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The critical behavior of a number of models of magnets with dislocations and point impurities is investigated 
within the framework of the field renormalization group technique. The considered dislocations are linear and 
produce around them small-scale inhomogeneities. If all the dislocations are parallel and are randomly 
distributed over the sample volume, then the critical exponents q and v have longitudinal and transverse 
components that are connected with one another and with other critical exponents by scaling relations that 
differ from the usual ones. When point impurities are added to such a magnet, several different variants of 
critical behavior are possible, depending on the number n of the components. The exponents of this system 
with a single-component order parameter coincide with the exponents of a magnet with point impurities. At 
n)4 the system behaves as if it were to contain only dislocations. At intermediate n ,  the critical exponents 
take on new values, typical only of the considered magnet. Models are considered in which the dislocations 
are oriented along several directions. In this case, at n = 1, the exponents of an Ising magnet with point 
impurities are obtained. The values of the critical exponents for other n are obtained. 

PACS numbers: 75.40.Dy, 75.30.H~ 

1. INTRODUCTION calculations will be made in a space of dimensionality 

Both point impurities and dislocations can exert a 
strong influence on the anomalies of thermodynamic 
properties of magnets near a phase transition point. 
However, while the critical behavior of magnets with 
frozen-in point impurities have already been investi- 
gated by the renormalization-group method back in 
1975,'-' the role of linear defects has been much less 
studied. The corrections to the mean-field theory for 
the presence of dislocations in the systems were ob- 
tained by Levanyuk et aL4 Barie? obtained a solution 
for the local magnetization of the planar Ising model 
near a linear defect. ~ubrovski ;  and Krivoglaze used 
the local-transition-temperature approximation7 to de- 
scribe a magnet with dislocations that producearound 
themselves large-scale inhomogeneities. The present 
author considered earlier8'8 a system of parallel linear 
defects randomly distributed in space; each defect pro- 
duces in a transverse direction only a short-scale in- 
homogeneity in the coefficient of the quadratic term of 
the Hamiltonian. It is convenient to analyze such a mod- 
e l  by the renormalization-group method. It was shown 
in Refs. 8 and 9 that the fixed point (FP) of the Gell- 
Mann-Low (GML) equations, which is a character istic 
of the considered system, is  a stable foeus and is lo- 
cated at a finite distance from the origin of the phase 
plane. In such a magnet, the phase transition i s  there- 
fore not broadened a t  low values of the dislocation den- 
sity and potential. The calculations were performed by 
using a generalization of the &-expansion method, and 
the critical exponents were obtained in the form of ex- 
pansions in & and %, where &, is  the dimensionality of 
an extended defects. For simplicity, the renormaliza- 
tion of the Green's function was not taken into account, 
although it will be shown in Sec. 2, that the exponent q 
differs from zero already in the single-loop approxima- 
tion. In Sec. 2 we investigate this system within the 
framework of an approach close tothat of Ginzburg and 
f i rs t  used for the simple model of the Aq4 type.1° The 

D with dislocations of dimensionality d ' E d .  Owing to 
the anisotropy of the renormalization of the Green's 
function, the exponents 17 and v also turn out to be an- 
isotropic and a r e  connected with each other and with 
the other critical exponents by scaling relations that 
differ from the usual ones. 

The systems investigated so far contained only one of 
several defect types. In Sec. 3 we consider a magnet in 
which frozen-in point impurities a r e  added on top of the 
parallel discloations. It turns out that such a system, 
depending on the number of components of the order pa- 
rameter, can exhibit a different critical behavior. In 
Secs. 4 and 5 we consider two more realistic systems, 
in which the dislocations can be oriented in different 
directions. In Sec. 4 there a r e  three such directions 
and they a r e  mutually perpendicular. In Sec. 5 it is as- 
sumed that the number of the dislocation-orientation 
directions is large. 

2. PARALLEL DISLOCATIONS 

We introduce first  a model of a magnet with parallel 
dislocations. The effective Hamiltonian that describes 
a homogeneous magnet is of the form 

(la) 

a=l, . . . , n a r e  the numbers of the spin-variable com- 
ponents and Y is the nonrenormalized interaction con- 
stant. If the magnet contains defects, we must add to 
the Hamiltonian (la) the term 

where i is the number of the impurity. If the impurities 
a r e  pointlike, then the potential V(q)= V is independent 
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of the wave vector. It follows from the form of (lb) that 
all the order-parameter components interact with each 
impurity in like manner. 

Let the point defects be ordered along parallel lines 
that a r e  randomly distributed in the sample volume. It 
is assumed that the density c, of the linear defects in 
the cross section is much lower than the flow direction, 
and their potential V is low enough to be able to use the 
Born approximation. 

We shall use the standard diagram technique for im- 
purity systems." As shown in Ref. 8, for the model 
considered in this sectiona dashed impurity line cor- 
responds to the following expression: 

where d is the dimensionality of the extended defect, 
usually equal to unity, P: a re  different mutually perpen- 
dicular components of the wave vector and lie in the 
space of the d-dimensional defect. Here and elsewhere, 
unless specially stipulated, the indices I and twill label 
components of various quantities that a re  respectively 
longitudinal (i.e., parallel to the dislocations) and trans- 
verse. 

In the case of point impurities, the simplest mass-op- 
erator single-loop diagram that contains a dashed line 
is independent of the wave vector. In our model, how- 
ever, this diagram contains the 6-function (2), the pres- 
ence of which causes the mass operator I; to become 
dependent on the square of the longitudinal component 
of the wave vector even in first order. Since the cal- 
culations will be performed only in first order, the 
propagator can be represented in the form 

We introduce now the Green's-function renormalization 
constant 

a s  well as the transverse and longitudinal masses 

%rt"%ol-z ( 0 ) .  %:-&%1'. (5) 

We can now use in the theory the propagator 

G-'-Z,-lpl'+pl'+x,' 

- - ~ - ~ p : + p , ' + ~ , - ~ x : ,  (6) 

therefore 

G-'(p,'-0) - - p ~ + x l z .  

G-' ( ~ ~ ' - 0 )  -$-I (p:+x:). 

Some complication is now involved in the determina- 
tion of the invariant charges or  the renormalized ver- 
tices. The point is that, as will be shown below, when 
a propagator with x,  (6a) i s  used, the invariant charges 
must be defined differently than when (6b) is used. 
Therefore the GML equations and the expression for 
their fixed points have different forms in these two ap- 
proaches. This is not dangerous, since the FP are  not 
directly physical quantities. The expressions that con- 
nect the critical exponents with the values of the invari- 

ant charges in the PF of the GML equations are different 
in the case of calculations with x ,  than in calculations 
with x , .  We shall therefore have to consider both ap- 
proaches and verify that both lead to the same values 
of the critical exponents. 

We determine the invariant charges and require that 
in each perturbation-theory order the vertices be re- 
normalized inlike fashwn. We use first the theory vari- 
ant with the propagator (6a). The invariant charges a re  
then of the form 

where I' is a four-point vertex not cut along the dashed 
lines, and W is the impurity vertex. The external mo- 
menta of the vertices a r e  set equal tozero. The label t 
in the symbols for the invariant charges means that the 
theory considered is constructed with the propagator 
(6a). The numerical factors were introduced for con- 
venience. The powers of x ,  make it possible to make 
the GML equations dimensionless. The function J ( D )  
is  expressed in terms of the derivative of the integral 

The powers x and y can be easily obtained by consid- 
ering the single-loop diagrams included among the dia- 
grams of Fig. l. Substituting (6a) and (8) in the expres- 
sion for the simplest single-loop diagram with two Y in- 
teractions, we obtain 

The second factor in the left-hand side of this expres- 
sion appeared in the calculation of the integral with the 
propagator (6a). Therefore x=d/2. Analogously, esti- 
mating a single-loop diagram with two impurity lines, 
we obtain 

In contrast to (lo), the left-hand side of (11) doesnot 
contain a second factor, inasmuch the term Z a p :  drops 
out of the propagator (6a), owing to the 8 function(2) 
under the integral sign. Thus, y =O. It ia easy to veri- 
fy that equal powers x and y would be obtained by con- 
sidering any other diagram. In the upshot 

FIG. 1. One-loop diagrams that yield the contrlbutione to the 
GML functions of a magnet with defects of two types: a) ex- 
pansion terms of the vertex functions r, b and c) terms of the 
expansions of U and W. 
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To obtain similar results in the variant of the theory 
with x,, it is convenient to rewrite the propagator (6b) 
a s  follows: 

G-'-Z-'(p,'+Z,pl'+xl'). (1 3) 

We then obtain in place of (10) and (11) 
zl-= z2-(D-d) l z -  

I z12= (14) 

and a second such equation with y in place of x. There- 
fore - J ( D )  X I ~ - ' Z l - ( ~ - D + ~ ) 1 2  

r ( o ) ,  
D-&-dzl-(A-D+d)/Z 

(15) 
El - (2n) -*J (D-d )v .  w ( 0 ) .  

Before deriving the GML equations, we obtain first 
expressions for the critical exponents q and y. It fol- 
lows directly from (7a) that qt=O. To find the longitu- 
dinal component q, we must calculate a one-loop dia- 
gram with a dashed line, which contributes to the mass 
operator. Using the standard expressions," we obtain 

Since the GML equations yield in zeroth order 

diZl,, 4-D+d - 
-=- w1.1, a In x;; 

it follows that 

It follows from (7b) thatlo 

+%-xi', 

and in the second variant of the theory we have 

q1-2El. (20) 

To calculate the exponent q, i t  is necessary to substitute 
in (20) the value of iu, in the FPof the GML equations. 

On the other hand, (7a) leads to 

G-' (p,'=O) =$-I (p,'+Z,x,'), 

therefore 

21- (zI"'%~)*, 

z, -x*l(l-'/z' 
I 

From (23) and (18) it follows that the longitudinal com- 
ponent of the Fisher exponent 

Since it is seen from the form of the Hamiltonian that 
all the components of the field rp interact with the dis- 
locations in the same manner, it is clear that the criti- 
cal exponent y should be isotropic. As usual, to calcu- 
late y we use the Ward identity 

where ~ ( 0 )  is a renormalized three-point vertex calcu- 
lated at zero values of the outer momenta, and T 

" (T - Tc)/Tc. Therefore 

It follows from (25) and (26) that 

At the same time 

therefore 

There a r e  therefore two expressions for the exponent Y: 

In the single-loop approximation 

The only critical exponents that a r e  anisotropic a re  q 
and v. They a r e  connected with each other and with the 
other exponents by scaling relations that differ from the 
usual ones: 

The remaining relations coincide with the standard ones. 
Similar relations were obtained in the investigation of 
the Lifshitz critical point.'' 

Now, remembering the different definitions of the in- 
variant charges, it is easy to derive the GML equations 
for both variants of the theory. We begin with the vari- 
ant with x,. In this case, using (12), (18), and (25) with 
the Green's function (6a), we obtain 

where t~lnx;'. The pictures of the phase trajectories 
of the system (34) take the same form a s  in Refs. 8 and 
9. There a r e  four FP of Eqs. (34) on the (Y  ,, 6,) plane: 
Gaussian (0, 0), Heisenberg (3(4 - D)/(n +8), O), unphysi- 
cal (0, -(4 - D+d)/8), and the focus-type FP of interest 
to us: 

3 16-4D+8d+Dd-d' 
?c= (8-d)  n-2 (4+d)  ' 

(35) 
t (D+d-4) n+4(4-D+2d) 

w",- - 2 . 
(8-d)  n-2(4+d) 

It follows therefore that random degeneracy of the sys- 
tem (34) takes place a t  n = I  +3d/(8 -d). The FP (35) is 
stable and is located in the positive quadrant of the 
phase plane at 

It is assumed here that D s  4. We need only the upper 
of these two inequalities, since in our case it is mean- 
ingful to consider exclusively the dimensionalities D= 3 
and 4 and d= l .  

In the case D=4, d = l  our model is equivalent to the 
model of a pressure phase transition in a magnet with 
point impurities at zero temperature, which was intro- 
duced by ~hmel'nitskii.'~ Indeed, the role of Kmel'nit- 
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skii's fourth coordinate is played by the frequency o, 
and the 0 functions of the type (2) correspond in anum- 
ber of diagrams of our problem to the absence of the 
integral ]do from these diagrams in Ref. 14. 

Substituting (35) in (24) and in (30)' we obtain 
(D+d-4) n+4 (4-D+2d) 

qrk2 (12+D-d) +4d-4D ' (36) 

The remaining exponents can be easily obtained by using 
the scaling relations (33). 

The GML equations for the theory with x ,  can be de- 
rived by using (15), (la), and (25) with the Green's func- 
tion (6b): 

- - - 
ae, 4-D+d- (4-D+d) El ni-2 91E1'+4E12, 
-= . (38) 

at 3 3 

where now t lnu;'. From among the FP of the system 
(38) on the (?,,l,) plane only the unphysicalpoint (0, 
- (4 - D+d)/(4+D - d)) and the focus 

have coordinates other than the corresponding FP of the 
system (34). Substituting (39) in (30) and (31) we obtain 
expressions for q, and y, which agree fully with (36)and 
and (37). Thus, two different systems of GML equations 
have led to the same formulas for the critical expo- 
nents.' 

3. DISLOCATIONS AND POINT IMPURITIES 

Assume that the magnet contains, besides the parallel 
dislocations considered in Sec. 2, also frozen-in point 
impurities. We introduce into the employed diagram 
technique two sorts of impurity lines. The dashed lines 
correspond to averaging over the point defects, and the 
wavy lines to averaging over the extended defects. The 
impurity lines can also be made to correspond to the 
correlator of the coefficients in front of the quadratic 
terms in the Hamiltonian. In our case, the Fourier 
transform of such an operator takes the form 

which corresponds to the sum of the dashed and wavy 
lines. 

Considering the diagrams in different perturbation- 
theory orders, it is easy to verify that after "dressing" 
the impurity lines the structure of the correlator re- 
mains the same a s  in the zeroth order, namely: 

We can now separate the diagrams that contribute to the 
first term of this expression from the diagrams that 
contribute to the second term. It is then easy to obtain 

equations for the vertex functions r, U, and W. The 
right-hand sides of these equations correspond to the 
diagrams shown in Fig. 1. 

We use next the variant of the theory with x,. For 
brevity we shall omit the subscript t of u ,  u, and to in 
this and following sections. In addition to 7 and iir (12) 
we introduce also the invariant charge 

The system of GML equations now takes the form 

If we now put iir = O  in the system (41), then we obtain 
the GML equations for a magnet with point impurities 
only. On the other hand if we put u=O, then we arrive 
at the case of parallel dislocations. It must be noted 
that, generally speaking, one cannot put d=O in the sys- 
tem (41). The solutions of the GML equations with d= 0 
do not describe the critical behavior of a magnet with 
point impurities. The point is that the diagrams for the 
vertex W can be selected only in the presence of a term 
proportional to 

If d =0, then W= 0 and the 'system (41) assumes a convo- 
luted form with &-0. 

The longitudinal component of the Fisher exponent is 
calculated with the aid of (24), and the exponent Y is now 
expressed in terms of 7, ii, and &: 

n+2 - n+2 
7.. [I-? 9+.+e] "i+g9-8- . .  (42 

We shall not write out all the fixed points of Eqs. (41). 
Their relative position in the space of the invariant 
charges (y, ii,%) is shown in Fig. 2. From the directions 
of the phase trajectories near each FP on the figure, it 
is easy to determine its type. The initial representative 
point of the system is located near the unstable Gaussian 
FP (0, 0,O) and has positive  coordinate^?'^ The GML- 

FIG. 2. Disposition of the fixed points in the space of the in- 
variant charges at 4 ( 4 - D +  d ) / ( 4 - D  + 4d) < n C 4 .  The arrows 
show the directions of the phase trajectories near the FP. 
When n changes from 4(4-D+ d ) / ( 4 - D  + 4d) to 4 ,  the FP 8 
shifts from FP 6 to FP 7. 
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equation phase trajectories shown schematically in Fig. 
2 a r e  such that for any taO the representative point does 
not reach the F P  3, 4, o r  5. We a r e  therefore interest- 
ed only in the Gaussian point 1, the Heisenberg point 2, 
and the impuritygoints 6, 7, and 8. The coordinates of 
the Khmel'nitskii point 6, which is peculiar only to a 
point with only point impurities,lSs a r e  

The F P  7 was investigated in Sec. 2, and the F P  8, pos- 
sessed by a system with defects of two types, has the 
coordinates 

(4-D) (4-d) +12d-6 
9=3 

(4-3d) n+32 

At 1+3(4 - D)/(4 - D+d)<n<4 (see Fig. 2), this F P  is 
stable. The focus 7 is in this case unstable for the di- 
rection of P, while the F P  6 and the Heisenberg points 
a r e  saddles. The representative point therefore reach- 
e s  ultimately the vicinity of the F P  8. The critical ex- 
ponents of the considered system differ then from the 
exponents of a magnet with only one type of defect. 

At n > 4  the coordinate ii, of the eighth F P  reverses 
sign and it becomes unstable, FP 7 is transformed into 
a stable focus, and F P  6 goes off below the Heisenberg 
point which, however, remains unstable. Thus a t  n>4 
the representative point arrives a t  the vicinity of F P  7 
and the critical exponents of a magnet with a mixture 
of defects of two kinds coincide with the exponent of a 
material having dislocations only. 

At n*1+3(4- D)/(4-~+4d) ,  i.e., a t  n = l ,  $,<O and 
FP 6 is a stable node. Therefore the exponents of the 
investigated system coincide with those of a magnet 
having only point impurities. 

The phase trajectory that leads to a stable F P  is de- 
termined by the initial position of the representative 
point of the system of the GML equations (41) (%,Po,%,), 
i.e., by the nonrenormalized constants of the Hamilto- 
nian and by the densities of the defects. Without writing 
down the concrete estimates for these quantities, since 
usually the densities and the potentials of the defects 
a r e  unknown, we consider, for example, the case Yo 
>>G0>>ii0. Let 4 ( 4 - D + d ) / ( 4 - ~ + 4 d ) a n < 4  (see Fig. 2). 
Then the representative point from the vicinity of the 
Gaussian FP lands in the vicinity of the Heisenberg FP, 
approaches next F P  7, and only then does it come near 
the stable F P  8. Thus, a s  T, is approached, the criti- 
cal  exponents occupy in succession values correspond- 
ing to FP 1 (the exponents of the mean-field theory), 
F P  2 (the exponent of a pure isotropic magnet), FP 7 
(the exponent of a magnet with parallel dislocations), 
and F P  8 (the exponents of a magnet with defects of 
both types). The relative magnitude of each tempera- 
ture interval in which exponents have particular values 
a r e  determined by the relations between Yo, Tio, and Go. 
The corrections that must be introduced in the scaling 

laws because of the presence of focus F P  a r e  oscillat- 
ing functions of the t e m p e r a t ~ r e . ' ~ ' ~ ' ~  

It is easy to understand how the system approaches T, 
also a t  other relations between Yo, Po, and Go. At Yo 
zTiOz%, the representative point shifts from the Gaus- 
sian F P  directly to F P  8. The expressions for the cr i -  
tical exponents corresponding to this F P  will be given 
in Sec. 6. 

4. DISLOCATIONS ORIENTED IN THREE 
DIRECTIONS 

Assume that the dislocations in the magnet can have 
not one direction, a s  in Secs. 2 and 3, but three mutual- 
ly perpendicular directions. It can be shown that in this 
case the correlator of the variations of the coefficients 
in front of thequadratic term of the Hamiltonian is of 
the form u+w,6(kx)+w26(k,)+w,6(k,). The first  term in 
the sum corresponds to point impurities. In this and 
following sections we put D=3 and d =  1. Fortunately we 
shall not have to deal with the five-charge theory. It i s  
easily seen that the GML equations a r e  symmetrical 
with respect to permutations of GI, G2, and fi,. We a r e  
interested only in FP of these equations with positive 
coordinates. It follows from the indicated property of 
the GML equations that a t  this F P  8, = iir2=GS. The F P  
is  here either stable along each of the three axes (GI, 
G2,h,) of the phase space, or, conversely, is unstable 
in all  these directions. We can therefore seek this F P  
by using the correlator2 u +w (6(kx)+6 (k,)+ 6(k,)). The 
theory now involves three and not five charges. 

The exponents v and of the considered magnet, in 
contrast to the systems investigated in Secs. 2 and 3, 
a r e  isotropic. In accord with Eqs. (12), (15), and (40), 
the invariant charges a r e  determined in the following 
manner: 

In the employed diagram technique, we relate to the 
correlator introduced above the sum of four impurity 
lines: one dashed and three wavy ones with exponents 
x ,  y, and z. Considering single-loop diagrams that con- 
tribute to the three-point vertex, we obtain an expres- 
sion for the exponent 

n+2 
7=1+-v-f-3w". 

fi (45) 
The sum of the three single-loop diagrams with wavy 
lines x ,  y, and zdetermines the Fisher exponent: 

q=2z~". (46 

We write down now the system of GML equations: 

8~ I n+8 
+=-p--92+6'yE+1@w", 

at 2 6 

4ii 1 n+2 
A=_- 

9 
u--pii+4fz+16iiw"+ -nGa, 

at 2 3 2 (47) 

8% n+2 
=w" - - ~Q+2Hv"+63, 

at 3 

where tzlnx". The single-loop diagrams that contri- 
bute to the GML functions a r e  shown in Fig. 3. Particu- 
lar  interest attaches to diagrams that a r e  cut through 
wavy lines having different exponents. The final expres- 
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FIG. 3. One-loop contributions to the GML functions of a mag- 
net with linear defects oriented along three directions. a, b. cl . . 
diagrams whose sums yield respectively V a t ,  au"/at, and 
aivat .  

sions for them do not contain 6 functions, and contri- 
bute therefore to the right-hand side of the equation 
for3) aG/a t .  This contribution leads to the appearance 
of ii + 0 even if the unrenormalized u =O. 

The coordinates of the F P  of interest to us, that of 
Eqs. (47), i s  determined by the expressions 

This F P  i s  located in the region of positive 7, Z ,  and 5 
and is stable a t  n > t  (we do not consider very large 4. 
At n<+ it drops below the Khmel'nitski~ point that is 
typical of systems with point impurities, and which be- 
comes stable. Therefore a t  n= 1 the critical exponents 
of our system coincide with the exponents of a magnet 
with point impurities. The numerical values of the in- 
variant charges in the F P  (48) a t  certain values of n a r e  
listed in Table I. The 17 corresponding to them a r e  list- 
ed there, too. To obtain the exponent Y, it is in princi- 
ple not necessary to calculate &. It suffices to substitu- 
t e  the expressions obtained for 7 and ii from (48) and 
(45). Through a fortunate cancellation we obtain Y= $ 
for all a>$. 

- 

TABLE I. Values of the in- 
variant charges and of the 
critical exponent tj at the FP 
(42). 

5. RANDOMLY ORIENTED DISLOCATIONS 

It is assumed in this section that the number m of di- 
rections along which the dislocations a r e  disposed in the 
magnet i s  large. The expression for the correlator of 
the variation of the coefficient that precedes the quad- 
ratic term of the Hamiltonian i s  now of the form 

"9 

u+w z ~ ( k n 0 ,  
i 

where {no is a system consisting of a large number m 
of unit vectors whose end points a r e  uniformly distrib- 
uted over the surface of the unit sphere? 

In contrast to the preceding section, the diagram tech- 
nique involves now not three but m different wavy lines 
with exponents {a). For convenience we replace in the 
formulas that follow mi3 by ii~. Then 

q-a/aw", ~ = l +  (n+2)q/6-5-5.  (49) 

An examination of Fig. 3 shows readily which diagrams 
determine in the single-loop approximation the GML 
functions. We retain in the right-hand sides of the GML 
equations only the principal terms in m. The contribu- 
tion to W / a t  from diagrams with two wavy lines can be 
calculated by replacing the sum of the diagrams by an 
integral over the-angles swept by the unit vectors in,). 
The result is the following system of GML equations 

aii I n+2 
----r=-u"-- 
at 2 3 qu" 

These equations do not contain m explicitly, since it has 
been successfully combined with the invariant charge i2. 

The coordinates of the needed F P  of the GML equations 
(50) a r e  determined from the following equations: 

w"= {a1+ (216n-345.6) b)"-a 
2b 

a=84nz+192n-38.4, (51 
b- [67.5nZ-358.41 nZ+ [108n2-588.81 n+43.2nz-204.8, 

q = ( 1 5 - - 8 G ) / ( 5 ~ + 4 ) ,  i i=(9-14Qn-I6G)/3(5n+4) .  

At n<f  the Khrnel'nitskii point i s  stable, and the in- 
vestigated system has the same exponents a s  a magnet 
with point impurities. At n>5,  the FP  (51) is in the re- 
gion of positive invariant charges and i s  stable. Table 
11 gives the coordinates and critical exponents 11 and Y 
corresponding to the FP  (51) for certain n. 

TABLE 11. Coordinates of FP (46) 
and circtical exponents q and Y .  
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6. DISCUSSION 

In Secs. 2 and 3 the values of D and d were in general 
not fixed. The expressions for the critical exponents, 
other than q, and v,, of the system investigated in Sec. 
2 go over a t  d=O into the formulas for the exponents of 
a magnet with point impurities. Magnets with parallel 
linear defects were investigated in Refs. 8 and 9 by the 
method of & and C, expansions. These expansions can 
be  obtained for the critical exponents also from the for- 
mulas of the present paper, by expanding the corre- 
sponding expressions in terms of & '4 - D and &,Ed. 
For example, for the model introduced in Sec. 3 we 
have a t  4(&+&,)/(& +4&,) < n <  4 

Since some of our systems degenerate randomly a t  n  
-1, the critical exponents of these models a s  obtained 
in the one-loop approximation a r e  too large. We can 
then take seriously only the qualitative conclusions of 
the theory. It is possible that in the higher orders the 
F P  will move closer to the origin of the phase plane and 
the results will improve. Allowance for the higher or- 
ders  can also shift somewhat the limiting n a t  which a 
transition takes place from one critical behavior to an- 
other. Unfortunately, calculations in the multiple- 
charge theory become difficult on going beyond the sin- 
gle-loop approximation. 

Let us touch upon briefly on two features that a r e  char- 
acteristic of all  the models investigated above, a s  well 
a s  for a magnet with point impurities. First, the expo- 
nent a < 0, a s  can be easily verified by substituting the 
expressions of this paper for the exponents 17 and y into 
the corresponding scaling relations. Second, if the un- 
renormalized charges a r e  in the regions ?<< ii o r  ?<<% 
of the phase space of the GML equations, it i s  usually 
a s s ~ r n e d ~ " ~  that the phase transition i s  smeared out. 

In addition to the defects studied above, one can con- 
sider also linear defects produced by random fields. In 
this case a term linear in (p is added to the Hamiltonian. 
Proceeding in this manner it can be shown, a s  in Refs. 
16 and 17, that the upper critical dimensionality of the 
model increases to 7. In the tricritical point, the log- 
arithmic dimensionality of such a model is  6. 

We now discuss, in conclusions, the systems to which 
the results of the present article can be applicable. Un- 
fortunately, the author knows s o  far  of no experiments 
in which a change in the critical behavior of magnets 
was observed and which might be quite reliably attrib- 
uted to  the presence infact of extended defects. In some 
studies (see, e.g., Ref. 20), they investigated experi- 
mentally the influence of dislocations on a first-order 
phase transition close to second-order in ferroelectrics. 
Condensation of the asymmetrical phase on dislocations 
was observed there somewhat above the transition tem- 
perature of the pure material. A theory that describes 
such systems shoul! be constructed in analogy with the 
theory of Dubrovskii and Krivoglaz; in which the dis- 
location produce around themselves large-scale in- 

homogeneities. Linear,defects with short-scale inhomo- 
geneity in the transverse direction might be produced 
by bombarding a thin magnetic plate with a beam of 
heavy ions from an accelerator. This would produce a 
high density of linear defects oriented in one o r  several 
directions. In the former case it'is seen from the re- 
sults of Secs. 2 and 3 that the critical exponent v, < v, 
and the anisotropy of the system increase a s  T, is  ap- 
proached. This increase of the degree of anisotropy 
might be observed in neutron-scattering experiments o r  
in measurements of the electric conductivity. We note 
finally that a numerical computer experiment for the 
system considered in Sec. 1, a t  n = l  and D= 3, is even 
easier to perform than for a three-dimensional Ising 
model with point defects. In this case the linear defects 
can constitute lines made up of spins that differ in mag- 
nitude from the spins in the other latter sites, but not 
smaller than zero. Also possible a r e  lines of bonds that 
differ by a certain amount from the remaining ones (the 
signs of the bonds must not change). Such a computer 
experiment i s  of great interest. After all, it was com- 
puter simulation that has clearly confirmed (see, e.g., 
Ref. 21) that, according to Refs. 1-3, frozen-in point 
impurities do not smear  out a second-order phase tran- 
sition. 

The approach used in the present paper can be gener- 
alized to include also other systems in which only ef- 
fects due to the presence of point defects have been in- 
vestigated s o  far. For example, a corresponding gen- 
eralization i s  possible for the problem of the conductivi- 
ty of a metal with point i m p u r i t i e ~ . ' ~ " ~  
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Khmel'nitskii, B. N. Shaleev for discussions. 

') The critical exponents can be calculated in principle not 
from formulas (24), (30), and (31) but from simpler expres- 
sions obtained by them by expanding q ,  and y in terms of 
the invariant charges. Then qiFJ2&l,t andY=l+g ,+  The 
exponent values obtained in different approaches will then 
differ somewhat. The smaller the invariant charges, how- 
ever, the less the relative differences between the results of 
the two variants of the theory. 

') This can be verified also without resorting to such argu- 
ments, and by simply checking that the stability of the FP - - 
w ,  = to2 = Ds is not altered by small additions 6g1 to E. 
We note that the appearance of numerical coefficients such 
as r even in the one-loop approximation is very rare in the 
case of the GML functions. 

') The vector directions can also be random. 
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