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The nonlinear response in magnetically dilute paramagnets in parallel constant and alternating magnetic 
fields is considered. The nonlinearity of the response is due to nonlinear relaxation effects and to resonant 
transitions in parallel fields. Relaxation effects arc considered for particles with spin 1/2 and 1 in a strong 
alternating field. Theses effects are appreciable also in cases when EPR is not observable. Resonance effects 
are considered in the presence of relaxation effects for paramagnetic particles with spin 1/2 and with nuclear 
spins 1/2 and 1. The contributions of effects of various type are substantial at dierent values of the field H, 
so that the relaxation effects can be described on the basis of a simple model of a two-level system even in the 
case of nonzero nuclear spin. 

PACS numbers: 75.20. - g 

Isaev-Ivanovl-S and the authors have experimentally influence manifests itself e M e  in a modulation of the 
observed and investigated, in a number of paramagnet- energy levels between which the relaxation processes 
ic substances, nonlinear effects of a new type in con- occur, o r  else in modulation of the interaction with the 
stant and harmonic magnetic fields. The physical na- lattice. The latter takes place, for example, in a liquid 
ture of the observed effects has been qualitatively de- in which relaxation is caused by anisotropy of the g fac- 
scribed. A more rigorous quantum-mechanical analy- tor. As a result, the stationary values of the probabili- 
s is  is presented in Ref. 4. ties of the relaxation transitions become functions of the 

The study of nonlinear effects in parallel fields is of 
undisputed interest, since their use under appropriate 
experimental conditions makes it possible to investi- 
gate paramagnets in which an EPR signal is unobserv- 
able because of the large broadening of the resonance 
lines. It makes it also possible to obtain information 
(e.g., on the spin-lattice relaxation mechanisms) dif- 
ferent from that obtained by EPR, in cases when the 
latter is observable. The presence of nonlinear effects 
leads to the appearance of higher harmonics in the mag- 
nitization. Experiment yields the amplitude and the 
phase, o r  the phase components, of one or  several har- 
monics a s  functions of the constant field Ho. 

In Refs. 1-3 was investigated, a t  an ac field frequency 
v=50 Mhz, the dependence of the amplitudes of the sec- 
ond harmonic of the magnetization, I Ma/, on the value 
of the constant field H, at temperatures near 300 K and 
at 77 K. A maximum of I M21 was observed a s  a rule in 
a weak constant field Ho. Investigation of the concentra- 
tion dependence of the effect in solutions has shown that 
its relative magnitude M,,,,k0 HI)-' decreases upon di- 
lution. Greatest interest attaches therefore to the case 
of dilute paramagnets, when the interaction of the para- 
magnetic particles can be neglected, and the processes 
due to spin-spin interaction a r e  much slower than the 
relaxation processes due to the spin-lattice interaction. 
It suffices in this case to consider an individual para- 
magnetic particle coupled with the lattice to which all 
the non-spin degrees of freedom pertain. Such a model 
corresponds to the case of concentrated solutions, if the 
interaction of the paramagnetic particles i s  greatly 
weakened by thermal motion. As noted in Refs. 1-4, 
nonlinear effects of two types a r e  possible in such sys- 

instantaneous values of the external field, and this leads 
to nonlinearity of the response. 

2. Resonant nonlinear effects that arise in the presence 
of resonance transitions in parallel fields. Such transi- 
tions a r e  possible in the presence of hyperfine or  fine 
electron-spin interaction, not averaged by thermal mo- 
tion, with energy of the order of the Zeeman interaction. 
In this case there a r e  no "pure" magnetic-quantum num- 
ber states; they a r e  mixed so that resonance transitions 
in parallel fields a r e  possible. The magnetization sec- 
ond-harmonic amplitude has resonances at the frequen- 
cies w = o ,  and 2w= w,, where w, is the i-th resonant fre- 
quency of the spin system. The effect i s  proportional t~ 
the saturation factor. Resonant nonlinear effects for 
perpendicular orientation of the fields a r e  described in 
Ref. 5. In this case there a r e  no nonlinear effects ifthe 
alternating field is rotating. 

We consider in this paper nonlinear relaxation effects 
for the case of relaxation of a paramagnetic particle 
with spin S= g (two-level system) and S= l  (three-level 
system) in a liquid at a large alternating-field ampli- 
tude. We consider also nonlinear resonance effects with 
allowance for relaxation, for a system with spin S = i  
and nuclear spins I = $ and I = 1. Some of the results a r e  
valid for a system of paramagnetic particles in a solid 
matrix. In fields Ho such that yHoZ5wm, where om is 
the maximum resonant frequency of the spin system, 
the resonant nonlinear effects can be compared with the 
relaxation effects, so that their analysis is much sim- 
pler. The frequency dependence of the effects is ob- 
tained. 

1. NONLINEAR RESONANCE EFFECTS 
tems. The Hamiltonian of the spin system interacting with 
1. Relaxation nonlinear effects due to the influence of the external field and with the lattice will be written in 

the alternating field on the relaxation processes. This the usual form 
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where %(t) i s  the Hamiltonian of the spin system; %~,(t) 
is the Hamiltonian of the spin-lattice interaction and 
ensures the relaxation; &P,(t) is the lattice Hamiltonian. 

The methods for deriving the kinetic equation for a 
spin density matrix a r e  well kn~wn.""~ We a r e  inter- 
ested in the high-temperature region. In addition, full 
account must be taken of the interaction with the alter- 
nating magnetic field. We use therefore the kinetic 
equation obtained in Ref. 6, and neglect the memory ef- 
fects (the non-Markov character of the motion), and as- 
sume the spin-lattice interaction energy to be small: 

where La, b]+=a b +b a is the anticommutator, Es,<< Es, 
Esr<<E,, and Zi-lEs,~c<l. We use the usual form ofthe 
spin-lattice interaction Hamiltonian, in the form of the 
spin ( v )  and lattice (u) operators: 

CiX(r) stands for the symmetrical and antisymmetrical 
correlation functions of the lattice operators 

c,*(T)=' / t [Cu(T)f  CW(-T) 1, 

C,(T)  -Sp?[f  (8.) u ~ ( ~ + T )  U A ( ~ )  1 ,  
(4) 

where Sp, is the trace over the lattice variables, f w,) 
i s  the equilibrium density materix of the lattice, 

We assume that the lattice can be characterized. 
mathematically by a correlation time 7, such that all 
the thermodynamic correlation functions Ckk(r) satisfy 
in the high-temperature region the condition C,,(r)=O 
a t  Irl>r,. 

We confine ourselves to the case of axial symmetry. 
The Hamiltonian of the spin system, in the presence of 
hyperfine interaction between the electron spin S and 
the nuclear spin I in a magnetic field parallel to the z 
axis, is given by""' 

%S ( t )  -'%a+'%r ( t )  =AyHoS,+aIS+AyH,S, sin a t ,  

%u,(t) ='/,A [ (AyH ( t )  +bI,) S.-'/,b (1,s- 
+ I S + ) ]  (3 cost 8-1) -kl/,A[(AyH(t) +bI,) 

X(S+e-"+S-e*) +b(I+e-*+I-e*)S.I sin 8  cos 8  

+*/,b (ItSte-'+I-S-e'") sina 8. (6 ) 

Here 

AT-YII -TL~ 
a='/,A,+'/,A,, b=Al,-A,, H ( t )  =H,+H, sin wt. 

where A is the hyperfine-interaction constant. 

We have neglected the nuclear Zeeman interaction 
compared with the hyperfine interaction. The magneti- 
zation of the system is determined by the value of (S,) 
and depends on the time. This is due both to resonant 

transitions in parallel fields and to the time dependence 
of the stationary values of the relaxation-transition 
probabilities. As a result, the response will be nonlin- 
ear. This response will be considered for the system 
s=" I -' 

2, -2. 

The eigenfunctions of the Hamiltonian take in this 
case the form 

where 
d = h i  [yHo- (yZH2+a') "1, 

C= (1 +d2)-'/a; as, &, a,, P, a r e  the eigenfunctions of the 
operators S ,  and I,, respectively. One resonant transi- 
tion will be observed for this system in parallel fields 
between the second and third levels, with a frequency 

We obtain next equations in the representation for 
those spin density-matrix components which contribute 
to ( M , ) .  Since a contribution to the integral of the re- 
laxation part of Eq. (2) is made only by the time region 
T 7 , , the external field H ( t )  acting on the spin system 
can be regarded as  constant if the frequency of the al- 
ternating field is low compared with the characteristic 
lattice-motion frequencies, so that the relation WT,<< 1 
holds. The spin operators Vk of the operator $sr in the 
interaction representation, which enter in the integrand 
of (2), can then be written in the form 

V,=exp [ (in)-' (lo+li ( t )  )TI vr exp [- (ih) -' (%o+%, ( t )  )TI .  ('7) 

Since %P, does not commute with z(t), the matrix ele- 
ments of the operators Vk were calculated with the aid 
of the operator identity1' 

1 

exp[ (A+B) t l=  e x p ( d t ) + J  exp[ (A+B)u]B erp[A( t -u) ]du .  (8) 
0 

In the derivation of the equations we used the small- 
ness of Pw, where @ =fi(kT)-', and also the relation for 
the spectral densities of the symmetrical and antisym- 
metrical correlation functions : 

The frequencies of the transitions between the levels 
of the Hamiltonian % will be low compared with the 
characteristic lattice-motion frequencies T" in the 
considered field range. Therefore the spectral densi- 
ties will be assumed to be independent of frequency. 

In these approximations the system of equations for 
the components of the spin density matrix in the 
representation will take the form 
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+Fa, (X,-x,') +r , ,  (X5-x:)  - * / , p y ~ ,  ( t )  C' [~/J ,+  ( 0 )  bb, 
+'/,J,+(O) (4AyH(t)a,+ ( 1 - 6 )  bz) 1, 

1/2dx,~dt=-r,2x,+r,a(xa-x:) -r , ,  (x , -x : )  
- r , , (x , -xso)  - - l ~ L p y ~ , ( t )  J,+(o) ~ A T H ( ~ ) ,  

d x ~ d t - - - r ~ , x , + r , ,  (x,-X,O) - r s ,  (x,-x:) 

-rs, (x5-xso)  - * l . p y ~ ,  ( t )  [I,+ ( 0 )  ~ , + Y , J ~ +  ( 0 )  br I. (10) 

The terms proportional to Bare responsible for the re- 
laxation to the instantaneous value of the magnetic field. 
The following notation is used here: X1=oa,- o,,X, 
= o ~ ~ + u ~ ~ X ~ = o ~ ~ - a ~ Y X 4 = ( u ~ ~ -  o,)- (ox' - @a),X5=olI 
- o,,, a re  the equilibrium values of the correspond- 
ing density-matrix components, and @k=((pilg(t)( q,). 
The relaxation coefficients ri, , with r,, = r,,, a re  de- 
f i e d  by the expressions 

I',,='I, J,bO+'l8Jzao, ~ 2 ~ = ' l , 8 J , ~ 4 a ~ + 1 / ~ J a a o ,  
ru-'/JIC4a,b,, F2,=1/zJzCzbb1, 

rz~-'laJ&~AyH(t) [b,-'/4(1-6) bl , 
~,,=YJICLb,'+l/,Jza,, r, ,='/,Ca,b, (11) 

raa='/4J,CzAyH(t) (a,+bd), r ~ i - ' / ~ J a ~ o ,  

l'ro=114J2AyH ( t )  b, r5,='la (Jza,+Jabz) , 

where 
a,--bz+2Ay'Har, b,=Ay2Ho'+1/,bz, 

al=bd+AyHa(l-b) ,  br=dAyHe-'14b(1-b), (12) 
Ja-Ja+ ( 0 )   ST^, Js-JI+ ( 0 )   S its^^, Ja=Js+ ( 0 )   IT^. 

We are  interested in a stationary solution. Therefore 
the components of the spin density matrix can be repre- 
sented a s  series in the harmonics of the external alter- 
nating field. The coefficients of the series a r e  indepen- 
dent of time: 

The expansion coefficients a r e  functions of theamplitude 
of the alternating field. Under the condition yH1 w" < 1 
the main contribution to the coefficients X,, is obviously 
made by the term "g. We neglect the terms of higher 
order in HI. Then if one of the unaccounted-for relaxa- 
tion mechanisms predominates, it is possible to obtain 
an analytic solution. Leaving out the intermediate re- 
sults, we present directly the expressions for the sec- 
ond harmonic of the magnetization 

1 )  in the case b>> AyHo 

<Ms(20)  >=I/, Re (exp ( - i2o t )  11t~oH,'Ho~a20A,-1A2-' 

x [ ~ ( ~ + 3 i r , , )  ( 2 ~ + 2 i r , , )  +20 ( 2 ~ + 3 i r , , )  (o+%ir,,) 11, 

2) in the case AyHo>> b 

<M, ( 2 o )  >=I/, Re (exp ( - i2ot)  '/,A,-fA,-'~,H,'aao' 
x(o+2iF,,) (20+2irr,) [-yzHo(30+2ir,,) +lAyaHo 

x ( ~ I J , + ' / X )  ( ( o + i r , , )  (20+ir t i )  -yaH0') I 
-il/,,~oH,'oAyzHoIz [2(o+2irh,)-'+oa2Ar-' 

x (o+ i r , , )  ] [2(20+2ir,,)-1+20a'Ar-1(20+ir,l) I) ,  

In the latter case there a r e  present besides the reso- 
nance effects also relaxation effects-the term of 
(15)-as well a s  interference effects due to superposition 
of the above two types. The relaxation effects a re  of 
the same magnitude and have the same singularities a s  
in a two-levelsystem when the relaxation is due to an- 
isotropy of the g factor.'" 

The solution of the system (10) in the case when both 
relation mechanisms operate was obtained numerically 
with a computer. In the limiting cases the numerical 
solution agreed with the analytically obtained ones: with 
expression (15) for the case b>-yH0, and with (15) a t  yH0 
>>b. In the case a -0  and b -0 it agrees with the analy- 
tic solution obtained in Refs. 2-4 for the relaxation ef- 
fects, as well as  with the solution obtained in the sec- 
ond part of the present paper for the limiting case of 
small alternating-field amplitudes. 

The dependence of the relative magnitude of the phase 
components Ma(x0 HI)-' on Ho is shown in Fig. 1 at alter- 
nating-field frequencies 15 and 150 MHz. For curve 2, 
the spin-system parameters correspond to the parame- 
ters  of the nitroxyl radical. The second phase compo- 
nent is in this case very small, its maximum is =0.7 
XlO-', and it is therefore not shown in the figure. If 
the anisotropy of the g factor is large, the anisotropic 
part b of the hyperfine interaction has very little effect 
on the form of the signal, especially in a strong field 
Ho. The reason is that the probabilities of the relaxa- 
tion processes due to the g-factor anisotropy a r e  pro- 
portional to H:. The differences of the amplitudes and 
widths of the resonance lines, curves 3 of Fig. 1, a re  
due precisely to this dependence. When the spin-system 
parameters correspond to the parameters of curve 2, 
i.e., the relaxation is due to the anisotropy of the hyper- 
fine interaction, the amplitudes of the resonance lines 
at an alternating-field frequency v=150 MHz a re  ap- 
proximately equal. Thus, knowing the amplitudes or  
widths of the resonance lines we can find the contribu- 
tion made to the relaxation by the mechanism due to the 

FIG. 1 .  Phase components M2 for the system S = 1 / 2 ,  I = 1 / 2  
in the region of a weak field Elo: a=  3 . 0 4 4 ~ 1 0 ~  sec-', 7, = l(TiO 
sec. Curve 1)  b= 3.2 X ~ O '  sec-', yelAy= 0 .8 ,  v =  15 MHz; 
curve 2) b =  5 . 8 1 4 ~ 1 0 ~  sec-', y ' l ~ y =  1.5 x104 ,  V =  15 MHz; 
curve 3) b= 3.2 x 10' sec-'. y-', Ay = 0 . 8 ,  v =  150 MHz. Solid 
curves-MZCQ, dashed-hfiin. 
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g-factor anisotropy, and determine this anisotropy. In 
addition, knowing the distances between the maxima of 
the resonance lines and the frequency of the alternating 
field it i s  possible to obtain the usual spectroscopic in- 
formation, namely the magnitude of the isotropic part 
of the hyperfine interaction a and Y. Under the condi- 
tion w >> a the different phase components have disper- 
sion and absorption forms. This makes it possible to 
use their forms to adjust the phase of the reference 
voltage during the experiment. 

If the alternating-field frequency satisfies the condition 
2w<a, the resonance effects a r e  also sizable (see 
curves 1 and 2 of Fig. 1). The maximum is then shifted 
towards a very weak field Ho. The presence of effects 
in this case is due to the absorption. of the R F  power on 
the resonance-line wings. Under our assumption that 
the spectral densities of the correlation functions a r e  
independent of frequency, curve 2 corresponds to reso- 
nance effects without admixture of relaxation effects. It 
is seen from a comparison of curves 1 and 2 that if 2w 
< a  the relaxation effects a r e  comparable in magnitude 
with the resonance effects and a r e  shifted towards 
stronger fields. 

All the investigated objects have as a rule a nuclear 
spin larger than h . To assess  the influence exerted on 
the character of the observed effects by the increase in 
the number of the resonant transitions in parallel fields 
a t  a fixed frequency of the alternating field Hl(t), we ex- 
amine nonlinear effects for the system S=$,I =l. 

The Hamiltonian of the system coincides with (6). The 
entire calculation process and the imposed restrictions 
a r e  similar to those for the system S=$,I =+. The 
eigenfunctions and the eigenvalues of the operator a r e  
easily obtained in the usual manner, by solving the 
secular equation. In our case, two resonant transitions 
a r e  possible in parallel fields. We do not present here 
the unwieldy system of equations for the density matrix 
elements that contribute to (ME). It consists of nine 
equations. This system can be solved only numerically. 
The solution was obtained with a computer. In the limit 

a s  a - 0 and b -  0, when only relaxation effects remain, 
this solution agreed also with the solution for the two- 
level system I = 0, S= $. Plots of the phase components 
M,/xo HI (I = 1) against the field Ho a r e  shown in Figs. 2 
and 3. Figure 2 shows four resonances that appear un- 
de r  the following conditions 

The curves have the same singularities a s  in the system 
S = L  2, I =L 2. The sign of the effect a t  w= o, is opposite to 

that a t  2w=wi. The reason is that in the first  case, un- 
de r  saturation conditions, the relaxation cannot cope 
with the reduction to thermal equilibrium, and part of 
the eliergy is emitted in the form of higher-harmonic 
photons, while the second case a two-photon transition 
takes place and the effect has the same sign a s  ordinary 
saturation. 

Figure 3 shows the phase components Mz/x0 HI for 15 
MHz, when 2w<a. For curves 2, the spin-system pa- 
rameters correspond to the parameters of the nitroxyl 
radical, and pure resonance effects a r e  then realized. 
The phase component M p  coincides in this case with 
M,SL" of curve 1, i.e., the contribution of the resonance 
effects to this component is  very small if 2w <a. The 
resonance effects on the second phase component M, 
(curves 1 and 3) can be neglected already in fields Ho 
" 60 Oe. At an alternating field frequency v =15 MHz in 
the three-level system s=$, I =l (see Fig. 3), compared 
with the four level system s=+,I =$  (see Fig. I), in the 
case of identical hyperfine interaction constants of val- 
ue such that 2w<a is satisfied, the maximum of the 
resonance effects shifts slightly towards stronger fields, 
and the ratio of the amplitudes of the phase components 
is also changed somewhat. Taking this circumstance 
into account, the experimental results for higher values 
of the nuclear spin I > 1, under the condition 2w<a, can 
be qualitatively analyzed on the basis of the equations of 
motion for  the system S=$, I =l. If the frequency w s a ,  
then it suffices to obtain the eigenfunctions and eigen- 
values of the system to determine the positions of the 
resonance transitions, and hence also the form of the 
phase components of the response a t  the second harmon- 
ic. 

FIG. 2. Phase components M2 for the system S = 1/2, 1 = 1 in 
a weak field Ho at v =  150 MHz, a = 3.044 x 10' sec-', b = 3.2 
x l o7  sec-', y-'& = 0.8, T, = sec. Solid curves-MY , 
dashed-~4'" . 

FIG. 3. Phase components Mz for the system S = 1/2, 1 = 1 in 
a weak field Ho at v = 15 MHz, v, = sec. Curve 1) a = 3.044 
~ 1 0 '  secl, y- '~y = 0.8; curve 2) a = 3.044 x l o 8  sec-', b = 

5 . 8 1 4 ~ 1 0 ~  sec-', y-'~y = 1 . 5 ~ 1 0 - ~ ;  curve 3) a =  0, b = 3.2. 
x10' aec", y - '~y  = 0.8. Dashed curves-MY , solid-MY. 
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The dependence of the phase components M2/,yo Hl on 
Ho a t  the frequency v =I50 MHz and at hyperfine-inter- 
action constant values such that w >a, in fields Ho 3150 
Oe, shows that at a field value H, 3 5  w,/y, where w, is 
the maximum resonance frequency of the system (in the 
region of the relaxation effects), and for the nuclear 
spins I = $ and I = 1, the phase components coincide with 
those for the two-level system. This confirms the earli- 
e r  conclusion that in the case of nonzero nuclear spin the 
relaxation effects in strong fields can be analyzed by us- 
ing much simpler equations for the two level system 
and for frequencies w ta, since they contribute to much 
stronger fields thanthe resonance effects. We now pro- 
ceed to consider them. 

2. NONLINEAR RELAXATION EFFECTS 

We consider here relaxation effects not only for the 
case s=+, but also for triplet states. The possibility of 
studying the latter with the aid of nonlinear effects can 
be of great interest, inasmuch as no EPR signal is ob- 
servable for them in solution because of the relaxation- 
a1 line broadening. 

For a paramagnetic particle with spin S=$ in a mag- 
netic field parallel to the z axis, the spin Hamiltonian 
is  of the formla 

Is (t) =I,+%', (t) -AyH,S.+AyH,S, sin ot, 

Is , ( t )  -'/JiAyH(t) (3 ws'0-i)S,+'/,AAyH(t) sin t3 ws B(S+e-*+S-e*) . 

The behavior of the spin system is  described by Eq. (2) 
for the spin density matrix. The conditions under which 
this equation is valid were described above. If the al- 
ternating-field frequency is low compared with the char- 
acteristic frequencies w << w,-' of the lattice motion then, 
recognizing that a contribution to the integral of the re- 
laxation part is made only by the time region 7 8  T, we 
can regard the external field a s  constant. The spin op- 
erators V k  are then described by Eq. (7). For a particle 
with nuclear spin I =0, the Hamiltonian commutes 
with g(t), i-e., the spin density matrix is diagonal in 
the representation, and the commutator [z, us] =O. 
Then expression (7) for V1 can be reduced to another 
representation with the aid of the expansion9 

exp[ ( ih)-~~,~]v,ex~[-  (ih)-'%,~]-Z #' exp(-lo?" T). 
I 

In our case the frequencies LO?) are slow functions of 
the time. Next, multiplying both sides of (2) by the op- 
erator M,, taking the trace over the spin variables, and 
using the commutation and permutation relations for the 
spin operatorslo we can easily change over in the high- 
temperature approximation to the equation for the 
macroscopic magnetization. Following transformations 
with account taken of (91, the equation reduces to the 
Bloch equation with a relaxation time that depends on 
the instantaneous value of the external magnetic field: 

At not too large an alternating-field amplitude, when 
yH1w-' <1  and yH1rc<1, the maximum of the second- 
harmonic amplitude 1,2,4 takes place a t  wTo " 1, where 
To is the time-independent part of the spin-lattice re- 
laxation time. We are  interested in the second harmon- 

ic of the magnetization at magnetic-field amplitudes 
and frequencies such that yH1w-' can be arbitrary, and 
~ H ~ 7 , < l .  

The relaxation due to the spin-spin interactions, to the 
spin-rotational interaction, a s  well a s  other mechanisms 
independent of the external magnetic field, can be addi- 
tively included in TC1 (Refs. 10, 12, 14): 

T1-'-l/~~Ayzff (t) T~ (l+yzff ( t )  T~)-'+T,~-', 

To is the relaxation time due to other mechanisms not 
mentioned here and independent of the external field, 
7,  and rp are  the correlation times of the rotational 
and translational diffusion, N is the number of particles 
per cmS, and d, is the closest-approach distance be- 
tween the particles. 

The nonlinear response is given in this case b y  

n 
x { [cos~(l+s+m+q) + (n-~m+3.r-4~+1)o~,~ sin -(l+s+m+q) 2 1 

n 
~coa(k+Zl+3p+4s+n-2m+3r-4q+l) ul- [sin -(l+s+m+q) 2 

Here I ,  (a,) are  modified Bessel functions, 

It is easy to separate from the response (16) the second 
harmonic M2 of interest to us. Figure 4 shows the phase 
components M2 corresponding to the solution (16) a s  
functions of Ho. The amplitudes of the phase compo- 

- .  

FIG. 4. Relaxation effects in two-level system; v =  500 MHz* 
- 1 ~ y  = 0.4, a1 = 100 m, C= lo-' mol/l. Curves: 1) 7, =16" 

set, 2) 6 xlo-iz set, 3) 3 x10-'~ sec. Solid curves-M!'"' 
dashed- MY. 
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nents were calculated for convenience relative to xOHl 
and yH1w-', (Y'AY)'. The parameter is T,. At the em- 
ployed values of To and Y -'AY the EPR signal cannot be 
observed because of the very:large line width, while the 
nonlinear effects a r e  appreciable. It is seen from the 
figure that the position of the maximum depends very 
strongly on T, from the experimental curves. The re- 
lation between the values of the phase components re- 
mains practically unchanged. 

To describe the obtained phase curves we can intro- 
duce a s  parameters the positions of the maxima H$.. 
and Hemand the maximum relative magnitude of the ef- 
feets 

If the parameter is To, then the positions of the maxima 
hardly change with To, and only the magnitude of the ef- 
fect and the ratio of the amplitudes of the phase compo- 
nents change. To and T, thus manifest themselves dif- 
ferently in the effects, so  that they can determined be 
in the inverse problem. The effect is mv for Mihand 
a v 2  for M;" up to values of such that the value of wTo 
becomes noticeable under the condition 'YH,w-'=const. 
The effect retains its maximum a t  w =Ti' and a t  large 
HI. The amplitude of the phase curves referred to Hf, 
depends very little on HI up to HI " 100 Oe. It is diff i- 
cult in practice to obtain an alternating field of larger 
amplitude, and large values of HI were therefore not 
considered. The effects a r e  proportional to (y '~AY)", 
where 14 nc 2, depending on the values of 7, and To. 
From among the distinguishing features of the effect we 
note also that the under definite relations between To, 
T,, and w the component Mim becomes an alternating- 
sign function, and this apparently simplifies the deter- 
mination of the parameters. By varying the tempera- 
ture and the viscosity of the solutions and by comparing 
the experimental and calculated curves we can obtain 
data on the contributions of the various mechanisms to 
the spin-lattice relaxation. 

For a system of ions in a lattice, the role of the time 
c is  assumed in the relaxation processes by the charac- 
teristic time of the relaxation interaction.15 

We consider now a case of practical interest, that of 
relaxation of triplet states in a liquid in parallel fields. 
For simplicity we assume that the exchange interaction 
is  isotropic. The Hamiltonian of the system takes in 
the case of axial symmetry the formn 

aa=tryH(t)S*, 
%s,-'/,D(3 cosz 9-i)S.'+'/,D sin 9 cos 9[ (S,S++S+S,) e-" 

+ (SJ-+S-S.)es]+'/,(3 cos' 9-l)hAyH(t)S. 
+'/,fiAyH(t) sin 9 cos 9 (S+e-"+S-e") . 

Since the exchange interaction commutes with the Zee- 
man interaction, the magnitude of the latter is linearly 
connected with the field Ho, and the levels a r e  equidis- 
tant. In this case one can introduce a single spin-lattice 
relaxation In fact, on going from the kinetic 
equation for the spin density matrix (2) to the equation 
for the z component of the macroscopic magnetic mo- 
ment, under conditions of not too high alternating-field 
frequencies wr,<< 1 and not too large a fine-interaction 
constant ti-'Dr,< 1, we obtain, just a s  for a two-level 

system, a Bloch equation with a relaxation time that de- 
pends on the instantaneous value of the external rnagne- 
tic field: 

T,-~--~~~,(D:+A~VP(~)) ~.(i+fZP(t) 0:) -*+T~~-: D,-A-ID. 

The solution for the nonlinear response will agree with 
expression (16) for a two-level system, subject to some 
modification of c; 

and to replacement of (yelhy)l by (y"Ay)l -D;.r: in the 
expressions for a, (i =0,.  . . , 4). Everything said above 
is in fact valid also for particles with S >1 when other 
interactions can be neglected. 

The dependence of the phase components M, on the val- 
ue of Ho for a three-level system is of the same type a s  
for two levels. The signs in this case a r e  opposite to 
the signs of the curves for the two-level system, h s -  
much a s  the decisive contribution to the relaxation is 
made by the mechanism due to the fine interaction and 
not by the g.-factor anisotropy. Even a t  short T;'=5.55 
xlO1° sec-l and large D , = 5 . 1 3 ~ 1 0 ' ~  sec-I, when the EPR 
signal is not observable, the linear effects a t  ~ , = 1 0 - ~ ~  
sec a r e  appreciable, MSGL =-  3.2 x10m5 and M&=6 x10-' 
a t  a frequency v=500 MHz and a t  yH1w-'=1.84. When 7, 
is decreased by a factor of three, the maximum shifts 
noticeably from the field Ho"3.5 kOe into the strong- 
field region (12.5 kOe), and the nonlinear effects remain 
appreciable: Mg,, =4 ~ 1 0 - ~ .  In the case of longer relax- 
ation times T11=6 x107 sec-' and smaller fine-interac- 
tion constants Dl =8.6 x109 sec-', an appreciable value 
of the effect (Miao=- 1.7X10-4, My20=4.5~10-4) is ob- 
tained in relatively weak fields (Hkf ,=1 kOe, HE,=2 kOe) 
and a t  a low frequency of the alternating field, v=15 
MHz (7, = 3 x 10-l1 sec ). The sign of the phase component 
M,S'" remains alternating. 

For a three-level system, the value of To influences 
the effects in approximately the same manner a s  in the 
case of a two-level system. The amplitude of the phase 
components in the region Dl?,< 1 is proportional to @. 
The dependences on Hl and on the frequencies a r e  the 
same a s  for S=$. 

It follows from the foregoing that by choosing appropri- 
ate experimental conditions (frequency and amplitude of 
the alternating field, the scanning of Ho) it is possible 
to obtain nonlinear effects of large magnitude and use 
them to investigate paramagnetic substances. This is 
done by determining from an analysis of the experimen- 
tal curves the parameters of the spin system and of the 
molecular motion. If the concentration, viscosity and 
temperature a r e  varied it is possible to obtain also the 
contributions of the different relaxation mechanisms 
even in paramagnets in which the EPR signal is not ob- 
servable. 

3. DISCUSSION OF EXPERIMENTAL RESULTS 

Let us discuss briefly the experimental results re- 
ported in Refs. 1 and 2. At an alternating-field frequen- 
cy v=50 MHz the nonlinear effects were registered in 
solutions of CuC1,. 2I-40 and of CuSO,. 5H,O in glycer- 
ine a t  temperatures 275-345 K and a t  solution concen- 
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trations 2 and 1 mol/l, respectively. The spin Hamil- 
tonian for the C g t  ion is described by expressions (6), 
where s=$ and I=$. In this case, three resonant tran- 
sitions a r e  possible in parallel fields, with frequencies 

to,-[ (yH,-a)2+3a2]'h, a,-[ (;~,+a)'+3a~]'~, 

08= [yzH~+16az]"'. 

At v= 50 MHz, the conditions 2 0 <  w, and 2 w  < a a r e  
satisfied, and the results can be analyzed on the basis 
of the equations of motion for the system S=$,I =l. 
Estimates of the correlation time yield 7, =4.5 x 10-lo 
sec a t  T =325 K andrc=1.5 xlO* sec a t  245 K. For a 
qualitative analysis it is still possible to use here the 
rapid-motion model, when A-'Es, T,< 1. The local field 
due to the neighboring spin a t  concentrations 1-2 mol/l 
i s  of the order of 10-20 Oe, and the correlation times 
of the translational motion a r e  rp"rc. Therefore the 
contribution made to the relaxation by the spin-spin in- 
teraction can be neglected. The maximum of I M,I in 
the calculated curves occurred in a field Hoz60 Oe for 
~ , = 4 . 6 x 1 0 - ' ~  and in a field H0=90 Oe a t  ~ , = 1 . 5 x 1 0 ~  
sec. The parameters used in the calculations were g 
=2.16, Ag=0.3, a =0.94x10B sec-', and b=1.71 x109 
sec" (Ref. 14). The experimental curves had maxima 
in the fields HOz133 Oe and HOz114 Oe, respectively. 
The difference between the positions of the maxima of 
the theoretical and experimental curves is  due to the 
fact that at  these concentrations the relaxation is deter- 
mined by spin exchange." Since the resonant transition 
take place in parallel fields, the presence of exchange 
interaction leads only to a broadening of the resonance 
lines?' When the viscosity of the solution is decreased, 
the rate constant of exchange-pair production increases 
and the effectiveness of the exchange relaxation in- 
creases, so that the resonance lines a r e  broadened. 
Since the effects a r e  connected with resonant absorption 
on the wings of the resonance lines, their broadening 
leads to a shift of the maxima of the effects towards 
stronger fields Ho, and to a decrease of their values, a s  
is indeed observed in experiment. In the absence of ex- 
change relaxation, a decrease of the correlation time 
leads to the opposite effect. One other cause of the shift 
of the maxima of the effects towards stronger fields with 
decreasing viscosity is, a s  already mentioned,lga the 
contribution of the relaxation effects. Calculations show 
that their maximum at r C 2 3  ~ 1 0 - l ~  will occur in fields 
HoS110 Oe. 

In Refs. 1 and 2 were investigated also solutions of 
DPPH in benzene a t  300 K and solutions of CuC1,- 2 q O  

and of FeC1, in alcohol a t  77K, a s  well a s  a ruby cryst- 
a l  with 0.03% Cr. As indicated in Ref. 4, in these cases 
the effects a r e  apparently governed also by resonant 
transitions. The hyperfine interaction constants with 
the nuclear spins of nitrogen for DPPH a r e  a Y-I * 12-14 
Oe (Ftef. 19), with the CflS nucleus in ruby ay'l=17 Oe 
(Ref. 14), and with nuclei of chlorine ligands in the case 
of FeC1, apparently of the same order. Since a "o, the 
contribution of the resonance effects exceeds the con- 
tribution of the effects of other type. 

In conclusion, the authors thank A. V. Lazut for help- 
ful discussions and A. F. Lepekhinfor help with compil- 
ing the computer program. 
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