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An experimental investigation was made of the oscillations of the rf surface resistance of zinc plates in a 
magnetic field H. The differential characteristics of the Ferrni surface were investigated in the (1070) and 
(1 130) planes. Three series of oscillations were due to Doppler-shifted cyclotron resonances of holes in the first 
Brillouin zone and of electrons at the limiting point and on a skew section through the "lens" in the third 
zone. It was found that oscillations due to electrons at the limiting point of the lens exhibited the properties of 
the Gantmakher-Kaner oscillations, in contrast to similar oscillations in cadmium which were of strongly 
pronounced Doppler nature. A model calculation of the nonlocal conductivity in the Hlln11[0001] case was 
camed out. It was found that the difference between the experimental results in the case of zinc and cadmium 
was due to the difference between the Fermi surfaces in the second zone and due to a magnetic breakdown 
between the second and third zones of zinc. 

PACS numbers: 71.25.H~. 72.15.Gd 

1. INTRODUCTION sidered a s  a function of pH. 

The Fermi surface of zinc has been investigated by a 
variety of methods (see, for example, Ref. 1 and the 
references given there) and i t  is now known quite 
thoroughly. We shall report an experimental investiga- 
tion of the Gantmakher-Kaner (GK) osciliations2 and of 
the doppleron oscillations3 of the surface resistance of 
zinc in a magnetic field. These effects a re  a physical 
consequence of a Doppler-shifted cyclotron resonance 
which gives r ise  to weakly damped componets of an rf 
field in a metal. 2'4 

Oscillations of this kind have been observed in many 
metals. However, for the purpose of the present in- 
vestigation, the greatest interest lies in the information 
available on cadmium whose Fermi surface is similar 
to  that of zinc and which has been practically exhausti- 
vely investigated from the point of view relevant to the 
present study. 3s5'7 Among the previous investigations 
of zinc one should mention that of Mackey et al. repre- 
senting an experimental study of oscillations of the 
magnetoresistance due to electrons a t  the limiting point 
of a 'dlens" in the third Brillouin zone, and the results 
of a study of the rf resistanceQ that have not yet been 
explained satisfactorily. 

The period of the GK oscillations i s  practically equal 
to  the period of the Sondheimer oscillations under dc 
conditions1° given by 

ccos e as A"=TIZI., * 

which relates the value of this period to the differential 
characteristics of the Fermi surface. The doppleron 
oscillation period may generally depend on the magnetic 
field, reaching (on increase in the field) the value given 
by Eq. (1). The following notation is used in Eq. (1): 
pH is the electron momentum along the magnetic field 
H; S(pH) is the area of the section of the Fermi surface 
by a plane P,=const; d is the thickness of the investi- 
gated metal plate; 0 is the angle between the direction 
of the magnetic field and the normal to the surface of 
the plate n; pH, a re  the coordinates of the points of dis- 
continuity or  extrema of the derivative aslap, con- 

We observed three ser ies  of oscillations which were 
interpreted on the basis of the available information 
about the shape and dimensions of the Fermi surface of 
zinc. Calculation of the nonlocal conductivity based on 
the model approximation to the Fermi  surface of zinc 
was made in the process of analysis of the experimental 
results. 

2. DESCRIPTION OF THE EXPERIMENTS 

We used apparatus of the NMR spectrometer type 
with a constant sensitivity in the investigated range of 
magnetic fields. The derivatives of the surface resis-  
tance a ReZ/aH and a2 ReZ/aH2 were found by the t ra-  
ditional modulation method. A sample was placed in 
crossed coils, one of which was a component of an 
oscillatory circuit of an autodyne oscillator, whereas 
the other was used to produce circular polarization of 
the exciting field. Measurements were made in the 
frequency range 2-6 MHz a t  temperatures 1.8-4.2"K. 
A static magnetic field was created by a superconduct- 
ing solenoid or  by an electromagnet, and i ts  values 
were 43 and 15 kOe, respectively. Rotation of a sam- 
ple in the magnetic field was measured to within 0. lo. 
In a plane perpendicular to the plane of rotation the 
alignment was accurate to within - 0.5". 

Three samples 4 mm in diameter and of thickness d 
amounting to 0.295, 0.84, and 1.26 i0 .005  mm were 
made of a cylindrical single crystal of zinc by cleaving 
along (0001) planes a t  liquid nitrogen temperature. A 
shortcoming of these samples was misalignment of the 
[0001] axis which amounted to -0. 5" for the overall 
dimensions of a sample. The experimental results 
were analyzed allowing for the temperature dependence 
of the thickness of the sample: d4., 0. 985d3,, (Ref. 
11). 

3. ANALYSIS OF THE EXPERIMENTAL RESULTS 

The three series of oscillations observed in our ex- 
periments were labeled P,, P,, and P,. Extremal 
values of the quantity R =( aS/ap, 1 /2nA, calculated us- 
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FIG. 1 .  Experimental values of I 8 S / &  I ,* J2rit plotted as 
a function of the direction of the magnetic field in the (1010)  
and (1120) planes. The continuous curves represent the r e -  
sults of a model calculation. 

ing Eq. (1) a re  plotted in Fig. 1. We shall now con- 
sider in greater detail each series of oscillations. 

1. Series P,. Figure 2 shows the experimental 
records obtained for the positive and negative polariza- 
tions. On the high-field side we can see periodic (in 
respect of the reciprocal field) quantum oscillations due 
to the central section of a needle in the third zone. The 
general nature of these oscillations is demonstrated in 
Fig. 3. Their characteristic amplitude-field depen- 
dence is associated with the existence of the second har- 
monic of the oscillations and with the filtering effect of 
differentiation with respect to the magnetic field. The 
angular dependence of the frequency of these quantum 
oscillations is in good agreement with the data on the 
de Haas-van Alphen effect. l2 

In addition to the quantum positively polarized oscil- 
lations in fields up to 2.5 kOe, there a re  also P, oscil- 
lations with a constant period. The maxima and min- 

I I I I I 

I7 I Z J 
H, kOe 

FIG. 2 .  Records of the second derivative a 2 ~ e z J 8 H Z  obtained 
in Hlln11 [OOOl], configuration; T =  l .EoK;  U/2n= 4 . 6  MHz; d  
= 0 .295  mm. The signs of the circular polarization a r e  shown 
encircled. The arrows identify the Pi -ser ies  oscillations and 
the s t ray  NMR signal. 

FIG. 3. Records of the second derivative B ' R ~  z/&: a) O= 0; 
b) O= l o " ,  H in the ( 1130) plane; c)  O =  16.6'. H in the (10iO) 
plane; T = 4 . 2  OK, w / 2 r = 3 . 6  MHz, d = 0 . 8 4  mm. The ordinate 
scale  for curve c i s  increased compared with the scales for 
curves a and b.  The arrows identify the maxima of the PS- 
se r i e s  oscillations. 

ima of these oscillations a re  not shifted when the fre- 
quency of the exciting field is altered. The constancy 
of the period justifies fully the application of Eq. (1) 
and i t  is found that the value of R,,,, for H 11 [0001] is 
0.043 0.001 A - I .  The amplitude of the oscillations 
with the, positive polarization i s  several times greater 
than the corresponding amplitude in the negative polar- 
ization. Hence, we may assume that in the negative 
polarization the oscillations a re  of the GK type, whereas 
in the positive polarization they represent superposi- 
tion of the GK oscillations and those due to the excita- 
tion of hole dopplerons. ') 

The results of Ref. 1 were used to calculate the de- 
pendence of R on pH in the H 11 [0001] geometry for a 
hole pyramid with its center a t  the point H (Fig. 4). 
Figure 5 shows the results of this calculation, esti- 
mated to be accurate to  within la. We can see  that 
the maximum value of R is approximately 0.04 A-1 and 

FIG. 4. Fermi  surface of zinc: 1) hole pyramids a t  the points 
If in the f i rs t  zone; 2) hole monster in the second zone; 3) elec- 
tron needles at  the point K in the third zone (an electron lens 
with i ts  center at  the point r is  not shown). 
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FIG. 5. Graphs representing the derivative I &S/Bp,I and the 
areas  of the section S(p,) of the Fermi  surface of zinc in the 
f i rs t  and second zones in the H11[0001] configuration. The 
thick dashed lines represent S and I &S/8 pH I ,  respectively, for 
the ai orbits (Fig.  1). The thin curve is  the result  of a cal- 
culation of I &S/ I for the hole pyramid. The abscissa re- 
presents  pH/^ (&. 

it is close to that found experimentally. A qualitative 
analysis confirms also the angular dependence of the 
quantity R,,,, (Fig. 1). These observations suggest that 
oscillations in the P, ser ies  a re  Doppler-shifted cyclo- 
tron resonances of holes in the pyramids in the first  
Brillouin zone. 

2. Series P,. Figure 6 shows examples of the ex- 
perimental records obtained for the positive and nega- 
tive polarizations and typical of the range of angles 
8 =30-60". We can see that the curves a r e  superposi- 
tions of impedance singularities of the peak type and of 
sinusoidal oscillations. The amplitude of the latter in 
the negative polarization is considerably greater than 

FTG. 6. Records of the second derivative 8 2 ~ e Z , / 8  H~ for 0 
-39"and H i n  the (1120)  plane; T - 1 . 8  OK, w/%=4.8 MHz, d 
= 0 .295  mm. The signs of the circular polarization a r e  en- 
circled. The inset shows an approximate localization of a 
skew section of the lens with the maximum value of R (section 
A).  R also gives the nominal projections of the trajectories 
of the resonance electrons obtained for different angles. 

in the positive polarization, indicating clearly the exci- 
tation of electron dopplerons (see Footnote 1). The 
complexity of the oscillation pattern and the narrow 
range of the frequencies of the exciting field make i t  
impossible to detect the frequency dependence of the 
threshold field of a doppleron which is approximately 
3 kOe. 

The sign of the carr iers  and the characteristic angu- 
l a r  dependence of the quantity R,,,,. (Fig. 1) make i t  
possible to identity this ser ies  reliably. The inset in 
Fig. 6 shows an approximate localization of the section 
of an electron lens with the maximum value of R. In 
the free-electron model this lens consists of two spher- 
ical segments. In this model the cross  sections passing 
through both segments a re  described by 

[ (Rg-A')sinZ 9-pHz]"' 
X arctg 1 A sinz O-(-l)IpH cos 0 

' 

where p, is measured from the center of the lens; 
A = R L  - P L ;  RL and P, are ,  respectively, the radius 
and height of the spherical segment. The curves in 
Fig. 1 represent the results of a calculation of R ,,,, in 
accordance with Eq. (2) for a lens with the parameters 

the f i rs t  of which was determined in Ref. 1 and the 
second was taken a s  equal to our value of R,,,, ti for the 
P, series in the 8 = 0  case (Fig. 1). The experimental 
results a r e  in good agreement with the calculated de- 
pendence of I t c l t i  on the angle 6 .  This means that the 
oscillations under discussion a r e  associated with a 
Doppler-shifted cyclotron resonance of electrons be- 
longing to the lens in the third zone. It should be 
noted that the smaller range of the angles in which the 
oscillations were observed in the (10i0) plane was due 
to  a considerable deterioration of the quality of the 
relevant sample during measurements caused by the 
presence of a cleavage plane in zinc. 

In addition to the sinusoidal oscillations, Fig. 6 
shows impedance singularities of the peak type in both 
polarizations and these a r e  a consequence of the well 
known anomalous penetration of the field into a metal 
assisted by drifting electrons. l4 The peaks appear a t  
8 = 35" reaching the maximum value a t  8 = 37". The 
amplitude then decreases and a t  8 ~ 4 5 "  the peaks a re  
difficult to distinguish against the background of the 
sinusoidal oscillations which reach their maximum am- 
plitude in this range of angles. Since the repetition 
period of the peaks is identical with the doppleron os- 
cillation period, i t  is clear they a re  both due to the 
same resonance group of electrons. The inset in Fig. 
6 shows an approximate position of the section A near 
which the resonance electrons a r e  localized. We can 
see  that electrons performing one orbital revolution 
intersect twice the "effectiveness line" C on which the 
velocity is parallel to the surface of the sample. The 
resonance electrons exhibit an extremal shift during a 
cyclotron period along the normal to the plate (u,,,,) 
and, consequently, the rf field peaks may appear a t  
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distances nu,,,, from the surface. It should be stressed 
that a t  distances from the surface amounting to u' + nu,,,, 
(inset in Fig. 6, trajectory a) there a re  no field peaks 
since in this case the displacement u' is not extremal 
a s  a function of pH. In the u' > u,,,, case, which is typi- 
cal of the angles 8 2 40°, the field peaks inside the metal 
a re  formed by trajectories of the a type that ensure an 
effective interaction of carr iers  with the field in the 
skin layer and a re  carried to the opposite face along 
trajectories of the b type (multiplication of peaks), 
whereas the trajectory a is cut off by the surface before 
the field peak reaches the surface. For  the angles 
8 s40°  we find from an analysis of the model repre- 
sented by Eqs. (2) and (3) and from an allowance for the 
actual shape of the lens that the resonance section A 
along P, approaches the limiting section B intersecting 
the line C at one point. In this case the resonance elec- 
trons include those with orbits of the b type (ul=u,,,,), 
which give rise directly to  a field peak on the opposite 
side of the plate and this has a large effect on the im- 
pedance. The experimentally observed dependence of 
the peak amplitude on the angle 19 is probably due to 
this circumstance. 

3. Series P, .  Figure 3 shows oscillations of the 
surface resistance of zinc obtained for a linearly po- 
larized rf field. Against the background of quantum 
oscillations associated with different extremal direction 
of the Fermi surface, there a r e  oscillations of the P, 
series with a constant period throughout the investigated 
range (Figs. 3a and 3b). The oscillation maxima show 
practically no shift along the magnetic field scale when 
the frequency of the exciting field i s  varied. The sim- 
ilarity of the value of R,,,, A in a wide range of angles 
(Fig. 1) to the radius of the free-electron sphere 
p, = l.6A %I-' indicates that oscillations of the P, series 
a re  due to a Doppler-shifted cyclotron resonance of 
electrons a t  the limiting point of the lens in the third 
zone. The value R,,,, = 1.63 k 0.02 i-' obtained by us  
for Ii 11 [0001] is somewhat less  than the value 1.68 A-1 
obtained earlier. 

A characteristic feature of the P, series oscillations 
is an approximate equality of the maximum oscillation 

FIG. 7. Specular reflection of electrons at the limiting point 
of the lens from the surface of a sample for nA[OOOl] and dif- 
ferent angle8 0 .  

amplitudes in the positive and negative polarizations. 
Consequently, we can assume that in both cases these 
oscillations a re  the GK oscillations, whereas the Dop- 
pler oscillations either have very small amplitudes or  
a re  altogether absent. 

The amplitude of these ocillations depends in a com- 
plex manner on the relative orientation of the magnetic 
field and the hexagonal axis. When the magnetic field is 
rotated in the (1150) plane, the oscillation amplitude 
f i rs t  r i ses  weakly and then strongly in the range 9 >4", 
reaching the maximum value of J =  6 for 8 10.5" (Figs. 
3a and 3b). Next, the amplitude falls to J =  1.2 for 
8 = 16" and then ar ises  to a maximum J =  2.2 for the 
second time at  8 %  19", dropping then to zero. The 
oscillation amplitude J is the maximum amplitude of the 
oscillations a t  a given angle 8 taken a s  unity for 8 =O.  
When the magnetic field is inclined along other direc- 
tions, the oscillation amplitude behaves in a similar 
'complex manner. Within a narrow range there a re  
changes only in the amplitudes of the minima and max- 
ima and in the angles a t  which they a re  observed. 

The somewhat unexpected feature is the small am- 
plitude of the P,  oscillations a t  8 = 0  and its  severalfold 
r i se  a t  8 = lo0, whereas the amplitude of the  Sondhei- 
m e r  oscillations8 is reported to fall to approximately 
half the initial values. This shows that an increase in 
the amplitude in our experiments is not associated with 
the shape of the Fermi surface lens, i. e . ,  it is not as- 
sociated with the dependence of the "power" of the reso- 
nance group of electrons resulting from its angular 
dependence. We shall show that this complex ampli- 
tude-angular dependence of the P,  oscillations may be 
due to specular reflection of electrons from the surface 
of a sample. 

Such specular reflection from the surface of a metal 
represents scattering accompanied by the conservation 
of energy and of the tangential component of the quasi- 
momentum pt, i. e . ,  the initial and final states of an 
electron lie a t  the points of intersection of the Fermi 
surface by the straight line p, = const (Ref. 15). In the 
geometry of Fig. 7a the result of the specular ref lec- 
tion A - B  is only a change in the sign of the H com- 
ponent of the electron velocity. The resonance group 
of electrons is scattered from one limiting point to 
another and, a s  shown in Ref. 16, the amplitude of the 
GK oscillations is considerably less than in the case 
of diffuse reflection. Since the samples used in our 
experiments were prepared by cleaving and had sur- 
faces of fairly high quality, one would expect the 
specular reflection coefficient to be fairly high. Con- 
sequently, the small amplitude of the P ,  oscillations 
a t  8 = 0  may be due to specular reflection of electrons 
from the surface of the sample. We shall now use a 
qualitative analysis given in Ref. 16 and show that when 
the magnetic field deviates from the normal to the sur- 
face of the sample, the oscillation amplitude should in- 
crease although the nature of reflection remains specu- 
lar. An external wave creates a skin electromagnetic 
field with a wave vector k, near the surface of a metal, 
and resonance electrons interact with this field. The 
effective field acting on a resonance electron under- 
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going specular reflection is a sum of the effective field 
acting on this electron before and after collision with 
the surface and i t  is proportional to 

where k,,, = 2n/y,,: y ,, is the displacement of an elec- 
tron during a cyclotron period before and after colli- 
sion. The right-hand side of Eq. (4) is obtained on the 
assumption that ( k, ( << k,, k,. Clearly, k, # k, a t  6 =0 
(Fig. 7a) and the effective field is very small. l6 When 
the magnetic field deviates from the normal (Fig. 7b) 
the electrons in the AB section reflected specularly 
from the surface a t  the point B a re  scattered to the 
limiting point C. In this case we have k, #k,(k, >k,) 
and the effective field rises. Consequently, the mo- 
mentum acquired by an electron in the skin layer is 
higher than that for 0 = O  and this results in the experi- 
mentally observed r ise  of the amplitude of the P, oscil- 
lations. 

We shall complete our analysis by considering the 
situation shown in Fig. 7c. After the A -B  specular 
reflection an electron makes half a revolution along the 
orbit of the central section BC and a t  the point C i t  is 
scattered for the second time by the same surface. 
Consequently, the resonance electrons arriving a t  the 
surface of a plate consist of two groups. The first  
comprises those electrons which a re  localized in the 
vicinity of the limiting point A, and the second com- 
prises those in the vicinity of the limiting point C (after 
the A - BC specular reflection, see Fig. 7 c). The sig- 
nal carried to the surface by the electrons of the second 
group is shifted in phase by r relative to the signal due 
to  the electrons of the first  group and this is the result 
of revolution along the orbit in the BC section. Since 
the experimental results give the sum of two oscillating 
signals which a r e  opposite in phase, the resultant am- 
plitude of the P, oscillations will be very small. In the 
model (3) the situation shown in Fig. 7c appears a t  
8 = 19", whereas the minimum of the amplitude of the 
P3 oscillations is located a t  6 16. 5". The discrepancy 
between these two angles is slight and i t  is probably due 
to the fact that there is a small difference between the 
model (3) and the real  Fermi surface. 

We shall consider one other feature of the P3-series 
oscillations. The fall of the oscillation amplitude near 
6 16.5' is accompanied by the appearance of oscilla- 
tions with a period approximately half the period of the 
main oscillations. Figure 7c demonstrates this singu- 
larity in the geometry in which i t  appears particularly 
clearly. These oscillations a r e  most probably not a 
harmonic of the main signal but appear a s  a result of 
the addition of two signals with opposite phases, a s  dis- 
cussed above, when these signals a re  not purely sinus- 
oidal. However, i t  should be pointed out that, a s  a 
result of double specular reflection A - BC --D (Fig. 
7c), we can observe the second harmonic of the P3 
oscillations when the path is sufficiently long, because 
the point D (like the point A) is limiting. But then the 
harmonic should be observed also for 6 =0 (Fig. 3a), 
since in this case only one specular reflection is 

needed. However, no doubling of the P, oscillations 
was observed in this geometry. 

4. THEORETICAL ANALYSIS AND COMPARISON 
WITH THE EXPERIMENTAL RESULTS 

We shall now write down the relationships needed in 
our analysis. It is known that when the magnetic field 
direction, axial symmetry axis, and the normal to the 
surface of a sample all  coincide, the conductivity tensor 
can be diagonalized in terms of circularly polarized 
components of the electric field E, = Ex *iE, .  The spec- 
trum of electromagnetic modes is governed by the dis- 
persion relationship (for details of this part of the treat- 
ment and later stages see, for example, Refs. 3 and 4) 

k'c2=4nioo, (k) , (5) 

where a, =a,, i io,, is a nonlocal conductivity for a cir-  
cularly polarized field; w and k a r e  the frequency and 
wave vector of an electromagnetic mode. It should 
be noted that the requirement of axial simplifies the 
problem greatly and does not restrict  i ts  validity a s  
long a s  we do not discuss the specific phenomena as-  
sociated with the Fermi surface symmetry. Intro- 
ducing the dimensionless parameters 

k neHJ 
q=- and &= 

2n/ur. N.CI 3s /apn lL20  ' 

we shall rewrite the dispersion equation (5) in the col- 
lisionless limit for w, >> w in t he form 

T q Z e = F ( q )  (+ polarization), (7) 

where F(q)  is a nonlocal factor in the conductivity 

defined by the relationship 

The following notation i s  used above; w, i s  the cyclotron 
frequency; N ,  is the total density of electrons; sgnm is 
the sign of the cyclotron mass of the carriers;  Z, is the 
symbol denoting summation over selected parts 
of the Fermi surface where the density N , ;  
u, = c 1 as/ap, (,/eH is the displacement (during one 
cyclotron period), introduced here for  convenience in 
our analysis, of the electrons a t  the limiting point of the 
lens, the integrals a re  taken over the selected parts of 
the Fermi surface. 

1. Analysis of the Fermi  surface of zinc. Like 
cadmium, zinc is a compensated metal, i. e . ,  the 
volumes of the electron and hole parts of the Fermi 
surface a re  equal. The parameters of the hole pyra- 
mid in the first  Brillouin zone and of the electron lens 
in the third zone differ slightly (in the quantitative 
sense) from the parameters of the corresponding sur-  
faces of cadmium. In the absence of reliable experi- 
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mental data we shall use the results of calculations 
given in Ref. 17 and assume that there a r e  no electron 
butterflies and cigars in the third and fourth zones. 
Consequently, the main difference between the Fermi 
surfaces of zinc and cadmium (apart from the needles 
in the third zone whose conductivity contribution can be 
ignored because of their negligible volume) is the pres- 
ence of horizontal a rms  joining together the surface of 
the hole monster in the second zone (Fig. 4). The con- 
nectivity of the monster gives r i se  in the HI( [0001] 
case to electron orbits a, on i ts  surface and these con- 
tribute to the '$electron" component of the conductivity 
However, since i t  follows from Ref. 1 that a < b (Fig. 
4), there is no geometric decompensation. An increase 
in the electron density is compensated by the equivalent 
increase in the density of holes whose appearance is 
associated with the appearance of hole orbits a,. The 
simplicity of the shape of the Fermi surface in the f i rs t  
and third zones makes i t  possible to calculate the den- 
sity of the individual groups of carr iers  in zinc. A cal- 
culation made by us on the basis of the results of Ref. l 
gives 

N,= (0.029*0.0015) . 1OZ2 cm" . N,= (0.598*0.004) - 102~cm4, (1 2) 

where N, is the density of ca r r i e r s  in the j -th zone. 

2. Nonlocal conductivity. We shall calculate the non- 
local conductivity in the H 11 [0001] geometry using the 
models which give qualitatively correct predictions of 
the dependences of S and of aslap, on pH. 

We shall approximate the electron lens by a model 
suggested in Ref. 5: 

aS/apa=-2nR~[i- (1- Ip=I/pL)."] sgn pa, Jpn 1 GpL, 

~ ( P L )  =o, 
) (13) 

where R, = I  aS/ap, 1 ,/2r is the radius of curvature of 
the surface of the lens a t  the limiting point. The model 
(13) with the parameters of Eq. (3) and n= 4 describes 
well all the experimental data on the size effect. ' It 
follows from Eq. (10) that 

The model density of electrons calculated from Eq. (11) 
is N, = 0.595 X loz2 crneS, which is practically identical 
with the calculated value given in Eq. (12). 

The hole monster of zinc is strongly anisotropic and 
the area of i ts  section S(P,) varies in a complex man- 
ner. The presence of saddle points on this monster 
has the effect that the deriavtive aS/ap, has no upper 
limit. An analysis shows that the dependences of 
S(pH) and aS/ap, on p, can be described for all parts 
of the monster corresponding to the orbits a, (Fig. 4) 
by a fairly simple model of an axially symmetric 
Fermi surface discussed in Ref. 13: 

s(pR) =SN+ (sI-S") [I- (pn/pM)2~ I h .  (15) 

Here, S', Sa, and pH a re  the parameters of the model. 
The values of a, b, and rA (Fig. 4), which determine 
the parameters p,, a re  assumed-in accordance with 

TABLE I. 

Ref. 1-to be 

a=0.08h A-', b=0,26A A-', rA-O,&A A-I. (16) 

The model of almost-free electrons and the results of 
Refs. 1 and 12 were used to estimate the values of 
S(pH) in the r K M  and AHL planes, in a plane passing 
through the saddle points, and in a plane separating 
the orbits a, and a,. Table I gives the values of the 
parameters S' and S" slightly different from those used 
in the estimates and selected in such a way that the den- 
sity of the holes in the monster is close to the calcu- 
lated value. For  the a, and a, orbits the value of pH is 
measured from the r K M  plane and we also have Ip,I 
<PM. For  the orbits a, and a,, the value of pH is mea- 
sured from the AHL plane and we also have l ~ , [  
s0.52ti A-1 for a, and 9.5% ih"slpHI GP, for  a,. 
Graphs of the functions S(p,) and aS/ap, a r e  plotted 
in Fig. 5. 

Next, substituting Eq. (16) into Eq. (lo), and inte- 
grating from -PA to PI  (PI s p,), we obtain 

arc sin r Y(~-T')" 
P . ( ~ . ~ ) = [ P I - ~ - -  2 

arcsiny y(l-y*)U ) I-' --- 
2 2 (17) 

where 

Employing the above formula and substituting the ap- 
proriate values of St,  SH, p,, and y, we obtain the 
functions F,,, of Eq. (10) for all the selected parts of 
the Fermi surface monster, which will not be given 
here because they a re  too cumbersome. The total den- 
sity of holes N, in the monster calculated from Eq. (11) 
is 0. 563 x loz2 cm',. Consequently, the density of the 
holes in the pyramid is N,,=O. 032x 1OZ2 cm" and it  is 
close to the calculated value of Eq. (12). 

The dependences of the derivative aS/ap, (Fig. 5) and 
of the area  S of the section of the hole pyramid on P, 
a r e  of the form typical of a corrugated cylinder Fermi 
surface, similar to that discussed in Ref. 4. In this 
model, we have 

where the value of I aslap,), is assumed to be equal to 
our experimental value of 0.043 X 27rE [A-l] (see Sec. 
3.1). 

Summation of contributions of all the groups of car- 
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r i e r s  in accordance with Eq. (9) gives the function F(q). 
The results of such a calculation a re  presented graphi- 
cally in Fig. 8. We shall consider f i rs t  the range 
q2 < 1. For  Im F = 0 the solution of the dispersion equa- 
tion should be the point of intersection of the straight 
line 9'5, whose slope is proportional to H S / w ,  and the 
curve Re F. This graphical solution is shown in Fig. 9. 
However, the presence of saddle points on the Fermi 
surface of zinc suppresses the edge of the Doppler- 
shifted cyclotron absorption. Therefore, we have 
Im F $0 for any value of q2 no matter how small. In the 
range q2 < 1 the main contribution to Im F is made by the 
groups of carr iers  with the orbits a, and a,. This is 
due to the fact that the characteristic parameter of the 
model of Eq. (15) (representing the average derivative 
( 1  aS /ap , ) )  = I S " - S ' l / p , )  for the orbits a, and a, is 
close to 1 a S / a p ,  I,, and the areas  of these orbits a re  
large. Consequently, the density of ca r r i e r s  partici- 
pating in the cyclotron asborption of a doppleron wave 
due to electrons a t  the limiting point of the lens is con- 
siderable. 

We can find analytically the dependence of k' on H 
(k  =kt + i k" )  by approximating F(q) in the q2 < 1 case by 
the function 

The real part of this function has, like Eq. (14), a 
square-root singularity and, if q =  1. 15, it describes 
well the curve in Fig. 8. The coefficient F" can be as-  
sumed to be 0.4. Figure 9 shows graphically the solu- 
tion of the dispersion equation (7) with the function F 
of Eq. (20). We can see that it i s  possible to observe 
the doppleron oscillations in the range H 2 20 kOe and 
the dispersion of the period will then be slight (Re q = 1). 
However, i t  is shown in Refs. 4 and 7 that in the range 
Re q = 1 the doppleron oscillation amplitude i s  propor- 
tional to (1 - q)/w,. Consequently, this amplitude is 
small and it decreases-in accordance with Eq. (7)-pro- 
portionally to H-". 

We shall now consider the doppleron solution of the 

FIG. 8. Graphs showing the real ( thick curves) and imaginary 
(dashed curves) parts of the function F(q) .  The thin curve is 
Re F (  q) for q2 < 1 in the magnetic-breakdown decompensation 
case. The straight lines are the solutions of Eq. (7) for the 
negative polarization and q2 <I. 

FIG. 9. .A straight line represents q= 1. The thin curves are 
the results of a graphical solution of Eq. (7) for Im F =  0 ( see 
Fig. 8, q2 1) : I ) dependence k ' (H) for a doppleron in com- 
pensated zinc; 21, 3) dependences for a doppleron and a heli- 
con, respectively, in the magnetic-breakdown decompensation 
case. Curves 1 ', 2'. and 3 ' represent the dependence %k"(H) ; 
w/2== 3 .5  MHz. 

dispersion equation in the positive polarization case. 
If q2 = qlZ, the imaginary part  is Im F -ql and i t  is 
practically constant in the range of interest to us 
(Re F >Im F). This allows us to approximate Im F in 
this range of values q2 by the function -iF'q2. The 
approximation is correct if Re q >> Im q and it  allows us 
to solve the dispersion equation. The function (20) 
with the parameters q = -N,/N, = -0.054 and F" = 0.16 
describes well the curves plotted in Fig. 8 if we re- 
place q2 in Eq. (20) with (q/q,)*. For  these parame- 
ters  and for the frequency under consideration, i t  fol- 
lows from Eq. (7) that k' >kt' in fields H >500 Oe and the 
dispersion of the period is slight (Re q = 9,). Conse- 
quently, the experimentally detected PI-series oscilla- 
tions do indeed represent a superposition of the dop- 
pleron and GK oscillatipns. 

3. Magnetic breakdown in zinc. We shall now con- 
sider the influence of magnetic breakdown on the nature 
of the nonlocal conductivity in zinc. The energy gap 
between the second and third Brillouin zones is small 
near the point K so that in fields H = 1.3 kOe (Ref. 18) 
the hole orbits a, begin to disappear and electron or- 
bits corresponding approximately to those in the central 
section of the free-electron sphere begin to appear. 

Decompensation of the electron and hole densities 
reaches the following value in relatively weak fields 
(H 2 5 kOe-Ref. 18). 

This result is obtained from Ref. 18, where a report 
is given of measurements of the thickness of the layer 
of magnetic-breakdown decompensating orbits, which is 
0.079ti ih-I and is practically identical with the value 
a = 0.08E 8-I of Ref. 1 (Fig. 1). 

We shall now calculate the nonlocal conductivity in the 
case of magnetic-breakdown decompensation. We shall 
replace the part of the Fermi surface monster corre- 
sponding to the a, orbits with the surface formed by the 
magnetic-breakdown orbits and we shall use the same 
model of Eq. (15) to approximate this surface. Clearly, 
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the parameters S' and S' for this surface are ,  respec- 
tively, 2So-S&, and 2S0 - S:,, where So is the area of the 
section of the Brillouin zone by the (0001) plane 
( r K  = 1.575A A-I) .  It follows from the calculations that 
the electrons on the magnetic-breakdown decompen- 
sating orbits make a practically local contribution to 
R e F  in the q2< 1 case. Therefore, the curve Re F cal- 
culated earlier is lifted along the ordinate by an amount 
AN/NL = 1.37 (Fig. 8). The curves Im F passes some- 
what higher than before and for qz= 1-0 we have Im F 
= O .  56. 

It is clear from Fig. 8 that in the decompensation 
case there a re  (for Im F = 0) two solutions of the dis- 
persion equation: the doppleron solution a t  the point D, 
and the helicon solution a t  the point G. We shall now 
calculate damping of these electromagnetic modes ap- 
proximating F(q) with the function (20) and adding a 
term which i s  due to decompensation AN/NL on the as- 
sumption that F" = 0.55. The solution of Eq. (7) is 
shown graphically in Fig. 9. We can see  that, in prin- 
ciple, the doppleron oscillations can be observed in 
fields H 2 2 5 kOe. However, in this range of fields the 
value of Re q is practically equal to unity. Conse- 
quently, the doppleron oscillation amplitude should be 
even less than in the case of compensated zinc dis- 
cussed above and it  should decrease proportionally to 
H'". In our experiments the P,-series oscillations had 
no threshold magnetic field higher than 10 kOe and they 
showed no significant dependence of the amplitude on the 
sign of the circular polarization of the exciting field. 
Therefore, on the basis of the above analysis we may 
conclude that these ocillations a r e  of the GK type and 
the doppleron oscillations (if present at all) have a small 
amplitude and cannot be separated from the other oscil- 
lations. 

We can see from Fig. 9 that the helicon oscillations 
can be observed in fields H 230 kOe. However, these 
were not observed in our experiments. Possibly the 
helicon oscillations had a small amplitude and were 
indistinguishable against the background of the quantum 
oscillations whose amplitude rose steeply in the range 
H >30 kOe (Fig. 3a). Moreover, in this range of fields 
the oscillation period for a sample 0.84 mm thick was 
large and amounted to -5 kOe, which again made i t  dif- 
ficult to observe the helicon oscillations. Obviously, 
one would have to reduce the frequency of the exciting 
field and increase the thickness of the sample in order 
to observe the helicon oscillations. 

CONCLUSIONS 

Our analysis has been concerned mainly with the P,- 
series oscillations which are,  a s  shown above, of the 
GK type. The absence of oscillations associated with 
electromagnetic modes is due to a strong damping of 
these modes related mainly to the presence of the a, 

and a, orbits (Fig. 4). However, when the magnetic 
field is inclined to the normal, the magnetic-breakdown 
decompensation disappears f i rs t  a t  8 = 2" (Ref. 18) and 
then the a, and a, orbits also disappear. Consequently, 
the contributions of these groups of carr iers  to Im F 
vanish. At the same time the contribution due to the 
magnetic Landau damping to I m F  begins to rise to a 
very complex dependence of I m F  on the angle B but 
determination of this dependence is outside the scope 
of the present paper. 

 his assumption is valid if a doppleron is  excited by ca r r i e r s  
localized near a section characterized by a local maximum of 
R .  In the case  of a minimum of R the sign of the ca r r i e r s  i s  
opposite to the sign of the polarization, a s  observed, for ex- 
ample, in the case of copper. l3 
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