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A physical picture qualitatively describing the various stages of the development of an instability on a charged 
helium surface in a strong electric field is presented. It is shown that the nonlinear mechanisms of interaction ' 

between surface waves play an important role in the damping of the turbulent motion. The process of electron 
escape from the surface is interpreted in terms of the so-called "shallow-water" theory: the turbulent motions 
occurring during a short-wave instability generated on the surface of the liquid fmt gently sloping waves and 
then surges, on which the charge accumulates. The characteristic times of the major processes are estimated. 

PACS numbers: 68.10.Jy, 67.40.V~ 

1. INTRODUCTION 

Several experiments1" have been performed in re- 
cent years to study the instability of a charged helium 
surface, predicted by us in Ref. 5. It has been shown5 
that the spectrum of gravitational capillary waves on 
the surface of a deep liquid carrying a surface charge 
en, has the form 

where p is the density of the liquid, a is the coefficient 
of surface tension, and El and Ez a r e  the electric-field 
intensities respectively above and below the surface of 
the liquid. Experimentally, the problem normally con- 
s is ts  in the placing of the charged surface in  a capaci- 
tor; the distances hi and h2 from the upper and lower 
plates of the capacitor a r e  assumed in (1) to be large 
compared to the capillary factor a = ( c ~ / ~ g ) " ~ .  The 
electric fields a r e  connected with the surface charge 
density by the standard relation 

The term with the electric field in (1) leads to the ap- 
pearance in the surface-wave dispersion law of some 
minimum that can, a t  sufficiently high fields, make the 
square of the frequency negative. The field-intensity 
values at which the frequency first  vanishes, i. e. , the 
values given by the relation 

determine the system's linear-instability threshold. At 
this moment the small surface perturbations with wave 
vector in the vicinity of ko begin to build up unrestrict- 
edly, leading to a cutoff of the solution and the transi- 
tion from a plane surface to some new, inhomogeneous 
state with a deformed surface. 

It would be natural to expect the scale of the deforma- 
tion to correspond with the magnitude of the capillary 
factor, which for helium has the order of magnitude 
a =  0.5 mm, and the surface deformation itself to have 
the character of a periodic lattice with wave vector ko 
= am'. Such a "crystalline" two-dimensional surface 
state (a periodically rippled surface) has indeed been 
observed both in  experiments with electrons on a heli- 
um surfaceZ and for ions3 held by a field a t  the stratifi- 

cation boundary of the two phases of the 3 ~ e - 4 ~ e  mix- 
ture. It was, however, found that the instability-cutoff 
phenomenon is accompanied by a surface-discharge 
processig in which the charge is carried away from the 
surface by small charged bubbles. The departure of 
the charge from the surface is not a uniquely defined 
process: while according to (1) the time a t  which the 
instability se ts  in is uniquely given by the universal 
field combination E~~ + E~~ in accordance with (3), the 
question whether the charges remain a t  the surface in 
fields higher than the stability- threshold field depends 
on the conditions under which the cutoff occurs. Thus, 
Leiderer and wanner3 have observed that, if the insta- 
bility is attained by increasing the applied potential dif- 
ference a t  a time when the charge source is switched on 
[under these conditions one of the fields, El o r  Ez, de- 
pending on the sign of the ion charge, is equal to zero, 
since charge flows from the source to the surface until 
the appropriate field is completely screened off in ac- 
cordance with (2)], then the instability cutoff is accom- 
panied by a discharge. 

If, on the other hand, some surface charge density is 
produced on the surface under subcritical conditions, 
then the source is switched off, and the applied potential 
difference is gradually increased, then the charge may 
remain on the surface. In this case the charged su r -  
face becomes, after some period of relaxation, covered 
with periodic ripples, retaining the whole charge re- 
siding on it. The concentration range in which the 
transition into the new periodic state occurs a s  a result 
of the instability (1), (3) without loss  of charge is, how- 
ever, not clearly indicated in Ref. 3. 

Reference 2 is even l e s s  definite in this respect. In 
the experiment described in this paper Wanner and 
Leiderer showed that if the instability is attained when 
the electron source is switched on (i. e . ,  the charge 
concentration is maximal and equal to n,, , which is de- 
termined from (2) and (3) under the condition that El 
= 01, and the source is switched off a t  the moment when 
the instability begins to grow, then some of the elec- 
trons depart, leaving behind a mean electron density 
equal to E, = O.2n,, on the surface, which is found a t  
this point to be periodically rippled. The "two-dimen- 
sional crystal" formed can then be "melted" and "re- 
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crystallized" by respectively decreasing and increasing 
the potential difference across  the capacitor. The 
question whether we can, by using another experimental 
procedure, obtain a periodic solution with a large sur- 
face charge was not investigated by Wanner and Leider- 
er. Also not investigated in the stability of the new de- 
formed phase in the region of high fields o r  concentra- 
tions. It also turns out that the behavior of an electron 
system on a helium surface2 is in many respects differ- 
ent from that of ions captured by the interface between 
the two phases of a ' ~ e - ~ ~ e  mixture. 

Thus, summing the above brief discussion of the ex- 
perimental situation, we note, f irst ,  the possible pro- 
cess  of charge departure from the surface a s  a result 
of the development of the instability and, second, the 
dependence of the final state on the experimental pro- 
cedure. 

The system of charges on the surface has, at  the mo- 
ment when the electric fields attain the critical values 
determined by (3), excess energy (in the general case 
-0 per unit area), which is then realized in a chaotic 
turbulent motion of the surface. The characteristics of 
the motion arising a s  a result of the cutoff of a plane 
instability of a boundary probably have quite a general 
character. Owing to the low viscosity of helium a t  low 
temperatures, the turbulent state could last for a long 
time. In the present paper we consider the nonlinear 
damping mechanism (in terms of the so-called weak 
surface-wave turbulence6), and show that the departure 
of charge from the surface under fairly general condi- 
tions follows even from hydrodynamic considerations. 

2. TURBULENT VISCOSITY 

As shown in Refs. 7 and 8, the development of the in- 
stability (3) occurs in a rigid regime. In other words, 
in the general case the problem does not contain a pa- 
rameter of smallness, and the amplitudes of the result- 
ing deformations and chaotic motion of the surface have 
the order of magnitude of the capillary factor a. The 
estimation of the relaxation time of the nonstationary 
transient conditions with the aid of the expression for 
the damping constant of gravitational waves with wave 
vector ko =a", 

(v is the kinematic viscosity), yields for the transient 
turbulent regime a lifetime of the order of tens of sec- 
onds. Experiment yields times of the order of tenths 
of a second. Below we shall for the most part have in 
mind electrons on a helium surface, since there is rea- 
son to believe2s9 that the mobility of ions a t  the inter- 
face between the 3 ~ e - 4 ~ e  phases is low. The friction 
between the ions and the interface could be the deter- 
mining dissipation mechanism for the excess energy 
c o ~ e c t e d  with the instability. The low mobility of the 
ions would in  turn violate one of the basic assumptions 
used below, namely, the assumption that we can con- 
sider the electrostatic potential to be constant along the 
surface of the liquid. This approximation, which may 
be called the approximation of a metallic film of charge 
on a surface, is, for  electrons, fulfilled with a huge 
margin to spare. 

Under the indicated conditions, and with the effects of 
the viscosity of helium neglected, the complete system 
of equations describing the motion of a charged helium 
boundary is contained in the relation 

which expresses the balance of the forces on the surface 
of the liquid, and the kinematic condition 

(see Refs. 10 and 11; here @ is the velocity potential, 
p is the helium density, and C is the deviation of the 
surface from the plane shape). 

An analytical investigation of the problem is, however, 
possible only when the distortion of the surface is suf- 
ficiently small (C <<a), i. e. ,  if the terms in Eqs. (5) 
and (6) can be expanded in powers of C. I t  is shown in 
Refs. 7 and 12 that this requirement is equivalent to the 
condition that the parameter 

be small. The relation (7) expresses, in accordance 
with (2), the condition for the surface concentration of 
the electrons to be sufficiently low. 

By a Fourier expansion of the surface deformation: 

by separating the components with wave vectors lying 
near the circle with radius ko ( Ik - ko I<< I& I) ,  and by 
writing them in the form 

(2 is a dimensionless amplitude), we find for  the latter 
the equations of motion in the vicinity of the stability 
threshold: 

(n, is the unit vector in the direction k,); the parameter 
f l  determines the proximity to the threshold: 

It is shown in Refs. 7 and 12 that the expressions (10) 
can be rewritten in the form 

where the functional fi is related with the energy U (per 
unit area) of the statically deformed surface: 

U-&/4. (12) 

The system (10) determines the development of the in- 
stability in the vicinity of the thresholds (i. e., for B 
-0); the second-order terms in  (lo), which a r e  respon- 
sible for the strong interaction between the two unstable 

1009 Sov. Phys. JETP 53(5), May 1981 L. P. Gor'kov and D. M. Chernikova 1009 



modes with wave vectors deployed a t  an angle of 60 de- 
grees  to each other, is responsible for the rigid hyster- 
etic character of the transition. They lead to the result 
that the most advantageous lattice above the threshold 
under equilibrium conditions is the hexagonal lattice. 
Referring the reader to our previous for de- 
tails, we emphasize that, in the absence of viscosity, 
the Eqs. (10) in principle describe the motion of the 
liquid surface arising upon the attainment of the stability 
threshold (p  = 0). As follows from these equations, the 
amplitude of the surface deformations is of the order of 

the characteristic rate of variation in time is roughly 
equal to 

(gko)  "S, (13') 

and the excess energy accumulated by the system up to 
the moment of attainment of the stability threshold is of 
the order of 

The presence of the small parameter S allows us to 
apply to the problem, under consideration here, of the 
decay of the unstable plane state of the surface the con- 
cepts developed in recent years in the theory of the so- 
called "weak turbulence" (see Ref. 13). A typical 
statement of the problem usually consists in the fact 
that the energy is pumped into a definite region of the 
vibrational spectrum of the system. (In this sense the 
total energy of the system should be small enough to 
make a description in terms of the spectrum of the sys- 
tem's normal modes possible. ) The theory of wave tur- 
bulence assumes, similarly to Kolmogorov's hypothesis 
for ordinary turbulence, that the nonlinear interactions 
between the modes transfer energy to the region of 
waves with increasingly large wave vectors until the 
viscosity effects are,  finally, no more decisive. 

The vibrational spectrum (1) goes over in  the k>> ko 
region into a capillary-wave spectrum w2- (cu/p)k3, for 
which the wave-turbulence problem has been solved ex- 
actly. 

Let us now consider Fig. 1, in which the spectrum 
(1) a t  the moment of the onset of the instability is sche- 
matically depicted. The wave-vector region Ak- koS 
plays the role of a "reservoir" where the excess energy 
(13') associated with the turbulent motion is stored. In 
this region the motion is described in the f i rs t  approxi- 
mation by the Eqs. (101, and does not have a wave char- 

acter. Nevertheless, the slow motions of the reservoir  
gradually build up oscillations in the wave-vector re- 
gion k- ko, where the spectrum is well defined, and 
w(k)- (gko)"2. The k- ko region is represented by the 
hatched regions in Fig. 1. The nonlinear interactions 
between the vibrations with k- ko transfer energy into 
the k >> ko region, where Zakharov and ~ i l o n e n k o ' s ~  re- 
sults a r e  valid. Thus, i t  seems that, to solve the prob- 
lem of the decay of the turbulence arising a s  a result of 
the instability, we only need to compute with the aid of 
perturbation theory the intensity of the surface waves 
excited in the k- ko region by the turbulence and then 
join the corresponding expressions onto the asymptotic 
formulas from Ref. 6. 

Let us  rewrite (8) in the form of a Fourier integral: 
8 k  t (r, t ) 3  J7tkeikr. 
( 2 4  

(8') 

Using perturbation theory, i. e. , expanding (5) in pow- 
e r s  of C, similarly to what we did in deriving (lo), we 
obtain equations determining the amplitudes of the har- 
monics 5, (e. g. ,  k=kl  + k2, where Ikl I Ikz I = ko) in 
terms of Z,(t). Limiting ourselves to the consideration 
of the second-order terms, and writing them in a sim- 
plified form, which is adequate for order-of-magnitude 
estimates, we obtain 

t t = - o z ( k ) t t + A S g ( Z z ( r ,  t ) ) r ,  (14) 

where A is an insignificant constant. Writing, in i t s  
turn, 

E t  ( t )  =qr ( t )  e-'a(k)', 

i. e. , separating out the frequency factor, we obtain for 
the amplitude q,(t) the expression 

% j qk ( t )  - - (Za(r ,  t') ) e'"'k)" dt'. 
ro(k)  

According to (lo), the amplitude, Z(r, t ) ,  of the chaotic 
motion that develops upon the collapse of the instability 
is of the order of Z-S, while the characteristic fre- 
quency scale corresponds to (13'1, i. e. , is much small- 
e r  than w(k) - (gko)" 2. Therefore, in the developed-in- 
stability regime (i. e . ,  fo r  t -a) we have 

where Z now denotes the characteristic dimensionless 
amplitude of the chaotic motion of the surface in the 
definitions (9), (13). 

The steady-state distribution in the inertial interval 
has  the form6 

Matching (16) and (15) a t  k - a-', we obtain 

The total energy locked in the wave motion (per cm2) 
is of the order of 

FIG. 1. 
from which i t  can be seen that the dominant contribution 
to the integral is made by small k- a-': 
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The energy y (pe r  cm2), dissipated by the system of 
surface waves is proportional to 

( V v ) r 2  9--$-jT& - Fj -~*'/q.i' ka dk. 

By substituting y = (a/p)i'2k3 " into this expression, we 
can see that the last  integral amounts a t  large momenta 
to 

here the cutoff wave vector k,, is determined in Ref. 6 
from a comparison of the relative roles of the viscous 
and inertial terms. As applied to our problem, this 
yields 

For 4 we obtain 

The expression (20) reveals the remarkable fact, dis- 
covered by Zakharov and ~ilonenko: that the coefficient 
of viscosity drops out from the expression for the dis- 
sipated energy. 

For  the foregoing arguments to be applicable, there 
should exist a broad range of wave numbers ko << k << k,, 
for which the decisive role is played by the nonlinear 
wave interactions. According to (19), this is equivalent 
to the condition (let us recall that 2- S) that the inequal- 
ity 

be satisfied. In the case of liquid helium we obtain for  
the ratio (gko)"~a/vk~ for temperatures T-4 - 1.5  K, a t  
which the majority of the experimental investigationsiv3 
were performed, the estimate lo3-lo4. The high power 
of S in (21) thus imposes some limitations from below 
on the smallness of S in this temperature region, where 
the density of the normal component is still fairly high. 
According to (la), for the wave description to be appli- 
cable, the condition 9 << 1 should be fulfilled, but in or- 
der that Eqs. (10) and (14) can be used, we must have 
S<< 1. Literally, the model under consideration is well 
defined when (gko)" 2/vko2 >> 1. 

After setting g=-aI,,,/at, where g!,,, i s  the excess 
energy concentrated in the turbulent motion, we can at- 
tempt to estimate the turbulence-damping time due to 
the nonlinear interaction under discussion. Thus, if 
we choose, in accordance with (lo), (lo'), and (121, 
g,,, in the form 

then from (20) we find 

which corresponds to the boundary condition for which 
the amplitude of the turbulent motion 2- S a t  t -  T2. On 
the whole, there is no rigorous method of estimating 
72, the establishment time for the steady-state distri- 
bution (16), (17). Let us, however, assume that the 
reservoir is switched off a t  some moment of time. 
Then, following Zakharov and ~ilonenko; we can define 

r2 a s  the time interval during which the energy gW, (18), 
stored in the surface waves is dissipated: 

which yields 

According to (22), the turbulent regime dies down in 
time according to a power law. Although the exact pow- 
e r  in the functional dependence (22) depends, of course, 
on how we express I,,, in terms of 2, i t  can be seen 
that the decay law i s  slower than the exponential law 
with the time constant given by (23). The high power of 
S in (23) indicates that, even when S S  1, the time 7, 

exceeds the characteristic vibrational period of gravi- 
tational waves with frequency w - (gko)" - 10" sec". 
According to (21) and (23), 

It is pertinent to note that the departure of electrons 
from the surface does not follow from the above-de- 
scribed picture. 

3. THE 'SHALLOW-WATER" THEORY 

Let u s  turn our attention again to Fig. 1. It is clear 
that the energy contained in the reservoir, i. e . ,  in the 
wave-vector range A k - a " ~ ,  is transferred not only in- 
to the region of large k, but also into the region of 
small  k << ko. Owing to the presence in  the problem of 
the small  parameter S, the flow components in the k = 0 
neighborhood of width of the order of ~k can in turn be 
obtained independently with the aid of perturbation the- 
ory. The excitable long-wave motion corresponds to 
long gravitational waves, which can themselves pick up 
a significant portion of the energy from the reservoir 
and carry  i t  off beyond the region occupied by the 
charge. In this section, however, we shall be inter- 
ested in the other side of the matter, which is connect- 
ed with the fact that, for k -- 0, we must take into con- 
sideration the finite depth of the liquid layer on the ca- 
pacitor plates, a s  shown in  Fig. 2. 

Let u s  denote by z(r, t )  the gently-sloping component 
of the surface deformation, i. e. , that contribution to 
(8') which is due to the wave vectors k sa-"'S. It is not 
difficult to obtain for this component an equation of the 
type (14), expressing the excitation of long-wave vibra- 
tions during the development of the instaDlliLy. We 
give the answer without going into details of the essen- 
tially simple calculations: 

g h 2 ~ a ~ X - g h 2 ( ~ / h , - l / h 2 )  V'<Ez(r, t )  ). (25) 

In deriving (25) from (51, we assumed that khi << 1 and 
kh2<<1, i .e . ,  that 

S c a l h a l .  (26) 

FIG. 2. 
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The quantity (z(r, t)) is, in accordance with (8), the 
square of the amplitude, averaged over space a t  dis- 
tances of the order of the capillary constant, of the sur- 
face deformation due to the chaotic motion arising dur- 
ing the development of the instability. The character- 
istic scale of i t s  variation in space is a/S, and the 
characteristic frequencies a r e  given, a s  above, by Eq. 
(13'). 

The left-hand side of Eq. (25) corresponds to the 
equation for long gravitational waves in channels with 
spectrum 

o= (gh,) "k. (27) 

Thus, the spectrum of the surface oscillations in the 
region of the smallest k << a-' has a linear slope when 
allowance is made for the finite depth. (In the experi- 
ments described in Ref. 1 the widths of the gaps in the 
capacitor were comparable to a ;  in the experiments re- 
ported in Ref. 3 they attained values -1 cm for a =  0.5 
mm. ) 

According to (25), the amplitude of the long-wave mo- 
tion 

C-(I /h~- l /h , )  ( t 2 ( r ,  t )  >. (28) 

From the linearized Euler equation pav,/at =pgVF, we 
determine the longitudinal velocity v,: 

The most important property of the long-wave motion 
corresponding to the nondispersion spectrum (27) is the 
breaking of the front of waves of finite amplitude (see, 
for example, Ref. 10). The front-breaking time can be 
roughly estimated in the following way. In the system 
of coordinates moving with the phase velocity of the 
wave, co = (ghz)" 2, the individual points of the profile 
move with different velocities spread in  a range of the 
order of the velocity, v,, given by (28'). Taking the 
period X- k-' = a/S, and dividing it by v,, (28'), we find 

r,-S-' (hla)' ( g k , )  -'A (29) 

[the time TO is shorter than the time sz when (26) is ful- 
filled]. 

It is very tempting to connect the breaking of the pro- 
file of the liquid surface with the discharge of the sur- 
face-the formation of charged bubbles and their depar- 
ture to the lower plate of the capacitor. ' The relations 
for  the jumps of the level of the liquid, i. e . ,  the gen- 
eralization of the "shallow water" theory to the case of 
a charged surface can easily be carried out, using the 
standard procedure (see, for  example, Ref. 10). The 
basic approximation of this theory is the assumption 
that a l l  the quantities vary little in the longitudinal di- 
rection over distances of the order of the thickness of 
the liquid (it is convenient to locate the coordinate ori- 
gin on the lower capacitor plate; the variable thickness 
of the liquid layer on the plate is denoted below by H). 
From this i t  follows that the perpendicular velocity 
component v, is small, and that v EV,. The f i rs t  equa- 
tion 

is a consequence of the law of conservation of matter 

along the plate (the vector symbols have only x and y 
components). The pressure distribution in the liquid 
layer is given by the formula 

where d = hi + hs, and we have in the las t  expression 
written the additional terms due to the electric field in 
terms of the potential differences, and Aoz ,  be- 
tween the surface and, respectively, the top and bottom 
capacitor plates. 

A s  has already been noted, i t  is assumed that the 
electron mobility is high enough for the equalization of 
the potentials along the surface to be possible. Sub- 
stituting the expression for P into the tangential compo- 
nent of the Euler equations, and multiplying the latter 
by H, we obtain 

The las t  transformation makes sense only in that Eqs. 
(30) and (30') assume the standard-in gas dynamics- 
form if H is regarded a s  the density and RH) ,  the cor- 
responding function of the pressure. Thus, we have 
demonstrated the inevitability of discontinuities in the 
profile-level jumps which appear a s  a result of the 
breaking of the profile a t  any finite level of nonlinear- 
ity. 

The structure of the solution near the jumps is natur- 
ally not described by the shallow-water equations, but 
the conservation laws allow is to iind a connection be- 
tween the asymptotic solutions on the two sides (1,2) of 
a jump. The law of conservation of matter gives 

where the velocities vi and v2 a r e  measured in the ref- 
erence system in which the jump is at  rest .  

If the liquid is an ideal liquid, i. e . ,  if the friction 
between i t  and the plate is negligible, then the longi- 
tudinal component, 

d 

n,, = J x , , ( z ) ~ z ,  
0 

of the momentum flow is conserved. The tensor T, 

= ng'- uU is the sum of the usual hydrodynamic con- 
tribution r:'= P + pv,vk and the Maxwell electromag- 
netic field tensor 

Substituting i t  into the integral, we obtain 

1 E ' E,' 
nr,=pv2H + - p g f f  +L(~-ZH) + - H .  

2  8n 4n 

(It can be seen, in particular, that when El =E2, i. e. ,  
when there is no surface charge, the terms with the 
electric field gather into an insignificant constant 
( ~ @ ) ~ / 8 n d ~ .  ) From (31) and the condition that TI::'=IIfi' 
we can determine the final state ( V ~ , H ~ )  if we know the 
state (vl, Hi). We can easily write down simple formu- 
las for  the case of "complete screening:" A&' = 0, A&2 
=A@. Then we have the following generalization of the 
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well-known for mulastO: 

As usual, to conclude we must write down the condi- 
tion expressing the fact that the kinetic energy of the 
liquid cannot increase inside a surge (the liquid flows 
from the side 1 to the side 2). The kinetic energy flux 
Q is equal to 

The condition under which the energy i s  dissipated in- 
side a surge, 

Q1-Qz>O, (32) 

can easily (when Aibl = 0) be reduced to the well-known 
conditioni0 

pg (HZ-H,) (Hi"++H,") I2HiH,>O. (32') 

In other words the liquid flows to the side with the high- 
e r  level. We shall not dwell on the proof that the veloc- 
ity vt is higher and the velocity vz is lower than the cor- 
responding "sound" velocities before and after the front 
of the surge. 

As we shall now see, the break formed inevitably en- 
tails the discharge of the surface, since the law of con- 
servation of surface charge does not, generally speak- 
ing, obtain a t  the front of the break. Thus, in the 
metallic approximation, for which the preceding formu- 
l a s  were derived, the surface-charge densities in front 
of, and behind, a surge a r e  respectively equal to en,, 
= Ae/4uHt and en, = ~o/4lrH,  (El = 0). In the labora-' 
tory reference system the charges a r e  stationary in the 
indicated approximation. Therefore, if u is the corre- 
sponding velocity of propagation of the discontinuity, 
the charge-density flux a t  the front of the discontinuity 
is equal to 

The opposite limiting case, in which the potential dif- 
ference between the two sides of the discontinuity does 
not have time to vanish, would correspond to charges 
moving together with the liquid. And in this case a 
discontinuity in the tangential component of the velocity 
would not be compatible with the law of conservation of 
surface charge. 

Thus, the charge should accumulate as time goes on 
a t  the front of the discontinuity. In the steady-state 
picture the charge should flow downwards. The forma- 
tion of charged bubbles-"bubblons" (as they have been 
called by Volodin, Khaikin, and ~de1'man')-appears to 
be the most natural mechanism for the discharge of the 
electrons. Furthermore, this process leads to a new 
contribution to the dissipative processes, which stabil- 
izes the finite frontal width of a surge, i. e . ,  facilitates 
the formation of bubbles. Let us  recall that in the ab- 
sence of dissipation the dispersion effects destroy the 
shock front; more exactly, they make the front too 
wide, since the viscosity of helium is very small. The 
nonlinear viscosity mechanisms discussed above clear- 

ly play an important role too, but we a r e  not in  a posi- 
tion to give an estimate for the nonlinearity level a t  
which the breaking of the front occurs. 

In the above-expounded picture, the appearance of the 
discontinuities is the result  of the buildup of long-wave 
oscillations. As follows from (281, the role of this 
mechanism clearly decreases with increasing thickness 
of the liquid layer. If a discontinuity does form in the 
case in  which h >> a, then i t  is, apparently, a fairly 
weak discontinuity: Hz - Hi - a (as can be estimated on 
the basis of simple physical arguments, the scale of 
the capillary constant, a, determines the size of the 
bubbles). In this case v = ( ~ H ) " '  in (33), and the rate 
a t  which (a unit length of) the discontinuity "cleanses" 
the liquid surface of charges 

4. CONCLUSION 

We have shown that, a t  least in the model with a low 
surface-charge density S << 1, (7), the instability-in- 
duced process of reconstruction of the plane charged 
surface occurs in several stages, each of which is 
characterized by i t s  own time scale. According to 
(lo), the initial perturbations intensify over a period of 
time 

by the end of which a developed turbulent regime is 
established a t  the surface. This motion generates os- 
cillations with ever increasingly large wave vectors, a s  
a result of which there ar ises  a distinctive turbulent 
dissipation regime corresponding to the transfer of en- 
ergy to the very short-wave oscillations, which largely 
dissipate it. This mechanism is capable of removing 
the system's excess energy in the time T2, (23). The 
chaotic motion excites the long-wave branch of the spec- 
trum at  the same time a s  i t  builds up the short-wave 
oscillations. In the case in  which the liquid has a finite 
depth, these oscillations produce over a period of time 
of the order of 70, (29), a se t  of discontinuities on 
which, according to macroscopic arguments, the de- 
parture of charge from the surface occurs. The rate of 
discharge on a discontinuity in a typical situation (e. g. , 
for H z a )  is given by the expression (34). In order to 
estimate the time during which the discharge occurs, 
we should, generally speaking, know the number of such 
discontinuities. One discontinuity, according to (331, 
discharges the surface during a period of time 

rs- (Ua) ( H l g )  ", (35) 

where L is the length of the capacitor. In general, (35) 
gives plausible estimates for  the discharge time,lg al- 
though no systematic investigations of the dependence of 
the discharge rate on the depth of the liquid layer have 
been published. Notice that the discharge is another 
relaxation mechanism for  the surface: according to 
(32), (32'), and (33), the energy, AQ, dissipated on a 
discontinuity is, in the f i rs t  approximation, proportion- 
al to the quantity 6 ,  (34). 

If the electron source is not switched off above the 
stability threshold, then there flows through the system 
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a current that generates surface-wave turbulence. 
Taking account of the estimates made in Sec. 2, we see 
that the investigated system of electrons on a helium 
surface provides a unique opportunity for the verifica- 
tion of the wave-turbulence law (16). According to 
(19), we have involved here a 3-4 orders of 
magnitude range of wave vectors. 

Let us note in conclusion that there a re  probably al- 
ternatives to the above-expounded macroscopic theory 
of surface discharge. Thus, for h - ", the formation 
of bubbles could be related to fine nonlinear effects: 
the formation of charged bubbles through the surmount- 
ing of the Coulomb barriers on the surging surface of 
the liquid. 

'A. P. Volodin, M. S. ~ h a i k i n ,  and V. S. Bde19man, Pis'rna 
Zh. Eksp. Teor. Fiz. 23, 524 (1976) [ J E T P  Lett. 23, 478 
(1976)l. 

'M. Wanner and P. Leiderer,  Phys. Rev. Lett. 42, 313 
( 1979). 

=P. Leiderer and M. Wanner, Phys. Lett. A 73, 189 ( 1979). 
*P. Leiderer,  Phys. Rev. B 20, 4511 ( 1979). 
'L. P. Gor'kov and D. I. Chernikova, Pis'ma Zh. Eksp. Teor.  

Fiz. 18,  119 (1973) [ J E T P  Lett. 18,  168 (1973)]. 
%. E. Zakharov and N. N. Filonenko, Zh. Prikl. Mech. Tekh 

Fiz. No. 5,  62 (1967 ). 
'L. P. Gor'kov and D. M. Chernikova, Dokl. Akad. Nauk. 

SSSR 228, 829 ( 1976) [Sov. PhyB. Dokl. 21, 328 (1976)l. 
'D. M. Chernikova. Zh. Eksp. Teor. Fiz. 68, 249 (1975) 

[Sov. Phys. J E T P 4 1 ,  121 (1975)l .  
'F. Vil'yams and V. B. Shikin, Fiz. Nizk. Temp. 5, 1005 

(1979) [Sov. J. Temp. Phys. 5, 475 (1979)l. 
'OL. D. Landau and E. M. Lifshitz, Mekhanika sploshnykhsred 

( Fluid Mechanics), Gostekhizdat, Moscow. 1954 ( Eng. 
Transl.. Pergamon P res s ,  Oxford, ?959). 

"L. D. Landau and E. M. Lifshitz; Elektrodinamika splosh- 
nykh s r ed  ( Electrodynamics of Continuous Media), Gostek- 
hizdat, Moscow, 1957 (Eng. Transl., Pergamon P r e s s ,  Ox- 
ford, 1960). 

1 2 ~ .  M. Chernikova, Fiz. Nizk. Temp. 6, 1513 ( 1980) [Sov. 
J. Low. Temp. Phys. 6 ,  737 (l980)I. 

1 3 ~ .  A. Galeev and F. Z .  Sagdeev, in: Voprosy teorii  plazmy 
-( Problems of Plasma Theory), Atomizdat, Moscow, 1973, p. 

54. 

Translated by A. K. Agyei 

1014 Sov. Phyr. JETP 53(5), May 1981 L. P. Gor'kov and D. M. Chernikova 1014 


