering and screening of the 
partons, significantly change the behavior of the 
structure functions D(w, qZ). 

b 

FIG. 5. 

2. the method of summation 

Since for a,cp -R;,/G,,, the contributions of the lad- 
der  (Fig. 2a) and various semienhanced diagrams of 
Figs. 4a and 4c a re  comparable, to calculate the 
structure function D above curve 3 i t  is necessary to 
find the sum of all diagrams of the type of Fig. 4c. 
This task can be done by means of the equation (see 
Fig. 5) 

Here, the first  term (the unity in the square brackets) 
describes symbolically the basic system of ladder 
equations (2). This becomes completely obvious if we 
retain in Eqs. (2) only the first  term and note that in 
the j representation the derivative ~ q / a  In w_ corre- 
sponds to ( j  - 1 )cp(j) (in this special case, K = K). The 
second term in the square brackets corresponds to the 
contribution of the semi-enhanced diagram in Fig. 4a, 
i.e., J, (19). Since this term takes into account the 
possibility of coalescence of ladders a t  each level of 
the rapidities In w', and the function cp itself a t  smaller 
values of w' was calculated earlier by means of this 
equation, i t  follows that Eq. (20) thus generates the 
entire fan of the semi-enhanced graphs of Fig. 4c. 

Indeed, i f  a t  the level In w' we have already speci - 
fied the sum of the diagrams of Fig. 5b [i.e., cp(ln w')], 
then, iterating (20) by means of the second term, we 
obtain a new, as yet unenhanced diagram Fig. 5c, and, 
using in the subsequent iterations the first  term, we 
transform this graph into the semi-enhanced Fig. 5d 
and so forth. The initial condition for  Eq. (20) is the 
function cp(w,,q2) calculated in the usual manner'v2 by 
summing the leading logarithms of the transverse 
momentum at  finite w,. In the case 1 << In w,<<l/cua(qE), 

However, since we must now impose the initial condi- 
tion for fixed w,, we must, in solving Eq. (20), specify 
rp(w,,q2) and then calculate cp(w, qa) for all values of 
q2, including q2 < q:, where aa(q2) 2 1 and our equations 
of the leading logarithmic approximation no longer 
work. To avoid this problem, we must, besides the 
initial condition rp(w,, q2), impose an initial condition 
for cp(w, q2) on some curve q2 = F(w) > q; [curve 2 in 
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Fig. 1, to the right of which cu,(q2) < cu,(q:) << 11. The 
formulation of such a boundary condition is our next 
task. 

Below, investigating Eq. (20), we shall succeed in 
finding a curve 2 on which cp(w(q2), q2) = const. Every- 
where to the left of curve 2 (w > w(q2)) the function cp 
is so large that, besides the semienhanced diagrams, 
we should also take into account the contributions of 
the completely enhanced graphs. This is a very com- 
plicated problem, and we shall not attack i t  here. 
However, on the boundary 2 itself and to the right of i t  
[w -C w(q2), cp -C const] the contribution of the multilad- 
der  diagrams (the cuts) to Eq. (20), O(cr,cp) <O(cu,), 
becomes negligibly small. This makes i t  possible to 
return to the basic system of linear equations (2) and, 
imposing the boundary condition on curve 2, cp(w(q2), 
q2) = const, find the structure functions in the entire 
region C to the right of the boundary. 

Thus, the role of the cuts reduces to the imposition 
of a new boundary condition (at large w and q2) in the 
old ladder equations (2). 

3. Investigation of the nonlinear equation (20) 

We now return to Eq. (201, which sums the semi- 
enhanced graphs. In the first  part  of this section, we 
showed that the multipomeron cuts (Figs. 4a and 4d) 
have a significant influence on the behavior of the func- 
tions cp only when the cross sections a.rp(wt, q") 2 1/ 
(qi, ) are  sufficiently large [see also Eq. (2011. On 
the other hand, writing cp(o,q2) in the form of the inte- 
gral (12), we have seen that once the saddle-point value 

fo becomes less than 0.37 the function cp begins to de- 
crease rapidly with increasing q2. Therefore, in the 
region where the cross sections o,cp -l/(q:, ) are  not 
small and i t  is necessary to sum the semi-enhanced 
diagrams the functions cp(wf, qt2) themselves still vary 
comparatively slowly with qn ,  cp = q2 j-' , f z f,,. All 
the integrals over qf2 in Eqs. (2) and (20) converge 
well a t  q f -q ,  and they do not contain the lnq2 that 
arose earlier because of the contribution of the states 
(eigenfunctions cp,) with f - 0. 

As a result, studying the influence of the cuts, we 
can retain in the system (2) only the part singular in j 
(i.e., the first  term) and interpret Eq. (20) literally, 
i-e., not a s  a system of equations for cp, and cp, but a s  

single equation for the function cp = cp, with kernel 
K = K  given by the expression (3). 

Since in the initial condition (and, as we hope, in the 
final solution) the slope k = -a In cp/a In q2 varies slowly 
with q2, and the integrals (20) over q' converge rapid- 
ly, we write cp in the form of the exponential 

cp (ln o, q'') =rpa (In o ,  q 2 )  eL"-''1 (rf=ln q") 

and follow how p0 and the slope -k change with in- 
creasing w. 

To find the equation for k, we differentiate (20) with 
respect to a r  = a lnq2: 

ak a 
-=- 1 aq =- azv k acp 
din" b l n w ( - < ~ )  cparalno  cp a l n o  

We have here denoted by l/cp,, the coefficient of cp i n  
the square brackets of the integral (20), &,= 16n2/ 
G,, (qi, ) cu,(q2), and we have retained in all the terms 
of the right-hand side of (22) only the leading terms in 
l/r. 

For the following study of the obtained system (20), 
(22) i t  is convenient to use the analogy with the optical 
wave equation. For the field cp, we introduce the fol- 
lowing concepts: the frequency 

[see (20)] and the wave vector k = -a In cp/ar. Then, 
moving with the group velocity 

we can readily follow the variation of the wave vector 
k, since now Eq. (25) for dk/d In w 1 g r  does not contain 
the derivative ak/aR: 

(25) 
In other words, moving with the group velocity, we 
follow the same wave packet the whole time and must 
not take into account the changes in the slope of cp a s -  
sociated with the distribution of the wave packets given 
by the initial condition (21). However, it is much 
easier to follow the value of cp on a trajectory deter - 
mined by the phase velocity: 

Along this trajectory, the value of cp i s  constant. It i s  
here necessary to emphasize the serious difference 
between our reggeon equation (20) and the usual wave 
equation. Since the rapidity In w in reggeon field theory 
plays the part  of an imaginary time, it, the change in 
the phase A J ,  = i(v - v , , ) i~  In w when the velocity of mo- 
tion v differs from Y ,  leads to a sharp change in the 
value of the function Aln cp = (v,, - v ) ~ l n  w. 

As can be seen from Eqs. (20) and (23), the values 
of p(ln w, q2) increase monotonically with increasing 
In w, drawing closer to the value cp,, but nowhere ex- 
ceeding it, i.e., 1 - cp /cp,, > 0. Simultaneously, i t  
follows from Eq. (25) that the slope k i s  everywhere 
positive (for k < 0, dk/d ln wl gr > 0, and in the initial 
condition k > 0). Hence, for fixed In w the function 
c p ( ~ ,  q2) decreases monotonically with increasing q2. 
The behavior of the vector k is more complicated. If 
we begin with a wave packet for which v,, > v,, (i.e., 
f, =l - k > 0.37), then in the case of motion with the 
velocity v,, the ratio cp/cp,, will rapidly decrease and, 
in accordance with Eq. (251, the value of k will in- 
crease, making the ratio v,,/v,, still larger. The 
problem linearizes, and in this region we can use the 
old system (2) for the calculations. In the opposite in- 
itial case, v,, <v,, (i.e., 1 -k > 0.37), the value of cp 
increases rapidly, tending to cp,,. In Eq. (25), the 
last  term -kv/cp,, begins to play the main part, and 
the vector k on such a group trajectory decreases with 
increasing w and q2. 
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Of greatest interest is the intermediate case v,, 
=us,, when we can readily follow the variations of k 
and cp, simultaneously. To this condition there cor - 
responds a constant value k = k,, which is the solution 
of the equation 

We join by a curve (2 in Fig. 1 )  the points in the (In w) 
plane for which k = k,. Generally speaking, different 
wave packets could pass through each point of this 
curve k = k,. It would then be very difficult to follow 
the variation of cp along curve 2. But, as we shall now 
show, this curve is simultaneously the trajectory of 
motion of a packet with velocity v,, = v*, and on it 
cp = const. Indeed, if curve 2 did not coincide with the 
packet trajectory, i.e., dr /d ln  w+ v,, =v,, along the 
curve, the values of cp would change on curve 2. Then 
one could find a point a t  which 

cp c p ~ ~ t r ( q i )  =L -- 
q,- 4npzr kor ' 

cp- const= %', =*. 
koGen<qn?) 

Moving from this point with velocity v,, =up, we see 
that the derivative (25) dk/d ln w 1 ,, vanishes to our r e -  
quired accuracy O(d(qz)). Hence, movingwith the 
velocity ?I,,,, = v, from the point cp = cp,,, we move si- 
multaneously along curve 2, keeping a s  before the val- 
ue of cp equal to cp,. 

4. Calculation of the structure functions 

Thus, we have demonstrated the importance in the 
solution of Eq. (20) of curve 2 (Fig. I ) ,  on which cp 
= cp,,= const, and we have obtained the possibility of 
determining the form of this curve: 

 ere, we have ignored the terms cp,,/cp,, - (ua(q2) 
compared with unity, since such corrections were al-  
ready omitted in the calculation of the kernel K, i.e., 
~ ( 1  -@.I 

Since everywhere to the right of the curve 2 we have 
cp(w,q2) c (hr = const (the function cp decreases mono- 
tonically with increasing q2 for fixed w), the contribu- 
tions of the cuts (Figs. 4a, 4c, and 4d) in this region 
is a negligibly small (- (ua(q2)) correction to the equa- 
tions of the basic system (2).5) As a result, since we 
a re  interested in the region to the right of curve 2, we 
can forget the multiladder diagrams and consider only 
the linear system (2) of equations of the leading loga- 
rithmic approximation augmented by the boundary con- 
dition cp = q,, =const on the curve (29). As before, 
i t  is convenient to seek the solution of such a system 
in the form (12), in which for large j [for which the 
corresponding w(q,) < w,,(q,) (29)] the coefficients 
A,(j) a r e  determined by the initial condition cp,(w,q;), 
and for j - 1 [when w(q,) 2 w,,(~,)]A,(~) is given by 
our new boundary condition on the curve (29) (i.e., 

essentially i t  is determined by the cuts). To satisfy 
the boundary condition, i t  i s  necessary to choose 

wnst 8N.0.309, 
Ad( i )= ( i - l ) ' / . ex~~r~ . - i )  I (30) 

the number 0.309 = B is found by solving the equation 

Thus, 'he behavior of the cross  section of deep in- 
elastic scattering is finally as follows: a) in the region 

(curve 3 in Fig. I)=' i t  is described by the usual for-  
mulas of the leading logarithmic approximation (2), 
which permit the calculations of cp(w,q2) and ~ ( o , q ' )  
f rom initial conditions a t  q2 =qi, and b) in the region 

i t  is described by the expressions 
wnst 

cp(o, q') = -(a. (qa))"1H(x)q2P("', 
q2 

( x  = p,  ~(u:(q*)ln w/2r2). The functions ~ ( x )  and ~ ( x )  . 
a r e  plotted in Fig. 6. Their asymptotic behaviors at 
small u << 1 are  given by the expressions 

F(x)-fo+x/fo+O(fo"), ~-f,'"-'(2 ln fo-I)"'; R-HIfo, (32) 

where the saddle-point value f, is determined by the 
equation 

4f: (0.309-1nVx) -x.  

As x -0.21 (i.e., near curve 2 in Fig. 1, onwhich 
we specified the new boundary condition cp = cp,, 
= const )') 

IV. CONCLUSIONS 

Let us briefly formulate the main results  of the paper. 

1. We have obtained a system of equations that 
makes i t  possible to sum all  diagrams containing a t  
least one of the two logarithmically large parameters 
ln w and ln q2. Solving these equations, we have cal- 
culated the structure functions of deep inelastic scat-  
tering in the region 

2. In a large region (to the right of curve 2 in Fig. 

FIG. 6 .  
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1) we have succeeded in reducing the influence of the 
multipomeron diagrams (cuts) to the imposition of a 
new boundary condition (q = const) on curve 2 [ln o 
= O .  42 ~ ~ / ~ p , ( y . : ( ~ ~ ) ]  in the basic system of linear equa- 
tions and finding in this region the structure functions 
up to a slowly varying pre  -exponential factor. We em- 
phasize that although the role of the cuts has been r e -  
duced to the imposition of a new boundary condition in 
the equations describing the sum of the ladder graphs, 
the cuts have radically changed the exponential behavior 
of the structure functions D(w,q2). Whereas without 
allowance for the multiladder 

and near curve 2, In w - ln2q2, the parton density D/w 
appreciably exceeds the bound D/w q207 < q2(ln d2 
which follows from the unitarity condition (Froissart 
theorem), we now have D/w gar, and F -( 1 to the 
right of the boundary (2). 

Naturally, the change in the nature of the behavior of 
the structure functions in the region of very small x 
= l / w  (hitherto suggestions have only been made con- 
cerning the form of the functions D in this region)" 
has serious consequences-on the shape of the spec- 
trum and magnitude of the inclusive cross sections for 
production of hadrons with large transverse momenta 
in the pionization region, on the energy dependence 
and shape of the plateau in e+e' annihilation, and s o  
forth. 

We a re  very grateful to V. N. Gribov for discussion 
and constant interest in the work and to L. N. Lipatov 
for discussing the results. 

 he above proof that Inw is  absent in the encompassinggraphs 
is almost literally repeated in the case  of a planar gauge, 
for example, d , v = g , v - ( q ~ B v + p B , q v ) / @ p B ) ,  and here  it i s  not 
even necessary to follow the canceling of the polarizations 
q,: sincepR,d,a-qtv/a. Fi rs t  attempts to  reduce the re-  
geization to a single cell of the ladder by the choice of a 
special gauge were made by Mason Ref. 7. After the present 
paper had been written. we became acquainted with Jarosze- 
wicz's paper,a in which he showed independently that in the 
Coulomb gauge the infrared-divergent contributions to the 
gluon reggeization also reduce to graphs of the form of Fig. 
2e. 

')we recal l  that the inclusion of any extra gluon in diagrams of 
the form of Fig. 2a lead only to corrections M a a ,  in the 
kernels of Eqs. (2). 

')we call  our ladders reggeons ( pomerons) to preserve the 
usual terminology in the theory of complex angular momenta 
j , although the singularities corresponding to our ladder a r e  
not simple poles in the j plane. 

4 ) ~  more  detailed discussion of the procedure for calculating 
the integral over qRt for the example of doubly logarithmic 
diagrams can be  found in our paper Ref. 10. 

 he influence of the cuts i s  important only for maintaining 
a constant value k =  ko of the wave vector along the trajec- 
tory 2. Since the change in the slope k along the group 
trajectory in the case  of the linear system (2) i s  an effect of 
second order in a, [ see  (25)], the vanishing of the derivative 
dk/d In w was guaranteed by very small  contributions of the 
multiporneron diagrams, which need not be  taken into account 
in any of our other calculations. 

 elow ow curve 3 the values of the parameter a, ( q 2 ) ( p ( ~ , q Z )  
c 1 6 r r 2 ~ t t / ~ , , f  a r e  such that the contributions of the multi- 
ladder diagrams a r e  negligibly small  everywhere for q2>q: 
and they should b e  ignored even in the form of the new bound- 
a ry  conditions. 

"AS was discussed in Sec. 2.4, the corrections -a, omitted in 
the calculation of the ladder kernels K (3) and iP (4) lead to a 
finite renormalization of the coefficients Ao(j.  f) in an inter- 
val of finite f. Therefore, we cannot here pretend to exact 
calculation of the slowly varying pre-exponential factor H(u) 
for the region bl but merely aim to find the form of the sin- 
gular part of H(u) a s  u - 0. 
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