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A variational method is used to calculate the electrical resistivity tensors of electrons and holes in bismuth, 
governed by the scattering on phonons in the temperature range 0.1 < T 18%. The electron constant-energy 
surface is approximated by three triaxial elliposids, whereas the hole surface is represented by an ellipsoid of 
revolution; according to Korenblit [Sov. Phys. Semicond. 2, 1192 (1969)], the phonon spectrum is anisotropic. 
It is shown that the temperature dependence of the phonon electrical resistivity of electrons is linear at 
T > 6% but obeys p' a T5 at T c 0.15"K. In the intermediate range 0.15 < T c 6°K the temperatwe 
dependence of the resistivity is not described by a power law. In particular, it is shown that bismuth does not 
satisfy conditions under which the phonon resistivity would depend quadratically on temperature. The 
calculated temperature-dependent component of the resistivity is in good agreement with the experimental 
results of Uher and Pratt [Phys. Rev. Lett. 39,491 (1977)l in a wide range 0.15 < T <4K. 

PACS numbers: 72.10.Di. 72.15.Eb 

INTRODUCTION with decrease in temperature and that it is impossible 

In spite of the fact that much work has been done on 
the transport phenomena in bismuth, it is st i l l  not 
clear which mechanism governs the temperature- 
dependent component of the resistivity p f  at low tem- 
peratures. It is usual to that in the range 
1.5-4.5% the resistivity rises with temperature approxi- 
mately a s  p. The same dependence is observed also 
in the range 5-17°K but the coefficient of proportional- 
ity is different. Various explanations of the nature of 
this dependence have been proposed. 

Gantmakher and ~ e o n o ?  drew attention to the fact 
that the dependence p  = la may be due to the electron- 
phonon scattering i f  the constant-energy surface is a 
cylinder. Since in the case of bismuth the constant- 
energy surfaces of electrons can be regarded approxi- 
mately a s  strongly elongated ellipsoids, Gantmakher 
and Leonov suggested that these dependences a re  due 
to the electron-phonon scattering in bismuth and, there- 
fore, the resistivity of bismuth at T <  4.2"K is-in their 
opinion-due to this type of scattering. 

cheremisin6 calculated the average (over the angles) 
relaxation time of electrons interacting with phonons in 
bismuth, whereas Medvedev, Kopylov, and Mezhov- 
Deglin7 determined the temperature dependences of the 
mean free paths of electrons and holes relative to scat- 
tering by phonons a t  T >  1°K The results obtained in 
Refs. 6 and 7 were in qualitative agreement with the 
experimental data from Ref. 8, according to  which the 
dependence of the resistivity on T in the range 1.3-7°K 
is best described by p f =  ~T'*~*O.'. On the other hand, 
the quadratic temperature dependence of the resistivity 
was attributed in Refs. 5, 9, and 10 to the electron-hole 

to describe the temperature dependence of p r  throughout 
the range 0.03 < Tc 4°K by a power law. Consequently, 
the resistivity is not due to the electron-hole scattering, 
but most probably due to  the intravalley scattering of 
carr iers  by phonons. However, the attempt of Uher and 
~ r a t t "  to describe their dependences using the Bloch- 
Griineisen formula for the phonon resistivity was only 
partly successful. They used two adjustable parameters 
and obtained agreement with the experimental results for 
a polycrystalline sample at T <  1°K. However, a good 
agreement was not obtained for single crystals. 

Kukkonen" tried to  explain the results of Uher and 
Prattl' by approximating the electron ellipsoids with 
cylinders of finite length (the phonon spectrum and the 
electron-phonon interaction were assumed to be isotrop- 
ic). He used two adjustable parameters and achieved a 
good agreement with the results of Uher and ~ r a t t "  
for two samples at T >  0.5% 

However, there i s  no need to adopt these simplifica- 
tions since the parameters of the electron, hole, and 
phonon spectra, as  well a s  the deformation potential 
constants of bismuth a r e  well known, s o  that the tensor 
describing the resistivity of bismuth due to the intra- 
valley scattering by phonons can be calculated in a 
much more realistic approximation than those adopted 
earlier. 

Such a calculation is reported below. We determined 
the phonon resistivity of electrons and holes in the 
range 0.1-8°K. This allowed us to dispense with the 
adjustable parameters and still obtain a satisfactory 
agreement with the experimental results of Uher and 
Pratt" in a wide temmrature range 0.15-4OK where the 

scattering. 
- 

resistivity changed by almost four orders of magnitude. 
The problem became much clearer when Uher and We also found that the model of cylindrical constant- 

~ r a t t "  determined the resistivity of bismuth for five energy surfaces' describes bismuth poorly and the quad- 
samples at infralow temperatures down to T =0.03"K. ratic temperature dependence of the resistivity which 
Their results showed that at sufficiently low tempera- follows from this model applies only in a very narrow 
tures the resistivity decreases faster than quadratically temperature range. 
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1. MODELS OF ELECTRON, HOLE, AND PHONON 
SPECTRA 

The Fermi surfaces of electrons and holes in bismuth 
a r e  well known.13 The electron surfaces a r e  three quasi- 
ellipsoids, which transform into one another on rotation 
by 120" about the trigonal (2) axis of the crystal. One 
of the quasiellipsoid axes coincides with the binary (X) 
axis of the crystal, whereas the other two axes a r e  
rotated by an angle q = 6" relative to  the crystallographic 
axes. The experimentally determined volume of the 
electron surface i s  V, = 14.66 x lodS g3 cm3 sec", 
which corresponds to an electron density n =3.02 x lo" 
~ m - ~ .  Sections of the electron surface by planes per- 
pendicular to the major (2) axis of the quasiellipsoid a r e  
very nearly  ellipse^.'^"^ The sections perpendicular 
to  the other axes differ slightly from the elliptical 
shape. However, a s  shown in Ref. 13, the electron 
Fermi  surface of bismuth can be described (with an 
average r m s  e r r o r  of 1.2%) by the following ellipsoid: 

where p,, = 0.564 x pZo = 8.405 x 10"', and fi,, 
= 0.743 x lo-" g . cm . sec-'. 

The electron spectrum is strongly nonparabolic. It 
is at present assumed that among the relatively simple 
models of the electron spectrum is bismuth, the best 
description of the electron surface is given by the Cohen 
model.'' In this model the tensors of the effective masses 
on the Fermi surface depend on the position of a given 
point. However, since a consistent calculation of the 
electrical conductivity allowing for the anisotropy of the 
spectrum of the particles and phonons can be made only 
in the case of ellipsoidal constant-energy surfaces and 

since the electrical conductivity of a degenerate elec- 
tron gas is governed (in the case of ellipsoidal constant- 
energy surfaces) by the masses on the Fermi  surface, 
we shall approximate the electron spectrum by 

PI' p f  pi' 
e--+-+- 

2mi 2m2 2ms ' 

where m, a r e  the masses on the Fermi  surface (the 
nonparabolicity is allowed for in the values of the 
masses). We shall assume that the masses m, have the 
values given in Ref. 15: 

Naturally, for this electron spectrum we can expect 
a significant e r r o r  in the calculation of a,,, but since 
m, is large compared with m, and m,, the value of a,, 
is small and this introduces no significant e r r o r  in the 
total electrical conductivity. 

In contrast to the electron spectrum, the hole spec- 
trum is parabolic. The constant-energy surface is 
then an ellipsoid whose revolution axis coincides with 
a crystallographic axis. The hole masses a r e  MI, 
=0.69m0, M, =0.064m0. The phonon spectrum for bis- 
muth can be taken from Ref. 16.'' 

2. ELECTRICAL CONDUCTIVITY TENSOR 

The matrix elements of the interaction between elec- 

trons and phonons a r e  

Here, V is the volume of the crystal and D;:: a r e  the 
tensors of the deformation potential constant for elec- 
trons and holes. The published17-l9 experimental values 
of these constants a r e  consltent.  We shall use the con- 
stants from Ref. 18: 

The transport equations for electrons and holes were 
solved by the variational method in the one-moment 
approximation. We shall omit the cumbersome inter- 
mediate stages (similar calculations were reported in 
Ref. 20 for an ellipsoid of revolution) and give only 
the final expressions for  the electrical conductivity due 
to electrons and holes. 

a) Electrons 

The diagonal (in terms of the mass ellipsoid axes) 
components of the tensor representing the electrical 
condudivity due to  electrons belonging to one quasi- 
ellipsoid can be described, with an accuracy to  within 
terms of the order of sin2 77 - by 

where . 16pn'h'mm 
Ti* = 

(koT) 'mlmzFti 

a r e  the "effective relaxation times," and 

F,, =x d ~ d , ' & )  (f)c,-5(f)Is(8'a'(f)/T). 

Here, f is a unit vector in the direction of the phonon 
quasimomentum. The quantities c,(f) represent the 
phonon velocities in a "deformed" coordinate system 
in which a constant-energy ellipsoid transforms into a 
sphere. The quantity n(,OL)(f) describes the angular 
dependence of the matrix element of the electron-phonon 
interaction in terms of these "deformed" coordinates. 
The function z,[B(~)(~)/T] represents generalization of 
the Bloch integral: 

e(")rr)m 

8'") (f) -2c. (f)pJO/kO. (8) 

Ignoring the angular dependence of the phonon velocity, 
we can obtain the following values of the minimum and 
maximum characteristic temperatures da) (Table I). 

In the case of an prolate ellipsoid the function I ,  de- 
pends considerably on the angles and, in the final 
analysis, this al ters greatly the temperature depen- 
dence of the electrical conductivity compared with that 
expected for an isotropic spectrum. If the spectra of 
electrons and phonons a r e  isotropic, Eqs. (4)-(8) yield 
the usual expression for the low-temperature electrical 
condudivity of a degenerate electron gas. 

The total electrical conductivity due to  electrons is 
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TABLE I. 

found by summing over the ellipsoids: 

Here, X, Y, and Z a r e  the crystallographic axes. 

In general, C,, and Czz include terms proportional 
to the nondiagonal (in terms of the mass ellipsoid axes) 
component of the electrical conductivity tensor, which 
differs from zero because the ellipsoid axes a r e  rotated 
relative to the crystallographic axes. However, the 
contribution of the corresponding term in Z,, is pro- 
portional to sin2 77.  Therefore, we shall omit it together 
withother terms proportional to sin2 7. 

b) Holes 

In this case we have 

o ~ , l l = n e z ~ ~ , s / ~ L , u .  (10) 

z:,,=i6pn'h7~,nl (koT)5MLz0,,~~, (11) 

Holes do not interact with a polarization wave 1. The 
quantities hLa)(f) and s,(f) have the same meaning a s  
Af(f) and c,(f ), and we also have 

8'"' ( f )  =2s,(f)paoh/ko. (13) 

Table I1 gives the minimum and maximum values of 
du) for holes. 

3. RESULTS OF NUMERICAL CALCULATIONS. 
COMPARISON WITH THE EXPERIMENTAL DATA 

The electrical conductivities of electrons and holes 
were calculated using Eqs. (4)-(13) for the range 
0.1-8°K using the parameters in Secs. 1 and 2. 

Figure 1 shows the temperature dependences of the 
electrical conductivities of electrons and holes along a 
threefold axis and in the basal plane. 

It follows from Eqs. (4)-(8) that at low temperatures 
such that T << emin ,  the electron conductivity reaches 
the low-temperature asymptote oCa T-'. It is clear 
from Fig. 1 that this asymptote applies at T <  0.15"K. 
It follows from the same formulas (4)-(8) that in the 
temperature range T>> e z ? t h e  high-temperature asym- 
ptote oe ET" begins to apply and-according to Fig. 1- 
this occurs at temperatures T >  6°K. Thus, the inter- 

TABLE 11. 

FIG. 1. Temperature dependences of the electron (1) and hole 
(2) electrical conductivities. The continuous curves represent 
the conductivityalong the axisof a crystal and the dashed curves 
the conductivities at right-angles to the axis. The straight 
lines represent the power-law dependences identified in the 
figure. 

mediate range corresponds to a change in temperature 
by a factor exceeding 40. For comparison, we shall 
mention that in the case of an isotropic metal this inter- 
mediate range is much narrower. It corresponds to a 
change in temperature by a factor of 8-10 (Ref. 21). 
Strictly speaking, the electron conductivity falls on in- 
crease in T faster than T" right up to the maximum 
characteristic temperature of Eq. (a), which-accord- 
ing to Table I-is 8 ~ ~ , = 3 1 ° ~ .  However, in practice the 
conductivity contribution of electrons with large mo- 
menta which a r e  scattered through small  angles be- 
comes unimportant at much lower temperatures. 

It is impossible to find a reasonably wide tempera- 
ture range in which the conductivity would vary in ac- 
cordance with the power law. It is clear from Fig. 1 
that this applies also to the dependence o' a T", which- 
according to Gantmakher and Leonova- should be 
obeyed by bismuth. It is shown in the Appendix that 
this dependence holds only at temperatures satisfying 
a strong dipole inequality em,,<< T << ern,, However, 
even in the case of a strongly prolate electron ellipsoid 
of bismuth the ratio of the characteristic temperatures 
is 0::~/8,!,$- 13, so that the above inequality cannot be 
satisfied too well. The existence of two characteristic 
temperatures em,, and em, has only the effect that the 
transition between the high- and low-temperature 
asymptotes is extended over a much wider range than 
in the isotropic case. 

At the lowest temperatures the hole conductivity does 
not differ greatly from the electron conductivity. How- 
ever,  since the minimum characteristic temperature 
of holes 8 2 ; = 2 . 4 " ~  is greater than the minimum tem- 
perature of electrons 8kJ= 1.2"K, it follows that oh 
decreases with temperature faster than o* and right up 
to T-0.4"K the hole conductivity obeys o ' a ~ ' ~ .  There- 
fore, at T >  1°K the contribution of holes to  the conduc- 
tivity of a crystal is less than 2@. 

Figure 2 shows the temperature dependence of the 
conductivity anisotropy for one electron ellipsoid. In 
accordance with the qualitative results obtained in the 
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FIG. 2. Temperature dependences of une/urie: 1) ud/u3Jg; 
2) u,,e/u,,.. 

Appendix, at low temperatures the ratios u,,/ull and 
o,/u, a r e  of the order of unity, but at higher tempera- 
tures these ratios decrease rapidly and at T- 4-6°K 
they a r e  of the order of rn,,/m,,. 

We shall now compare our results with the experi- 
mental data. We must bear in mind that at low tem- 
peratures the carr iers  a r e  scattered mainly by defects. 
According to the Matthiessen rule, the resistivity for 
the s-th group of carr iers  is 

ri!') = (0;:) )-I+ (8:;) )-I, (14) 

where (a,,)-' and (5,,)-' a re ,  respectively, the diagonal 
components of the phonon and residual resistivities. 
We recall that the nondiagonal components a r e  propor- 
tional to sinZq and, therefore, can be omitted. 

If we calculate the conductivity for each group, sum 
over all the groups (three electron ellipsoids and one 
hole ellipsoid), and calculate the residual resistivity 
which is 

we obtain the temperature-dependent part of the resis-  
tivity p r :  

pi,= 

=p,,- ( P I I ) ~ ~ ~ =  
r-l 

Since the residual resistivity of holes is considerably 
greater than that of electrons (according to the experi- 
mental data of Ref. 22 the scattering of holes by impur- 
ities is at least 15 times stronger than the scattering 
of electrons), we can ignore the contribution of holes to 
Eq. (15). Moreover, since m, >> m,, m,, we can expect 
that 3, << B,,, 5,,, and we can also ignore the contribution 
of the corresponding component of the conductivity. 
Finally, we find from Eq. (15) that 

The resistivities p L  and p& a re  those quantities 
which we shall compare with the experimental data. 

The temperature dependence of the total resistivity 

FIG. 3. Temperature dependences of the transverse resistiv- 
ity. The continuous curve is  theoretical and the symbols are 
the experimental results: 0) sample No. 2 ( 8  = 90"); sample 
0 )  sample No. 5 (9= 79"); A) sample No. 1 ( 8  = 85*). 

of a crystal  p& is shown in Fig. 3. This  figure includes 
also the experimental results from Ref. 11 obtained2) at 
T a 0.15"K for sample No.2 oriented at an angle 9 =90° 
to the trigonal axis of the crystal, and for samples Nos. 
1 (9 = 85") and 5 (8 = 79"). In view of the slight difference 
between the orientations of these samples, the phonon 
resistivities should be practically the same. However, 
the experimental results  for sample No. 2 differ from 
those for samples Nos. 1 and 5 at Tc 0.4"K. The res is-  
tivity of sample No. 2 decreases with decrease in tem- 
perature much more slowly than the resistivity of 
samples Nos. 1 and 5. Since the resistivities of the 
latter two samples a r e  identical in the range T> 0.25"K 
and differ only slightly at T <  0.25"K, it is reasonable 
to compare the theory with the experimental results 
for these two samples. We can see  that the theory (the 
theoretical curves a r e  identical for a l l  three samples) 
agrees well with the experimental results  throughout 
the range 4 >  T >  0.15"K. 

Figure 4 shows the theoretical and experimental 
results for example No. 3 oriented at an angle 9 =49" 
to the trigonal axis. The agreement between the theory 
and experiment is fully satisfactory at T <  4°K. 

/ 

Figure 5 gives the theoretical and experimental results  
for a polycrystalline sample. In this case the theory 
agrees satisfactorily with the experimental results only 
in the range 0.6< T <  5°K At lower temperatures the 

FIG. 4. Temperature dependence of the resistivity of sample 
No. 3 (9 = 49"). The continuous curve i s  theoretical and the 
points are the experimental values. 
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intervalley scattering of electrons and holes begin to 
play a role in the same temperature range. 

4. CONCLUSIONS 

It is clear from the analysis given in the preceding 

FIG. 5. Temperature dependence of the resistivity of a poly- 
crystalline sample. The continuous curve is theoretical, the 
points are the experimental values, and the dashed curve is 
calculated on the basis of the Bloch-Griineisen formula with 
lhe parameters from Ref. 11. 

experimental resistivity falls with decrease in tempera- 
ture faster than the theoretical value. However, at low 
temperatures the experimental results for a polycrys- 
talline sample disagree not only with the theory but also 
with the data for sample No. 3. Since the resistivity 
anisotropy of this crystal is slight, the phonon resis-  
tivities of the polycrystalline sample and of sample No. 
3 should be almost identical. However, a comparison 
of Figs. 4 and 5 shows that in the range T <0.4"K the 
resistivity of a polycrystalline sample is considerably 
less than the resistivity of sample N0.3. 

It is natural to assume that the phonon component 
of the resistivity can be identified much more reliably 
for a single crystal than for a polycrystalline sample, 
so  that the discrepancy between the theory and experi- 
ment at ultralow temperatures observed for sample No. 
4 is mainly due to the fact that the phonon resistivity of 
the polycrystalline sample is not separated sufficiently 
reliably. 

The following comments can be made in this connec- 
tion. If, using the adjustable parameters from Ref. 11, 
we calculate the resistivity using the Bloch-Griineisen 
formula, we obtain the dashed curve shown in Fig. 5. 
The intermediate range of temperatures on this curve 
is, as  expected, narrower than for the continuous curve 
and the asymptote p'mT5 begins at higher temperatures. 
This is why the isotropic model can describe satisfactor- 
ily the results of Ref. 11 for polycrystalline samples 
at T <  1°K. 

Unfortunately, it is not possible to  determine reliably 
the resistivity anisotropy from the experimental results 
because of the lack of measurements of p& and pzz on 
the same sample, and the results obtained for different 
samples disagree. Nevertheless, an analysis of the 
experimental angular dependence of the resisitivity leads 
to the conclusion that the ratio ( p ~ z / p ~ ) , , ,  depends 
weakly on temperature andvaries within the range 1-1.3. 
The theoretical ratio lies within the range 1.1-1.2. 

It is clear from Figs. 4 and 5 that at temperatures T 
> 4°K the resistivity due to the intravalley scattering of 
electrons r ises  with temperature much more slowly 
than the experimental value. We may assume that the 

section that the resistivity of bismuth due to  the 
intravalley scattering of carr iers  by phonons may be 
calculated with an  accuracy sufficient to ensure a good 
quantitative agreement with the experimental results in 
a wide range of low temperatures 0.15 < T <  4OK. In the 
range 0.4< T <  4OK the agreement is good for all  the 
samples, whereas at temperatures 0.15 < T < 0.4"K it is 
good for three out of five samples investigated in Ref. 
11. 

The fact that the experimental data for the phonon 
resistivity of samples of almost the same orientation 
differ very strongly from one another also a t  T <  0.4"K 
shows that the separation of the phonon component of the 
resistivity from the total value given in Ref. 11 is not 
fully reliable and this may be due to  the presence of dis- 
locations in the samples. In our opinion, this is one of 
the main reasons why the theory and experiment do 
not always agree at ultralow temperatures. 

The remaining discrepancies may also be due to 
simplifications made by us in the models of the elec- 
t ron and phonon spectra. Refinement of these models 
may alter  somewhat the whole temperature dependence 
of the resistivity in the intermediate range of tempera- 
tures. 

Finally, we recall that the Matthiessen rule for the 
total resistivity of bismuth is obeyed, a s  indicated by 
Eqs. (15) and (16), only approximately even in the ab- 
sence of dislocations. However, it is at present impos- 
sible to apply directly Eq. (15) t o  calculate p' because 
this requires the knowledge of the total residual resis-  
tivity tensors of electrons and holes. It would be highly 
desirable to  determine experimentally these tensors. 

The authors a r e  grateful to Prof. C. Uher for supply- 
ing tabulated experimental results. 

APPENDIX 

We shall consider qualitatively the temperature de- 
pendence of the electrical conductivity tensor for one 
ellipsoid using the following simplified model. Firstly, 
we shall assume that the phonon spectrum is isotropic. 
Secondly, we shall replace a triaxial electron ellipsoid 
with an ellipsoid of revolution characterized by m ,  - 
= s, mll=m,; P,,==, Pllo =Ao. Finally, we 
shall assume that D, = m, Dl, =D,,. In this approxi- 
mation the electron resistivity d ie  to the scattering by 
longitudinal phonons is 

m (asin'6+cd6)' "'(6) '. 
p l l ' = 2 ~ l ~ s  -A Id13 sin 6 cos' 6 

m~ o ( ~ ~ i n ~ 6 + c o s ~ 6 ) ~  "(7) 
(A 1) 
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The constant obeys A, ZD~. 

At high temperatures defined by 

koT)koenu=2plos? 

the integral is 

I, [e' (6) IT) - (8' (6) /Tj 

and the resistivity obeys pi., a ~ .  

In this case the numerators and denominators of the 
resultant integrands can be simplified by dropping the 
terms proportional to  a and ,¶, because the integrals 
in Eqs. (Al) and (A2) a re  of the sameorderofmagnitude, 
i.e., the resistance anisotropy is p#/p, - m,,/m, >7 1, and 
the scattering anisotropy is weak The weakness of the 
scattering anisotropy is associated with the fact that at 
high temperatures all electrons a re  scattered through 
large angles irrespective of the direction of their mo- 
mentum. 

At low temperatures defined by koT<< koe ,in 5 2P,0sI 
we have I, =const and the resistivity obeys p =T5. 

The integrands in Eqs. (Al) and (A2) have a sharp 
maximum at  cos 9-8,  s o  that the integral (Al) is m /m, '\ times less than the integral (A2). In other words, pll and 
p i  a r e  of the same order of magnitude and the scattering 
anisotropy is of the order of the mass anisotropy. The 
strong scattering anisotropy a t  low temperatures is ex- 
plained by the fact that all electrons a re  scattered by 
phonons whose momentum is q - k , ~ / s .  In the case of 
electrons with high values of P, which move along the 
ellipsoid axis, this scattering is less effective than 
for electrons with small values of p moving across the 
axis. 

We shall now consider the intermediate temperature 
range 

We can easily see  that in this case again we can simplfy 
the integrands by dropping the terms containing a and 8, 
s o  that Eqs. (Al) and (A2) transform to  

If x> T/B,,,<< 1, the integrands decrease rapidly on 
increase in x. Therefore, the upper limits in these 
integrals should be replaced with infinity and then, in- 
troducing the variable y = ~,,,x/T, we obtain 

The ratio of these resistivities is 

At the ends of the range defined by Eq. (A4) we find 
that Eq. (A7) gives the high-temperature -m, , /m,)  
and low-temperature (pi /p: - 1) asymptotes. 

We can show that the resistivity pt due to the scatter-  
ing by transverse phonons is of the order of at tem- 
peratures T<< em,,, but is less  than p' by a factor T/en,,,, 
in the range 8,,, << T << em,, and by a factor mll/m, in 
the range T >> em,, 

')The expression for ep) in Ref. 16 should be replaced with 
.g) = -qz/x.  

') In Ref. 11 the measurements were carried out only down 
to T = 0.03"K but in the range T <0.15"K the temperature- 
dependent part of the resistivity became very small and 
could not be separated from the total resistivity. 
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