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The acoustoelectric effect at ql > > 1 (I is the electron mean free path) is considered for a metal with an 
isotropic electron dispersion law. It is shown that the anisotropy of the acoustoelectric current JA is highly 
sensitive to the character of the electron scattering. In particular, when the scattering mechanism is replaced, 
a change can take place in the sign of the effect and in the character of the singularities (for example, 
logarithmic peaks can appear). This makes it possible to use the acoustoelectric effect to study a 
nonequilibrium electron distribution function. In scattering by phonons, the anisotropy JA is analogous to the 
anisotropy of the sound absorption coefficient T, and in the case of scattering by impurities it is reasonably 
described by the T-approximation formula and is essentially connected with the anisotropy of the deformation 
potential A .The temperature dependence of J A  is detennined for an arbitrary Fermi surface, namely, JA = 
const (T) for scattering by impurities; for scattering by completely dragged phonons, JA - T-5 in the case of 
open Fenni surface and JA -eT''* for closed Fermi surfaces (including compensated metals), while if the 
phonons are at equilibrium (the Bloch hypothesis) JA -T-l in all cases. Concrete examples of angular 
dependences of JA are presented for alkali and noble metals. 

PACS numbers: 72.50. + b, 72.15.Qm 

1. INTRODUCTION singular character of the f i c t i o n  U A  (which is seen to 

The acoustoelectric effect consists in the appearance be proportional to the double layer in k-space) is phy - 
of an emf (or an electric current, if the circuit is sically connected with the fact that the sound wave 

perturbs the electrons only near the 'belts" cos 8,= 0, closed) in a sample along which an ultrasound wave 
on which the energy and momentum laws a re  simultan- propagates. Compared with semiconductors, the 

magnitude of this effect in metals is very small, and it eously satisfied.' As shown in Ref. 6, the fact that 
the collision operator is Hermitian makes i t  possible 

was observed only recently by zavaritskG4 in experi- 
ments on tin, using the SKIMP procedure. These ex- to  express the acoustoelectric current JA in terms of 

periments have shown a rather strong anisotropy of the the solution a, of the kinetic equation 

effect up to a reversal of the sign of the acous&-emf 
with changing direction of propagation of the sound 
wave. 

~avar i t sk i i ,  Kaganov, and Mevlyut6 have undertaken 
an attempt to explain the anisotropy of the emf a s  being 
due to the character of the electron structure of the 
metal. In describing the scattering of the electrons, 
they confined themselves to the approximation. Kaga- 
nov, Mevlyut, and the author have later proposed a 
general methods free of this restriction." Let us re -  
call briefly the main conclusions of Ref. 6. 

Under conditions corresponding to the experimental 
situation, the sound wavelength A = 2n/q is much 
shorter than the electron mean free path 1 ,  i.e., ql 
>> 1. In this case the sound wave can be regarded as a 
flux of phonons with a 6-like distribution function in 
wave-vector space (this is rigorously valid for longi- 
tudinal sound, while for transverse sound it is neces- 
sary to satisfy the stronger inequality WT>> 1, where 
w is the sound frequency and T is the electron relaxa- 
tion time). The presence of the sound wave is taken 
into account by adding to the field part of the kinetic 
equation for the electrons a term [see Ref. 6, formula 
(311 which can be easily transformed into 

Here W i s  the density of the energy flux in the wave, 
A, is the component of the deformation potential, 8, is 
the angle between v and n = q/q ,  k, = k n, s is the 

which is used in the calculation of the electric conduc- 
tivity o. The latter, together with the current J~ is 
determined by the formulas 

In the case of an open circuit, the resultant acousto- 
emf is determined from the condition that the current 
in the sample up = JA vanish, and i s  then given by 

no W 
EmA = - -I IAJ' am. 

e ,  ( j ..mads.) ja;;.x'(cosO.'" (5) 

rhe present paper i s  a direct continuation of the pre-  
ceding ones and i ts  purpose i s  to analyze, on the basis 
of Eqs. (1)-(5), the possible anisotropy of the acousto- 
electric effect as a function of the character of the 
Fermi surface of the metal under conditions when some 
particular scattering mechanism predominates. This 
analysis is of interest because the anisotropy of the 
acousto-emf (or current) contains valuable information 
on the electron ~ y s t e m . ~  Nonetheless, the question of 
the character of this information and of the possibility 
of i t s  effective extraction has remained open to this 
day. 

When considering concrete electron-scattering 
mechanisms, we confine ourselves to the following 
traditional situations: 

speed of sound, and p is the density of the metal. The a )  scattering by impurities; 
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b) scattering by phonons within the framework of the 
Bloch hypothesis (the assumption that the phonon sys- 
tem i s  in equilibrium); 

c) scattering by phonons with allowance for their 
dragging. 

By way of illustration we present the results of nu- 
merical calculations of JA for metals with simple 
Fermi surfaces-alkali and noble metals. We shall 
investigate separately also the singularities in the 
angular dependence of J ~ .  In the numerical calcula- 
tions, the anisotropy of the Fermi surface was taken 
into account by the pseudopotential method. According 
to this method, the Fermi surface of the metal is a 
sphere of f ree  electrons, distorted near the Bragg 
planes. If independence of the action of the different 
planes can be established, then the problem reduces in 
essence to a study of the influence of one Bragg plane. 
The equations of the equal-energy surfaces a re  deter- 
mined in this case by the simple formulass 

in which G i s  the reciprocal-lattice vector, V ,  i s  the 
Fourier component of the pseudopotential of the given 
metal. The criterion for the applicability of the meth- 
od is smallness of the pseudopotential parameter q  
= I V, I / E  << 1. The effects connected with the nonlo- 
cality of the pseudopotential will be neglected through- 
out. 

2. SCATTERING BY IMPURITIES 

In the calculation of the electric conductivity one 
frequently uses the relaxation-time approximation, 
i.e., @, is represented in the form 

with a smooth function 7,. In this approximation we 
have for  the acousto-emf the formula5 

no /&Ia 1 
EA - - W ( I  I.U. cosa9.d&)-I I r k -  - 6 (OOS 9.,)dsLt (8) 

eps' ~r' %. 
which is obtained after substituting (7) in (5). Here 
mi: = a2&/t tzak:  is the effective-mass tensor compo- 
nent. 

However, the r approximation is valid only for the 
isotropic case, and i ts  frequent use for metals with a 
complicated Fermi surface is justified mainly by the 
weak sensitivity of the electric conductivity to the exact 
form of I p , .  On the contrary, the structure of @, deter- 
mines to a considerable degree the anisotropy of the 
acoustoelectric effect, in particular i ts  difference 
from the anisotropy of the sound-absorption coef- 
ficientlO*" 

Therefore the use of (7) and (8) calls for an additional 
justification. We shall show that in scattering by im- 
purities expression (7) is in many cases  a good ap- 
proximation. 

1. We consider a Fermi surface described by the 
weak-pseudopotential model. We begin with the case of 

FIG. 1. Different positions of the 
Bragg plane relative to the free- 
electron sphere. The dashed 
lines show the belts cosB,= 0 at 
n II 2. A-parabolic point of X 
type. 

one Bragg plane, which can be located relative to the 
sphere of the free electrons in one of the three ways 
shown in Fig. 1. The kinetic equation (2), in view of 
the elasticity of the scattering, i s  of the form 

We can seek i ts  solution by iteration in the parameter 
q =  Iv , ) /&,<< 1. At q = 0 ,  the Fermi surface i s  a 
sphere and Eq. (10) has the known solution 

where 

1 2n - = - 5 CF (9)  (i - cos O h . )  
dSr* 

To fl (2n)'hur. ' 

and U ( q )  is the impurity pseudopotential (in contrast 
to the pseudopotential V, of the atom of the matrix), in 
terms of which the transition probability w,. i s  ex- 
pressed. As will be shown later on, a t  finite q the 
function @, differs from @: only in a small vicinity 
( - q k p )  of the Bragg plane (Fig. 2). Therefore, sub- 
stituting @: for @, in (10) by way of the first iteration, 
we obtain I p ,  with accuracy - 7 .  At this accuracy we 
can set all the functions of k' in (10) equal to their 
values for free electrons, and carry out the integration 
over the unperturbed sphere. We assume that U(q)  i s  a 
smooth function, i.e., it varies little when the argument 
is changed by qk , ;  this condition is usually satisfied for 
all real impurities, whereas for  scattering by phonons 
the method turns out to be perfectly unsuitable. In the 
calculation of w,,, the wave functions of the electron 
a re  taken in the form of a superposition of plane waves 
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FIG. 2 .  Structure of the solution q of the kinetic equation for 
the Fermi surface of Fig. l c  in different cases: 1)  solution 
*i-k0n for a spherical Fermi surface; 2 )  solution in the T 

approximation, 9, = .rev, n; 3 )  solution for an impurity with 
Ub) = const; 4) solution in the Bloch limit. 

For the state k in the region k, > 0 we need retain in 
(12) two coefficients 

[ E ,  is defined in (6)], while for the state k' one wave is 
sufficient. As a result we arrive at the equation 

2% A --- A TO 1 { [kL1n1 + kin, (Aka - Ai-c)l Uq' 

where q = k' - k and = kk,a + ki. We have used here the 
fact2) that in view of the strong localization of 4, near 
the Bragg plane we can put k, = G/2 in the smooth func- 
tions U, and U,,,. It is easy to verify that for k that a r e  
far from the Bragg plane 0, differs from 0: by amounts 
-q. In the immediate vicinity of the Bragg palne (k, 
-- G/2), howevtr, 0, can be written in the form (7), 
where T for nllz is defined by the expression 

and a labels a value at k,= J/2 iO. Since the derivative 
9:l k , = ~ / 2  turns out to be large (-1/q), i t  follows that 
0,  differs from 0: only a t  I k, - G/2 ( s qk,, thereby 
justifying the employed method of solution. 

Expressions (13) and (11) determine 0, in principle. 
It is possible, however, to  obtain 0, in a very simple 
form by using certain features of the behavior of the 
functions U(q). Real pseudopotentials break up into 
two groups (Fig. 3): a) pseudopotential of homovalent 
(i.e., impurities having the same valence as the matrix 
metal), which a re  almost even functions of cos Oh, 
(Fig. 3a); b) pseudopotentials of all the remaining im- 
purities; they have a maximum at  q =O and decrease 
rapidly with increasing q (Fig. 3b). We consider these 
two groups separately. 

a )  If U i s  an even function of cos Oh,, then the second 
integral in (13) vanishes and 0, takes the form (7) with 

For practical purposes, the sufficient criterion for the 
applicability of (14) is of the form3' 

FIG. 3 .  Pseudopotentials of different impurities in Sn lattice 
(their calculation i s  described in Ref. 12) :  a) pseudopotentials 
of homovalent impurities are almost even functions of cos @,,I 
= 1 4 / 2 k $  [the reason i s  that U(0) = 0, and at large q the func- 
tion U(q) decreases over distances of the order of the recipro- 
cal Debye screening radius UD- k,]; b) the remaining pseudo- 
potentials are bell-shaped with a maximum at q = 0 and a width - UD; 1 )  pseudopotential corresponding to the Bloch limit, 2 )  
U(q) = const. 

and is well satisfies for homovalent impurities-a 
typical value of the fraction is 11/20. 

b) For most impurities of the type of Fig. 3b, the 
function U(q) i s  essentially localized at q = 0 ,  so that 
we can leave out of (13) t e rms  containing UqUq+, (one 
encounters, incidentally, impurities such as As, for 
which this term cannot be neglected). Integrating over 
the directions k' and using the identities 

which can be directly verified, we obtain after simple 
transformations 

Thus, for a Fermi surface described by a weak 
pseudopotential, the T approximation (7) is justified 
for both homovalent impurities (in which case r de- 
pends on k) and for impurities with potentials U(q) that 
a r e  essentially localized at q = 0 (7 = constf; these two 
classes cover almost all  the real  impurities. 

2. The T approximation (7) is valid for an arbitrary 
Fermi surface in one frequently employed case of a 
short-range impurity potential [whose Fourier trans- 
form U(q) is constant], inasmuch as in this case the 
integral with 0, in (10) vanishes. This case is by itself 
of little interest, but together with the scattering by 
phonons, which will be considered below within the 
framework of the Bloch hypothesis (Sec. 3), it gives 
an idea of the dependence of the effect on the type of 
impurity. In fact, the Bloch case corresponds for - 
mula to scattering by an impurity with a strongly lo- 
calized potential U(q) [see Eq. (20) below]. This and 
U(q) = const constitute the two limiting relations for the 
family of pseudopotential curves (Fig. 3b). 

3. We consider on the basis of (8) the main features 
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FIG. 4. Angular dependences of JA and r for the Fermi sur- 
facr of Fig. lb  with r = 0.2kp and G = 2.2kR: 1) Bloch limit; 
2)  estimate of the contribution of the "belly" in the Bloch limit; 
3) scattering by impurities with constant 7; 4 )  sound absorp 
tion r. 
of the anisotropy of the acoustoeiectric effect, which 
a re  typical of scattering by impurities. 

From the single fact that formula (8) is valid follows 
the statement5 that the sign of the contribution made to 
EA by a section.of the Fermi surface is determined by 
i ts  curvature xn in the direction n (since m',',a: x,). 
For example, for  the surfaces of Fig. 1, the contribu- 
tions of the belts 1 and 3 a r e  positive, and that of the 
best 2 is negative. From the constancy of T for im- 
purities such a s  in Fig. 3b follows the independence of 
@ of the type of this impurity. On the other hand, in- 
troduction of homovalent impurities can change @ by 
several times. 

By way of example, Fig. 4 shows the angular depen- 
dence of JA for the surface of Fig. l b  with neck radius 
7=  0. Zk,, which is typical of noble metals13 (curve 3). 
It was calculated from formula (4) with +, in the form 
(7) and at constant 7 and A, and i s  represented in the 
form of the ratio to the value J& for a spherical Fermi 
surface with the same 7 and A. The general behavior 
of the function is easily understood. At n 12 (y = 7/2, 
where y is the angle between n and the z axis) the value 
of J" is close to J&,,, s o  that on the Fermi surface of 
Fig. l b  there is one belt cos 4 = 0 passing almost en- 
tirely over the spherical part. With decreasing y, the 
belt becomes deformed and breaks up at y = ye into two 
belts that occupy at y =  0 the positions 1 and 2 (Fig. 1). 
The negative contribution of the best 2 leads to a con- 
siderable decrease of JA/J,",, compared with unity. 
The value of 4 at y = 0 (n 11 2) can be easily estimated. 
The integral in (4) is transformed into (cf. Ref. 11) 

where R is the reciprocal of the Gaussian curvature. 
Near the Bragg plane, R has an additional smallness 
-q compared with the value on the spherical part, but 
this smallness i s  offset by the large value (-1/71 of 
the derivative a@/az (Fig. 2), and the contribution of 
belt 2 on the neck to  JA turns out to be -J:*. Detailed 
calculations lead to the result 

071 Sov. Phys. JETP 536). May 1981 

It is seen that J,, vanishes a t  constant and A (Fig. 4). 
rhe difference between A, and A, changes the value of 
J:; in this case the angular dependence of JA is quali- 
tatively obtained from the curve 3 of Fig. 4 by dilata- 
tion o r  contraction relative to + l .  It is interesting that 
zeroes of @ in symmetrical directions were observed 
experimentally in tin. * However, the complexity of the 
Fermi surface of this metal does not permit a reliable 
interpretation. 

For comparison, Fig. 4 shows also the angular de- 
pendence of the sound absorption r (curve 4). Since the 
integral of (9) does not contain the derivative 86,/2kn, the 
the contribution of the Bragg plane turns out to  be -7, 
and r,,/r,,,, in contrast to J$/J&, i s  close to unity. 
Another substantial difference between the plots of r 
and JA i s  the character of the singularity a t  y=ye (see 
Sec. 5). 

For the surface of Fig. l a ,  the anisotropy of fi at  
constant T and A has the character of small deviations 
from J$, and is of little interest. For the Fermi sur-  
face of Fig. l c ,  the angular dependence of JA i s  on the 
whole similar to Fig. 4. The main dependence i s  that, 
inasmuch a s  a term ~?,/A;T, is added to formula (9), 
the value of J; is determined (at constant 7) by the ra-  
tio of A+ and A_, and can be either larger o r  smaller 
than J:~. In particular, if A+ = A_, then the contribu- 
tion of the Bragg plane cancels out completely and there 
i s  practically no dependence of JA on y .  

If it is noted that the surfaces of Figs. la and l c ,  in 
contrast to the Fermi surface of Fig. lb,  a r e  topo- 
logically equivalent in the presented band scheme to the 
Fermi surface of almost free electrons (i.e., they un- 
dergo no topoligical changes when q decreases to zero), 
then the upshot of the foregoing i s  the following: for a 
Fermi surface described by a weak local pseudopoten- 
tial, under conditions of scattering by impurities 
whose valence is other than that of the matrix atom 
(i.e., a t  constant T), the strong anisotropy of JA 
(changes a J:,,) i s  due either to the anisotropy of A 
o r  to the topological differences between the Ferrni 
surface and that obtained a s  a result of ~ a r r i s o n ' s  

FIG. 5. Angular dependences of JA and r for noble metals, 
plotted on the basis of Fig. 4 .  The notation is the same as in 
Fig. 4. The arrows indicate the correct positions of the sing- 
ularities in Cu, determined on the basis of the Halse formulai5: 
there is a singularity in the 11001 direction and a "doublet" at 
an angle 62--63" from 11001 to h101. 
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FIG. 6. Anisotropy of J" and r in Li and Cs in the approxi- 
mation of the independent action of the Bragg planes: 1) Bloch 
limit; 2) impurity scattering with constant 7; 3) h i e r l s  limit 
( @ / E , ~ " )  and sound absorption r (in view of the Weinretch 
relation (25), the curves for these two cases coincide). J" 
andpdiffer by afactor 4 which is isotropic for cubic metals. 

construction (cf. Ref. 14). 

4. We have considered so fa r  a Fermi surface with 
one Bragg plane. However, since the difference be- 
tween @, and the solution for the isotopic case @: has a 
local character, the interference between the planes i s  
significaht only in a small part  of k-space and usually 
does not affect the value of JA (see, however, Sec. 5). 
Therefore, using the independent-plane approximation 
(i .e., summing those deviations of JA/J&,, from unity 
which a re  connected with each of them), we can plot 
the angular dependences for the more complicated 
cases. The results of such a construction for noble 
metals a re  shown in Fig. 5 [in Cu, Ag, and Au there 
a re  eight necks1' oriented in the directions of the ver- 
tices of the cube ([ill])]. A similar construction was 
made for alkali metals (Fig. 6). We f i rs t  calculated 
the angular dependences for the Fermi surface of Fig. 
l a  with 5% 'swellings" (this corresponds to  Cs and Li, 
Ref. 13), and then took into account that such swellings 
a re  present in the directions of the twelve edges of the 
([110]) cube. 

3. SCATTERING BY PHONONS WITHIN THE 
FRAMEWORK OF THE BLOCH HYPOTHESIS 

We consider now a situation wherein the electron- 
phonon scattering predominates, and assume that the 
phonon system is at  equilibrium (the Bloch limit); the 
influence of phonon dragging will be analyzed later 
(Sec. 4). 

1. For an arbitrary Fermi surface we can clarify 
only the temperature dependence of J" and a s  T 
-- 0. By the Bloch method (Ref. 6, Sec. 37) i t  is 
proved that cp, is almost independent of energy and 
Eq. (2) is reduced, accurate to (T/8)', to the form 
(10). The function w,. takes the simplest form in the 
Debye approximation for phonons 

2nqZIAr11 
Wtk. = -, 

Z ha 
2 ,  I - I .  (20) 

PO, (ez-i) (i-e-z)" 

If the temperature is s o  low that the wave vector of 
the phonon is much less than all the characteristic di- 
mensions of the Fermi surface, then in view of the lo- 
calization of w, near q = 0 we can expand in powers of 
q all the quantities in (10) which depend on k'=k + q  

(Ref. 6, p. 220; Ref. 17). It turns out then that 9, -T5 
and satisfies a diffusion-type differential equation. l7 
We then obtain from (3)-(5) that o-T5, J" -T5' 
and E" = const(T). 

2. We investigate now the anisotropy of JA, using as 
an example metals with a thin bridges, r<< k, (Fig. lb). 
We use the fact that part of the Fermi surface adjacent 
to the neck has rotational symmetry; in this case, when 
n is directed along the neck axis 3, the diffusion equa- 
tion (see Ref. 17) can be integrated for any profile of 
the p(z)  surface: 

(D is the coefficient of electron diffusion over the Fer-  
mi surface). The constants C, and C2 a re  determined 
from the boundary condition, which for the Fermi sur-  
face of Fig. l b  take the form @(O)=O and @(G/2)=O. 
In the presence of several necks, the f i rs t  condition is 
replaced by the condition of #matchingm on the boundary 
of the axial-symmetry region. It is easily seen that in 
the general case C, - 1. From this we obtain the esti-  
mate 

(the quantities with the zero subscript pertain to the 
spherical part  of the Fermi surface -the 'belly ," and 
those without the subscript, to the neck). Recognizing 
that according to (16) we have v = v,r/k, and A -Ao, 
we obtain 1@:1~/2<< Icp:Io. 

Thus, the derivative i3@,/i3kn on the neck turns out to 
be much smaller than in the case of impurity scatter-  
ing. This leads to two consequences: 1 )  the contribu- 
tion of the belt 2 on the neck turns out to be small, 
and the anisotropy of J" is determined mainly by the 
contribution of the #bellym; 2) iP, differs from the solu- 
tion 9; for the isotropic case on the entire Fermi su r -  
face and not in a small vicinity of the Bragg plane (Fig. 
2), therefore the contribution of the 'bellyn differs 
greatly from the value of J :~  for a spherical Fermi 
surface. To estimate this contribution we can ap- 
proximate e, on the 'belly" in the vicinity of the belt 1 
by a linear function. The form of the latter, in view of 
the linearity of Eq. (2) in n, can be established from 
symmetry considerations; thus, for the Fermi surface 
of Fig. l b  we have 

(D1=Ak,n,+Bk,n., 

whence the contribution of the 'bellyn is -A sinZy 
+ B cos2 y. Figure 4 shows the angular dependence of 
JA, obtained as a result of integrating the diffusion 
equation, and also an estimate of the contribution of the 
#belly ." It is seen that the contribution of the neck is 
small in the entire angle interval, except for the 
vicinity of ye where there is a logarithmic singularity 
(its existence is established from general considera- 
tions, see  Sec. 5). When the remaining necks present 
in Cu, Ag, and Au a re  added, the Fermi surface re -  
quires a cubic symmetry; then the form of the solution 
on the "belly is =A(kon), and i ts  contribution to JA 
is -A and is constant. The total angular dependence of 
JA (Fig. 5) is obtained by adding to this constant con- 
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tribution (chosen arbitrarily in Fig. 5) the logarithmic 
singularities connected with each neck; the resultant 
anisotropy of JA is similar to I' (Fig. 5). We note that 
in the Bloch limit the anisotropy of the deformation po- 
tential 4 has practically no effect on the angular de- 
pendence of JA, since the ratio of the contributions of 
the 'belly" and of the neck does not depend on A/&, 
[cf (4) and (2211. 

We take particular notice of the case ln(1 /q) >> 1 (in 
this case the existence of the neck calls for ln(k,/(~/2 
- k,)]>> 1). The behavior of the function @(z) in this 
case i s  not a t  all  trivial. First ,  C1 - l/ln(l/q)<< 1, 
i.e., there is an additional smallness @; on the neck 
[see (22)]. Second, at a distance -7 k, from the neck 
the function @(2) increases rapidly and goes over into 
the solution a0(2) for a spherical Fermi surfaceq4' 
Thus, on the 'bellym 9, coincides with @: and the con- 
tribution of the "belly" to JA is equal to J:* (i. e., the 
constant contribution on Fig. 5 is equal to unity). 

For thick necks (r -k,), and also for surfaces of the 
type of Fig. l c ,  the analysis is carried out similarly 
on the basis of (21). Now there a re  no small parame- 
ters  whatever, and I@; 1 ~ / 2  -@;I ,. The contribution of 
the Bragg plane remains small (-77) as before compared 
with the contribution of the 'belly," and the main con- 
clusions a re  the same as in the considered case. For 
alkali metals (Fig. 6), in view of the smallness of the 
deviations of JA/J:,,,, from unity, the construction can 
be carried out in the same manner as for impurity 
scattering. 

4. INFLUENCE OF PHONON DRAGGING 

1. For an ideally pure metal with a closed Fermi 
surface, under conditions of phonon dragging, there is 
realized a s  T- 0 the so-called Peierls limit, in which 
the resistance depends exponentially on the temperature. 
In this case an analytic solution can be obtained for an 
arbitrary Fermi surface. 

It is known (Ref. 18, Sec. 81) that, neglecting - 
' 

umklapp processes, the homogeneous kinetic equation 
has a 'drift" solution5' 

QP -kn, (23) 

which i s  not orthogonal in the left-hand side, takes the 
form 

in the presence of an electric field, and is equal to tJA 
[see (1 ) ]  in the case of passage of a sound wave. Con- 
sequently, the inhomogeneous equation has no solution 
for any finite E in the former case and finite W in the 
latter. Nonetheless, even a t  E = 0 and W = 0 the solu- 
tion (23) carries a perfectly finite current. This 
means infinite conductivity and an infinite acoustoelec- 
tr ic current. The acousto-emf is nevertheless quite 
finite. Indeed, in the case of simultaneous presence 
of U" and llA in the left-hand side of the kinetic equa- 
tion, i t  i s  possible to make i t  orthogonal to (23) by 
suitable choice of E and W. This yields the relation 

which must be solved for E. Formally the result is 
the same as i f  (23) were directly substituted in (5). 
Since a (k .n)/ak,, = 1, the same integral appears in the 
numerator of (5) as in the absorption coefficient (9); 
the integral in the denominator is a constant equal to 
the volume Vm contained under the Fermi surface. 
Consequently 

Thus, in this case the anisotropy of coincides with 
the anisotropy of r. With the aid of (9) we can write 

(N, is the electron density). This is none other than 
the Weinreich relation, which is well known for the 
isotropic case. It is obtained from the condition that 
the total forces acting on the electrons by the sound 
wave and by the electric field beeqttal [3]. Since the 
correct conditions for the determination of E~ is the 
vanishing of the total current through the sample, (25) 
i s  incorrect in the general case. In the Peierls limit 
these two conditions a r e  equivalent, in view of the ab- 
sence of dissipation of the quasimomentum. 

The presence of umklapp processes causes o and JA 
to become finite but to increase exponentially with de- 
creasing temperature. Formulas (24) and (25) remain 
in force accurate to exponentially small corrections, 
i.e., the acousto-emf in this region is practically in- 
dependent of temperature. 

If a closed Fermi surface consists of several isolated 
electron and hole cavities, formulas (24) and (25) can 
be generalized in natural fashion. In place of (25) we 
have 

where N, is the number of holes. For a compensated 
metal (No = N,), @ is made finite by the umklapp pro- 
cesses, i.e., in this case the acousto-emf depends ex- 
ponentially on temperature. The physical reason is that 
without urnklapp processes the quasimomentum of the 
system increases continuously under the action of the 
sound wave; the electric field cannot establish equi - 
librium, since the total force it exerts on the charged 
particles is equal to  zero. 

2. In the presence of an open Fermi surface, for di- 
rections parallel to all  the band boundaries that inter- 
sect the surface (if such directions exist), formula (26) 
is valid as before. For the remaining directions we 
can trace only the temperature dependences of JA and 
p, which turn out to be the same as in the Bloch 
case, i.e ., JA - T5 and p = const(T) (since the pro- 
portionality @, o: T5 is preserved, although the dif - 
fusion equation becomes integrodifferentiall'). It is 
curious that in the case of an open Fermi surface and 
No =Nh, p can have different temperature dependences 
for different sound-propagation directions. 

3. The anisotropy predicted for by formula (24) 
differs substantially from that obtained in the 7 ap- 
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proximation [see (811. In particular, the conclusion that 
the sign of lZ"' is connected with the curvature of the 
Fermi surface is more incorrect: according to (24), 
all the sections of a singly connected electron surface 
(see, e.g., the adumbbell" in Ref. 5) make positive con- 
tributions. It is possible to cite an even clearer al- 
though somewhat artificial example. If the Fermi sur-  
face consists of two identical cavities, one electron 
and the other hole, then in the T approximation @ = 0 
and in the Peierls limit @ = 00. 

4. The anisotropy of @ in the Peierls case for al- 
kali metals is shown in Fig. 6, curve 3. A compari- 
son with the dependence corresponding to the Bloch 
limit shows that the dragging of the phonons leads to a 
certain change in the anisotropy of the effect, although 
qualitatively the dependences a r e  perfectly analogous. 

In the case of open surfaces, the dragging of the 
phonons likewise does not lead to a substantial change 
in the anisotropy of JA. An estimate of the derivative 
a@,/ak, is simplest to carry out with the aid of the 
relation 

I 0; I o,2-a=const/Dr, 

which follows from the quasimomentum balance17 (a is 
an integral term that takes into account the phonon 
dragging). By shifting the Brillouin cell by G/2, we 
obtained a similar relation for @:(O), with a constant 
of the same order. Recognizing that a is of the order 
of the mean value of @: on the Fermi surface and that 
Dr>> DokF [see (22)],6' we find that generally speaking 
I @ ; / G / ~  - I@:/ ,. However, the contribution of the belt 
2 on the neck is small a s  before compared with the con- 
tribution of the "belly" (-71, and all  the conclusions of 
the preceding section remain in force. No special cal- 
culation of the anisotropy of JA was made for this case, 
since the calculations turn out to be quite cumbersome. 

5. SlNGULARlTlES IN THE ANGULAR DEPENDENCE 
OF THE ACOUSTO-ELECTRIC EFFECT 

1. It i s  seen from Figs. 4 and 5 that the angular de- 
pendence of JA has singularities that ar ise ,  according 
to Ref. 5, in those sound-propagation directions n a t  
which a change of the topology of the belts takes place. 
An analysis of these singularities can be carried out in 
the general case in analogy with the procedure used in 
Ref. 20 for sound absorption (see also the review8). 

According to Ref. 20, the change of the topology of 
the belts always takes place a t  a parabolic point of the 
Fermi surface in one of two ways: a) the belt degen- 
erates into a point and vanishes (in accordance with the 
terminology of Ref. 20, this i s  called an 0-type point); 
b) the belt acquires a self-intersection point, after 
which i t  breaks into two (X-type point). The 0-type 
point is connected with a jump and the X-type is con- 
nected with a logarithmic singularity in the angular 
dependence of r. 

Let the change of the topology of the belt take place 
a t  a point A, a t  which one of the principal curvatures 
x, vanishes. We connect with A a local coordinate sys- 
tem with the z axis directed normal to the Fermi su r -  
face and with the x axis in the direction of the line of 

the curvature x , .  In these coordinates, the equation of 
the surface near A is of the form 

z=f (x, y )  ='/,x,y2+a,z3+a,y'+~,z'y+$,xy2+ . . . 

The direction of the x axis is chosen such that a, >O. 
The vector n is assumed to lie in the xz plane a t  an 
angle y to the x axis; then the singularities ar ise  a t  
y=O. The pointA is of the 0-type a t  3a,/3, -82,>O and 
of the X-type a t  3a,j3, - p i  <0. 

The singularities in the acousto-emf a r e  determined 
by the integral [see (18)]. In the general case the be- 
havior of @, near the point A is .not remarkable in any 
way, and in particular, (a@,/ak,), # 0, and the singula- 
ri t ies a re  the same as in r: 

[@(x )  i s  the Heaviside function]. However, under condi - 
tions when the e.approximation i s  valid [formula (811, 
a@,/ak, =rfi/rn, and vanishes a t  the parabolic point. 
Consequently, the singularities become weaker. 

It follows therefore that i t  is possible to change the 
character of the singularity by changing the scattering 
mechanism. As is clear from Sec. 2, singularities of 
the type (28) take place in scattering by impurities. A 
transition to scattering from phonons, via changing the 
temperature o r  the impurity density, can lead to the 
onset of singularities of the type (27).7' 

2. One Bragg plane usually leads to the onset of 
parabolic points of the X-type (point A on Fig. l b  o r  lc) ,  
therefore the singularities on Figs. 4 and 5 take the 
form In I y - y, I and (y - y,)ln I y -ye 1 .  The position of 
the critical direction can be easily obtained for the sur-  
face of Fig. l c  under the conditions q<< G/kF and q 
<< ( G  - 2k,)/kF: 

According to this formula, the determination of the 
critical directions for an arbitrary complicated Fermi 
surface, described by a weak pseudopotential, is a 
purely geometric problem; i t  is in these directions that 
the belt cos 8, = 0 on the unperturbed sphere is tangent 
to the Bragg planes. 

0-type points can possibly appear in the case of Fig. 
la, but according to the available data1= they do not ap- 
pear on Fermi surfaces of alkali metals. 

3. As indicated in Sec. 2, the interference between 
the planes is significant only in small regions of k- 
space and usually does not manifest itself in the an- 
isotropy of JA. However, if in such a small region 
there is a parabolic point responsible for a singularity 
in a certain direction, then the influence of the inter- 
ference near this direction can also be not weak. Con- 
sequences of such an interference can be a change in 
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the position of the singularity, i t s  vanishing, the co- 
alescence of several singularities into one, etc. In 
those cases when there is available a Fermi-surface 
picture sufficient to describe clearly i t s  topology, all 
these deviations from the independent-plane approxi- 
mation can be established visually. 

In noble metals, the interference between the necks 
can cause the belts of the parabolic points around 
neighboring necks (which a r e  present in the absence of 
interference) to m r g e  into a single closed curve; as a 
result the three singularities of Fig. 5 degenerate into 
one, which turns out to be in the symmetrical direction 
[loo] (see Ref. 21 for details). An analysis of the 
topology of the Fermi surface of noble metals with the 
aid of the Halse analytic representation15 shows that this 
merging actually takes place in Cu and Au, but not in 
Ag. The correct positions of the singularities for Cu 
a re  shown in Fig. 5 by arrows. 

6. CONCLUSION 

It is clear from the foregoing analysis that the aniso- 
tropy of the acoustoelectric effect is analogous to the 
anisotropy of sound absorption in the case of scattering 
of electrons by phonons, but differ substantially from i t  
in the case of scattering by impurities; in the latter 
case the anisotropy of i s  reasonably described by 
formula (8), obtained in the 7 approximation. 

We return now to the question raised a t  the start  of 
the article: what information can be obtained with the 
aid of the acoustoelectric effect. It is most natural 
to use i t  to reconstruct directly from experiment, on 
the basis of formula (51, the distribution functions iP, 
[or the anisotropic relaxation time 7, introduced in 
accordance with (?)I, which is of great importance for 
the kinetics of metals. To this end, to be sure,  i t  i s  
necessary to determine independently the parameters 
of the Fermi surface and the deformation potentials A,. 

The reconstruction of other quantities (for example, 
4) from J" i s  made difficult by the dependence of J" 
on the character of the scattering: this i s  where J" 
falls short compared with r. However, the contribution 
made to I' by the most interesting regions of k-space 
(the vicinities of the Bragg planes) is weakened to the 
extent that the factor g = ( V,  I /&= is small, whereas 
the contribution to J" (in scattering by impurities) is of 
the usual order of magnitude. Therefore, if the mea- 
surements a re  made with the same accuracy, the aniso- 
tropy of J" contains more significant information; on 
the other hand, certain quantities (the effective masses) 
cannot be obtained a t  all  from r. The realization of 
this program calls for a realistic estimate of a,. For 
example, as is clear from the foregoing analysis, in- 
terpretation on the basis of the 7 approximation is re -  
liable to the extent that ,!? does not depend on the sort  
of impurity. It is more advantageous to determine 7, 
from other experimental data, but one must see to i t  
that this quantity be introduced in identical fashion. 
We emphasize that the foregoing pertains only to scat- 
tering by impurities; in scattering by phonons, the con- 
tribution made to J" by the Bragg planes is small and 
the acoustoelectric effect has no advantages whatever 

compared with sound absorption. 

The author thanks N. V. ~avar i t sk i r  for calling his at- 
tention to the topic, M. I. Kaganov and Yu. K. Dzhikaev 
for reading the paper in manuscript and for  a number of 
valuable remarks and also A. A. Altukhov and Sh. T. 
Mevlyut for numerous discussions. 

')A similar approach was used by ~ a ~ a n '  for an isotropic 
electron-dispersion law. 

')Use was made also of the function t& = U(q) ,  which follows 
from the proposed spherical symmetry of the pseudc+poten- 
tial U ( r )  in coordinate space. Deviations from this approxi- 
mation can be substantial for crystals with covalent and 
strongly polar bonds, while for metals i t  is  assumed to be 
insufficient. 

')This criterion is obtained if the first three terms a r e  re- 
tained in the expansion of U(cos Ow#)  in spherical harrnon- 
ics. 

4, The author thanks R. N. Gurzhi for pointing out this circum- 
stance. 

5, In cases when the dragging is  substantial, the operator i in 
(2) is understood to be the operator arising in the right-hand 
side of the equation for the electrons after eliminating from 
it the phonon distribution function (Ref. 18, 682). 

'1 No account was taken in Ref. 16 of the change of the Fermi 
velocity on the neck ( v u f l h r ) ,  and it  was therefore con- 
cluded that @; is  large on the neck." At ln(l/q) >> 1, how- 
ever, the results of Ref. 17 remain valid, since @: becomes 
large at  a distance -qkp from the neck (see the end of Sec. 
3). In the general case, when the parameters of the neck a re  
determined not by one but by several Bragg planes, the situa- 
tionv-vp is  possible for long necks (see the estimate in Ref. 
14). 

'1 Formally, even a t  very small deviations from the T approxi- 
mation, the singularities take the form (27), but their power 
is decreased to the extent of the indicated smallness, and 
even slight smearing makes them completely indistinguish- 
able. The power of the singularitites of type (28), however, 
has the usual order of magnitude, and i t  is  this which makes 
it possible to reveal them. 
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