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We show that the traditional method for statistically describing advanced hydrodynamic turbulence by 
Wyld's diagram technique may turn out to be effective also for the problem of the onset of turbulence when 
the number of effectively excited degrees of freedom at intermediate Reynolds numbers is still small (say, less 
than five), while the motion of the liquid is already randomized. We evaluate for noncoinciding times the 
second moments of the distribution function, which describes the statistics of azimuthal (flexural) modes, for a 
chain of interacting Taylor vortices that occur after Couette flow with a rotating internal cylinder has lost its 
stability. The employed direct-interaction approximation which neglects vertex renormalization has enabled 
us to obtain good qualitative agreement with the results of a numerical experiment [V.S.L.'vov, A. A. 
Predtechenskii, and A. I. Chernykh, Sov. Phys. JETP 53, No.3 (1981)l. 

PACS numbers: 47.25.Cg 

The problem of the onset of hydrodynamical turbu- 
lence has recently been widely discussed. Initially i t  
was assumed that the cause of the random, chaotic 
motion of the liquid consisted in the excitation of a very 
large number of degrees of freedom. ' Subsequently 
it became clear that simple dynamical systems with 
phase-space dimensionality larger than two can have a 
very complex behavior. 2 1 3  This is connected with the 
formation in the phase space of these systems of a 
stochastic attractor-an attractive set  of trajectories 
which, however, exponentially disperse s o  that taken 
separately a trajectory is constrained to become ex- 
tremely entangled and, in the strict  sense, chaotically. 

perform a partial summation using a diagram technique. 
This method is used in the theory of turbulence and 
one usually assumes that i t  can turn out to be successful 
for systems with a very large number of degrees of 
freedom. We show in the present paper that i t  can be 
used successfully also in the problem of the onset of 
hydrodynamic turbulence when, a t  intermediate Rey- 
nolds numbers, the number of effectively excited de- 
grees of freedom i s  still small while the motion of the 
liquid is already randomized. To be precise, we con- 
sider the following dynamical system : 

dA,/dt-yA.+(iT-q) I A.IzAn 

+'/'(a+ib) (Am+I+A.-,-Wn), (1) 

A large number Of papers been devoted to a math- suggested in Ref. 6 to describe the transition to tur- 
ematical analysis of the occurrence of stochasticity of bulence in Couette-Taylor flow with a rotating internal 
dynamical systems-see, e .g . ,  the survey in Ref. 4 and cylinder. For some Re =Re,, Couette flow in which 
the literature cited there. Various detailed properties parts of the liquid move along circles loses its stability 
of the Lorenz model a re  widely discussed in the physi- and Taylor vortices are in which parts of the 
cal and mathematical l i t e r a t ~ r e ~ ' ~ - t h i s  is a set of three liquid move along the surfaces of tori. Taylor vortices 
ordinary differential equations which a r e  related to the rotating in different directions are combined into pairs, 
problem of thermal convection in a plane layer. the interaction between which is shown experimentally 

However, for empirically inclined investigators and 
experimenters i t  is important to know not s o  much the 
detailed properties of the structure of the attractor- 
the position of the singular points, the separatrix, and 
so on-but rather the rough, averaged characteristics of 
the stochastic behavior of the system: the average size 
and orientation of the attractor (single-time correla- 
tion matrix), frequency the distribution of the energy of 
the motion (power spectrum), and s o  on, i. e. , quanti- 
ties which can directly be compared with experiments. 
For this i t  is necessary to change from a dynamical 
description in terms of amplitudes to a statistical de- 
scription in terms of moments of the distribution func- 
tion. It is then desirable not to use the detailed infor- 
mation about the actual properties of the attractor, but 
to  refer to i t  a s  a black box. One can s tar t  from the 
equations of motion for the amplitudes and obtain in the 
usual way a chain of equations for the moments and af- 
terwards, hoping that the statistics of the trajectories 
turns out to be sufficiently simple, close i t  by decoupl- 
ing the higher moments in terms of the lower ones, o r  

to be small compared to the interaction of the vortices 
which belong to one pair. With increasing Re (when 
Re =Rel) this flow also loses i t s  stability and the boun- 
dary between the vortices in each pair is bent; the 
quantities A,(t) a r e  the amplitudes of the bending of the 
boundary in the pair of number n. The first  line in (1) 
is the usual Landau equation for the amplitude of the 
secondary flow1 and the second line describes in the 
linear approximation the relatively weaker interaction 
between pairs. It is clear that near the critical Rey- 
nolds number Re, we can neglect in (1) the dependence 
of the phenomenological coefficients T, q,  a, and b on 
Re. The coefficient y = O  when Re =Rel and, hence, 

The number of equations in (1) i s  determined by the 
height of the cylinders. In the experiment in Ref. 6 the 
number of pairs N = 15. Clearly, the equations for the 
outermost pairs with n =  1 and N differ from (I) ,  a s  they 
have one rather than two nearest neighbors. Formally, 
this can be taken into account using the following "boun- 
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dary conditions": 

It is convenient to change from the variables A, to the 
"harmonics representation" which takes the boundary 
conditions (3) automatically into account and which diag- 
onalizes the linear part of Eqs. (1): 

1 " nmn 
B , = - z ~ , s i n - .  2(N+1)'" 

7"-1 
N+i 

We shall expound in 81 Wyld's diagram technique for 
Eqs. (1) to (4), taking into account the fact that the har- 
monics representation (4) differs somewhat fram the 
plane-wave representation. We shall formulate in 82 
the equations for the second moment, neglecting vertex 
renormalization. Usually in the theory of hydrodynami- 
cal turbulence one calls this approximation the "direct 
interaction approximation"-DIA. The DIA equations for 
our problem a r e  a complicated nonlinear se t  of 2N inte- 
gral  equations. Their detailed analysis-analytical and 
using a computer-is still to be given. In this paper we 
take only the first  steps in that direction: we obtain in 
83 the equations for the energy balance between unstable 
laminar flows and the system of interacting flexural 
oscillations; we show in 84 that in the limit a s  N -- .o, 

y << a we can find the y-dependence of the solution of the 
DIA equations in general form, i. e., we find how i t  de- 
pends on the Reynolds number. In fact 

where the form of the function f is determined solely by 
the ratios T / q  and b/a while the dimensionless vari- 
ables x2 and SZ a r e  inversely proprotional toy :  

We obtain in 85 an approximate solution of the equa- 
tions for the structure function f :  we show, in particu- 
lar, that for large H. and 52 the function f decreases ex- 
ponentially: 

which completely agrees with the results of the numeri- 
cal experiment performed in Ref. 6 with Eqs. (1) to 
(3). In the last section, 86, we give a qualitative com- 
parison of the results of the theory developed here with 
this experiment; we show that the ddexperimental" and 
"theoretical" values of the total intensity of the har- 
monics and also of the effective widths of the distribu- 
tion in n and in w differ by not more than 5@ (see Ta- 
ble I). In the numerical experiment more than 90% of 
the energy of motion was concentrated in 3 to 5 har- 
monics and hence the direct interaction approximation 
turned out to be successful in a situation where the 
number of effectively excited degrees of freedom can 
be counted on the fingers of one hand. 

Simpler methods -the self-consistent field approxima- 
tion o r  a kinetic equation for the harmonics-simply did 
not enable us to evaluate the quantity in which we were 
interested-the distribution I,(w) in w, i.e., the different - 
t i e  intensity correlator. 

TABLE I. Comparison of the results of a nu- 
merical experiment with the conclusion of the 
theory in the direct interaction approximation. 

3 1. DIAGRAM TECHNIQUE 

In the harmonics representation (4), Eqs. (1) take the 
form 

dB,ldt-- (r.+ib.)B,+ (NL)  ., (1.1) 

where 

Theory 

Pa1 

0.36 - - 
0,66 - 
- 
0.84 

f 
sn 

(s$j* 
A+ a 
A-la 

(A++A-)I21 

The nonlinear part of (1. I )  is rather complicated in 
form: 

Here B,=B,, B,,=-B,, and A is the Kronecker sym- 
bol: A(0)=1, h(n)=O, whenn+O. 

P=y/a 

Following Wyld's idea7 we include in the right-hand 
side of the initial equations of motion (1.1) the random 
force f,(t) which imitates the jolts from the "surround- 
ing medium. " We shall assume that f,(t) = - f_,(t) and 
that i ts  statistical properties a r e  Gaussian with 
correlators 

( j . ( t )  fna(t') )-G(t-t') [A(m-n) -A(m+n)  If,'. (1.4) 

0.08 

0.31 
0.076 
0.0% 
0.98 
a051 
0.W 
0.80 

In the w-representation Eqs. (1.1) and (1.2) take the 
form 

x [ A  (n+n,+n,+ n,) +A (n,+n+nl+na+2N+2) 
+A (n+n,+n,+n,-2N-2) ] B,'B,Bs d o ,  dma do* 

where B, =B,,(w,), i =  l , 2 , 3 ,  G: is the bare Green func- 
tion: 

Gn0=[o+ b,-iy.1-', (1.6) 

0.1 

0.37 

!g 
0.82 - 
- - 

0.15 

0.31 
0.12 
0.14 
0.90 
0.079 
0.083 
0.43 

in which b, and y, a re  given by Eqs. (1.2). Iterating 
these equations we can write B,(w) a s  a power ser ies  in 
f,(o). 

We now determine the Green function G,(w): 

0.2 

0.32 

8; 
0.87 
0.11 
0.079 
0.47 

and introduce the graph notation: 

G,(w) = - , q ( w )  = - 
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We define the pair correlator I,(w) a s  

(B,(o)Bm'(wl)>-I.(o)6(o-ol)[A(n-m)-A(n+ m)] (1.8) 

and put 

We have assumed here that the correlation matrix 
(Bn(t)B:(tl)) is diagonal in n, m. This assumption is 
exact in the limit a s  N -- .o when translational sym- 
metry ar ises  in the system. In the numerical ex- 
periment of Ref. 6 (the procedure of which is briefly 
described in 06) the coefficient of correlations between 
even and odd harmonics K,,,, is less than 10". Here 

K,,=l<B~,*>II[<IBmI')(IB,lt)]'. 

Odd harmonics turned out to be most strongly correla- 
ted, but this correlation decreases rapidly with increas- 
ing y. For  instance, when b/a = 1.25 and T/B = 10, 
K,,,=O. 31; 0.11; 0.014; 0.006, respectively for y/a 
=O.  08; 0.15; 0.2; 0.4. 

By summing in the usual way8 the weakly coupled 
diagrams we can arrive a t  a se t  of Dyson equations for 
G, and I,: 

G,-'(0) =o+b,-i7,-Z,(o), 

Zs(o)=lGSl2@,,(o). 
(1.9) 

Here C, and 6, a re  the sums of compact diagrams. In 
C, we can pass from the ingoing to the outgoing point 
along G lines; 6, can be uniquely cut along the I lines. 

We give the f i rs t  diagrams: 

In these we must assign to each line i ts  number n and 
index w, and associate with each open vertex 

the expression 

The filled vertices a re  the complex conjugates of the 
open ones. We must sum over all internal numbers n 
from 1 to N + 1 and integrate from -.o to over all in- 
ternal frequencies. 

82. DIRECT INTERACTION APPROXIMATION 

If in the series (1.10) for C, we retain only the first  
diagram and put 6, =0,  we get for I,(w) a simple se t  of 
equations 

o r ,  in the T-representation 

-- I T  - + i + [ + ]  (2.2) 
d-c 

"I--?, 

We can obtain these equations directly from (1.1) and 
(1.2) if we decouple the fourth moment in terms of pro- 
ducts of binary ones. It is clear from (2.1) and (2.2) 
that this approximation is equivalent to the self-consis- 
tent field approximation when in the equation of motion 
for I,(T) all  remaining harmonics a r e  replaced by their 
time-averaged values. Of course, this approximation 
is very far  from reality, but a l l  the same i t  shows up 
one tendency correctly: the region (in the numbers n) 
of the effectively excited harmonics may turn out to be. 
narrower than the region in which the linear growth rate 
is positive (i. e . ,  y >a,). In particular, there follows 
from (2.2) an expression for the threshold for the exci- 
tation of the second harmonic: 

We obtain a much more realistic approximation if we 
take into account in the ser ies  (1.10) and (1.11) for 2, 
and 6, also the diagrams with two vertexes. Then 

Kraichnan has made an analogous approximation in the 
theory of developed hydrodynamic turbulence, starting 
directly from the Navier-Stokes equations, and he 
called i t  the direct interaction approximation-DIA. 
Such an approximation is somewhat broader than al- 
lowance for the interaction in second order in the ver- 
tex (i. e . ,  in our case the decoupling of the sixth-order 
correlators in terms of binary ones). It includes also 
a self-consistency procedure that leads to the replace- 
ment of the initial damping and eigenfrequency of the 
harmonics (y, + ib,) by effective quantities (y, + ib,) 
+ Z,(w) which depend on the characteristics of the mo- 
tion. 

To determine the region of applicability of the DIA 
it  i s  necessary to obtain the solution of Eqs. (1.9) 
and (2.4) and to  evaluate in them diagrams with three 
vertices in the ser ies  (1. 10) and (1.11) for C, and +,, 
which give the f i rs t  correction to the DIA. One can as-  
sume the DIA to be reasonable far  from the bifurcation 
lines which separate, in the parameter plane, the re-  
gion of the stochastic attractor from the region with 
regular behavior-of limit cycles and equilibrium posi- 
tions. The M,(w) excess graphs given in Figs. 10 and 
11 of Ref. 6 and obtained in the numerical experiment 
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are  an argument in favor of this. It is clear that M, 
is close to unity, a s  should be the case fo r  Gaussian 
statistics of the random processes B,(t).  

53. ENERGY BALANCE EQUATION 

From the se t  of Dyson equations (1.9) we can obtain 
the energy balance equation 

which goes over into the kinetic equation in the limiting 
case of a weak interaction (2, <<a,, b,). If we integrate 
(3.1) over w and sum over n, the terms with a Hamil- 
tonian structure (proportional to T2) which describe the 
exchange of energy between harmonics cancel. The 
integral equation obtained will describe the energy ex- 
change between laminar Couette-Taylor flow and its  
perturbation-a system of interacting azimuthal (flex- 
ural) oscillations: 

Here Wo is the energy flix from the unstable laminar 
flow into the oscillations: 

we= j I* (@)  (y-an)do,  
n r N  

(3.3) 

W, is the nonlinear energy dissipation due to their re-  
action on the flux: 

We can interpret the terms in second order in the 
interaction W2 a s  the distortion of W, due to the inter- 
action between oscillations: 

X A (nl+%+n,+nr) [1+A (n,+n;) + A  (nt+n;) 
+A (n,+nr) 18 (o t+wa-o, -o ' )dot  dor  d o ;  do'. 

(3.5) 

In the "direct interaction approximationw used by us 
the terms of higher order in the interaction W,, W,, . . . 
are  neglected. The expression for W2 can be identically 
transformed into an essentially simpler form, if we use 
the second of the Dyson Eqs. (1.9) and the explicit ex- 
pression for @,: 

- , -  

Substituting here Eq. (1.9) for G, we get 

It is clear that in the case of most interest for the 
experiment, T >>q, W2 is small compared to Wo by a 
factor q/T. Hence, when T >>q we may assume that 
W o =  W,. The role of the interactions between the har- 
monics (a p) is then reduced to the widening of the 
packet I, in n and decrease in energy input Wo corre- 
sponding to this. In the limit a s  q/T - 0 in general 
w, -0 .  

54. SCALING IN THE DIA EQUATIONS 

In the experiment of Ref. 6 the number of vortex 
pairs N= 15. To simplify the analysis of the equations 
we shall assume that N - .o and change from a summa- 
tion over n to an integration over the dimensionless 
variable 

Subsequently we show that when y <<a the packet of 
excited harmonics is narrow: k2 n y/a. The bar means 
here averaging with weight I,: 

Assuming henceforth that y <<a we expand a,, and b, in a 
series in k, limiting ourselves to the f i rs t  term and we 
extend the integration over k over the infinite domain. 
In the initial equations thus simplified we can eliminate 
the y-dependence if we change to the dimensionless 
variables: 

In these variables the Dyson Eqs. (1.9) take the form 

g - i ( x ,  Q )  -Q+Bxa+i-ixa-o(x, Q ) ,  

f ( x ,  Q ) - l g ( x *  Q )  12v(xx Q ) t  

(4.5) 

where u and cp a r e  dimensionless mass  operators: 
a(%,  Q )  =Z , (o ) Iy ,  
~ ( x ,  Q )  =BqkocD.(o)l~" (4.6) 

and where we have used the notation 

From (2.4) i t  follows for a and rp that 

where 

and where we have introduced for the convolution the 
notation: 

The equations (4.5) to (4.9) which we have obtained 
for  the structure functions flu, $2) and g(%, $2) no longer 
contain the coefficient y which depends on the Reynolds 
number; the form of these functions can thus depend 
only on the dimensionless ratios B and 8 [see (4.7)]. 
Hence, the whole dependence on y is completely de- 
termined by Eqs. (4.3) amd (4.4), and this conclusion 
is not connected with the direct interaction approxima- 
tion. An important restriction a re  only the inequali- 
ties 

which lead to the fact that the number of excited har- 
monics is small cornpated to their total number N and 
large compared to unity. 

It follows, in particular, from Eqs. (4. 3) and (4.4) 
that the width of the function I,(w) in w is proportional 
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to  y, the number of the excited harmonics (the width of 
In in n) proportional to (y/a)(N+ I), and the average 
intensity I of the harmonics is also proportional to y: 

It will be shown in 06 that all these conclusions a r e  
confirmed by the numerical experiment. 

55. PRELIMINARY ANALYSIS OF THE STRUCTURE 
FUNCTIONS 

We f i rs t  simplify the Green function. The first  term 
in (4.8) for  u(x, 51) is completely independent of 51. We 
shall neglect the 51-dependence also in the second term, 
putting there 51= 51, where 51, is a root of the equation 

We shall also neglect the x -dependence of o a s  compared 
to the quadratic x-dependence of the bare quantities a,, 
and b,. The Green function g(x, 51) then takes on a sim- 
ple form 

g-'=(Q+Bx2) -I(q+xz) .  (5.2) 

Here 51 is reckoned from the line center 51, and the role 
of the interaction is reduced to the renormalized damp- 
ing: 

q=-I+Im a ( 0 ,  510) . (5.3) 

We shall see below that this approximation for the 
Green function enables us to obtain qualitatively correct 
results. Using this we appreciably simplify Eq. (4.5) 
for  the structure function of the pair correlator: 

where the convolution (f x f x f )  is determined by Eq. 
(4.10). 

In these equations the Green function g(x, 51) is de- 
termined by the sole constant ;. We can therefore use 
instead of the Dyson equation for A x ,  51) the appreciably 
simpler energy balance Eq. (3.2) to (3.7). In dimen- 
sionless variables i t  has the form 

where the bar indicates averaging with weight f (x ,  51): 

F= J Y ( x ,  B )  f ( x ,  Q ) ~ X  d ~ / f .  (5.6) 

Equations (5.4) and (5.5) for  the function f (x,Q) and 
the constant 7 a r e  closed. We have not been able to 
obtain their analytical solution. We can indicate only 
the asymptotic behavior off (x ,  51) for large x ,  n: 

where the constants 6 and A a re  of order unity. To de- 
termine them we must obtain a solution of Eq. (5.4) for 
the whole range of x and 51. For  this we use the method 
of successive approximations. Firs t  of a l l  we try to 
guess a sufficently wide zeroth approximation function 
f,(x, 51) and then, substituting i t  into the right-hand side 
of (5.4) we get an answer for f (x ,  51) in f i rs t  approxima- 
tion; we determine the constants 6 and A from the con- 

dition that the function f ,(%, 51) be a s  close a s  possible 
to f ,(x, 51) in that range of x and 51 where these func- 
tions a re  sufficiently large. 

For  f ,(x, 51) we take the expression 

which has an obvious maximum when x = 51 =0, has the 
asymptotic form (5.7) for large x, 51, and is chosen 
such that the convolution in the right-hand side of (5.4) 
can be evaluated analytically. We then get for f,(x, n)  
the following expression: 

Here 

We note that the 51-dependence off (x ,  51) is apparently 
determined by the interaction between the strongest 
harmonics with x 5 x,. These harmonics serve a s  a 
forcing force for the far  harmonics and they impose 
on them their frequency spectrum. For  i ts  analysis it 
is thus natural to make the zeroth and first  approxima- 
tion agree a s  x -  0. The condition f,(0, 51)=fo(0, 51) 
gives 

We can obtain one more relation by using the integral 
relation following from (5.4): 

@ + 2 ~ ~ + ~ ~ + ~ ~ + 2 p 7 + ? - ( 8 ~ + 1 )  f212. (5.12) 

Performing the averaging with the function f,(x, 51) we 
get 

These relations a re  closed by the balance Eq. (5.5): 

Assuming 02>> 1 for the sake of simplicity we write 
down the solution of Eqs. (5. 12) and.(5.13): 

1-Qo=4(Bz+i) x,'/[ (7B2+8) " - I ]  =8f (2115) ", 

in what follows we compare these expressions with the 
results of a numerical modeling. 

$6. COMPARISON WITH THE RESULTS OF A 
NUMERICAL EXPERIMENT 

In Ref. 6 the set  of Eqs. (1) to (3) was solved by a 
computer; a s  a result we found the trajectories of 
An(t) a t  times much larger than the characteristic 
periods of the motion. We chose the number N of the 
equations in accordance with the experiment of Ref. 
6: N =  15. We showed that depending on the parame- 
t e r s  of the equations B, 8, and r = y / a  the trajectories 
of An(t) can move to a stable point, o r  a limit cycle, o r  
demonstrate a complicated behavior which from the 
point of view of an experimenter is stochastic. 
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We evaluated the spectra In (@)  for  8 = 10 ,  B = 1 . 2 5 ,  
and four values of I ' = 0 . 0 8 ;  0 . 1 5 ;  0 . 2 ;  0 . 4  which fall 
in the region of stochastic behavior-see Fig. 7 of Ref. 
6. We note first  of all that both the theory and the nu- 
merical experiment give an exponential decrease of 
In (@)  far from the line center. It is true that the argu- 
ments of the exponential A, in the numerical experi- 
ment was different for the right- and the left-hand 
slopes of the curve, while the line shape ( 5 . 8 )  in the 
zeroth approximation is symmetric. A certain asyrn- 
metry in the line appears only in the first  approxima- 
tion-see ( 5 . 11 ) .  

The exponential decrease of In with increasing n pre- 
dicted by Eq. ( 5 . 8 )  is also well satisfied in the numeri- 
cal experiment-see Tables I1 and IV of Ref. 6. The 
difference in the behavior of the even and the odd har- 
monics observed in the numerical experiment disap- 
peared from the theory in the limit a s  N -- w. 

In Table I we give the results of the numerical ex- 
periment for the total intensity of the harmonics 
I  =&In,  of the quantities 

which characterize the width of the packet In in n: 

and the indexes A, determining the asymptotic behavior 
of I n ( @ )  with respect to the frequencies. In corre- 
spondence with the theory, the quantities f =qZ/y n2/y 
and A/y should be independent of y in the region above 
the critical point, satisfying the inequalities ( 4 . 1 1 ) .  
Indeed, when we change I' by a factor 5  these quan- 
tities change by less than 25%. This small change is 

caused by the violaticn of the inequality I' << 1 ,  which 
enabled us to restrict ourselves in the expansion of 
sin(an/32) to the f i rs t  term. It is clear from Table I 
that the quantities sn are  noticably smaller than pn and 
that this difference increases with increasing I'. 

On the right-hand side of Table I we give the values of 
the corresponding quantities calculated by using the 
approximate Eqs. ( 5 . 1 5 )  and ( 5 . 1 0 ) .  They differ from 
the experimental ones by not more than 50%. It is just 
now difficult to say whether this difference is connected 
with the direct interaction approximation itself which is 
used in deriving Eqs. ( 1 . 9 )  and ( 2 . 4 )  o r  with the as- 
sumptions made when analyzing these equations. 
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