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We consider the propagation of whistler waves in a stratifA plasma in a constant magnetic field which is 
' 

directed at right angles to the density gradient. We make a detailed study of the corresponding WKB 
solutions of the Maxwell equations, on the basis of which we elucidate the conditions for the transformation 
of different wave branches into one another. We find expressions for the transformation coefficients. in the 
framework of the WKB method we obtain a complete solution of the problem of the passage of a whistler 
wave through a smooth transition layer taking into account transformation effects. Using these results we 
discuss the conditions for waveguide propagation of whistler waves and we indicate the ensuing consequences 
for nonlinear self-focusing. 

PACS numbers: 52.40.Db, 52.35.M~ 

1. INTRODUCTION axis. The process taking place in the vicinity of this 

The present paper i s  devoted to the study of some ef- 
fects which ar ise  when whistler waves propagate in an 
inhomogeneous plasma; these effects (called tunneling 
transformation in what follows) a r e  in our opinion of 
basic interest, and have also have a value for applica- 
tions to a number of problems connected with the prop- 
agation of whistlers in the magnetosphere, of plasma 
waveguides, in self-focusing, and so on. 

In a magnetoactive plasma the component of the wave 
vector along the direction of an inhomogeneity is,  in 
general, not a unique function of the parameters of 
the medium so that one can speak of several branches of 
oscillations. The properties of these branches, for 
example, the conditions for total internal reflection, 
the direction of the group velocity, and so on, a r e  
different. If the points where one branch changes to 
another lie on the real axis, a wave transformation oc- 
curs in those points and is characterized by a change 
in some of its properties. In a number of cases, how- 
ever, these points lie in the complex plane. In the 
framework of geometric optics the transformation of 
one branch into another is  then impossible. Nonethe- 
less ,  from the point of view of wave theory these 
branches a r e  not isolated: if a t  x =  -- there exists one 
branch, a s  x -  .o we get a superposition of several 
branches. When using the WKB method one can ob- 
serve transitions between branches, using an approach 
called in quantum mechanics the "method of complex 
classical trajectories" (Ref. 1 , 0  52). Among a num- 
ber of effects considered by this method we have, for 
instance, above-barrier reflection and various kinds of 
tunneling transitions related to the processes studied in 
the present paper. This is  the reason for the termino- 
logy suggested by us. 

An exact statement of the problem and a derivation of 
the basic equations in a form convenient for us,  and 
also their solution by the WKB method, a r e  contained 
in Sec. 2. Here we also study the different branches 
of the oscillations. In Sec. 3 we consider the case when 

point is the total internal reflection of a wave, accom- 
panied by its transition to another branch. In Sec. 4 
we consider the case where the transition points lie in 
the complex plane, i. e. , when a tunneling transforma- 
tion is possible. We obtain general expressions for the 
transformation coefficients. We consider in Sec. 5 a 
typical example of reflection and refraction of a wave 
incident upon a smooth transition layer with decreasing 
density, and evaluate on the basis of the general theory 
all the transformation coefficients. Using these results 
we discuss in Sec. 6 the conditions for waveguide prop- 
agation of whistler waves and the consequences follow- 
ing from this for nonlinear self-focusing. The effects 
of the tunneling transformation lead here to results dif- 
ferent from those obtained earlier on the basis of geo- 
metric optics or of a parabolic equation (in the theory of 
self-focusing-the non-linear ~chrb'dinger equation). In 
particular, it turns out that in channels with an in- 
creased plasma density, oriented along an external : 
magnetic field, waveguide propagation is, strictly 
speaking, impossible for any frequencies, owing to the 
tunneling transformation. (From the point of view of 
the "classical" theory2 such channels a r e  ideal wave- 
guides at w < 0 ./2.) If, however, the width of the 
channel i s  sufficiently large compared to the longitudin- 
a l  wavelength and frequency i s  not too close to 0,/2, 
then the energy leakage is  small so that one can speak 
of "quasi-waveguides." The quantitative results ob- 
tained by us  enable us to estimate simply their quality 
which vanishes a s  o - o ,/2. 

2. BASIC EQUATIONS AND THEIR SOLUTION BY 
THE WKB METHOD 

We assume that the plasma density and hence the 
electron Langmuir frequency w, i s  a function of a single 
coordinate, say x ,  while the electron gyro-frequency 
w ,  = const. We choose the z-axis in the direction of 
the external magnetic field. The electric field of a 
monochromatic wave of frequency w [time dependence 
exp(-id)] satisfies the equation 

the point where two branches merge lies on the real grad div E - V ~ E = ~ = C - ~ ( ~ E ) ,  (2.1) 
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where c i s  the permittivity tensor 

e - i g  0 

the components of which a t  ~ , ( r n , / r n , ) ~ / ~ < <  w <  w. 
<< o, a r e  equal to 

where 

Solving Eq. (2.1) in Cartesian coordinates and drop- 
ping the factor exp(-iwt), we look for the components 
Ex and EI in the form 

~ . = f  ( x )  exp ( i o p z / c ) ,  E , = i ~ ( x )  exp ( iopz lc)  . (2.4) 

We then put from (2.1) the following basic set of equa- 
tions: 

where 

@ ( x )  =ef ( x )  f gF ( x ) .  (2.6) 

From the equations div(?E) = O  and H = - i ( c / w )  curl E 
it follows that 

We shall assume the medium to be slowly varying, a s -  
suming that cu = cu(px), where p is  a small parameter. 
After changing to a new argument w = px we look for a 
solution of the set  (2.5) by the WKE method in the form 
of the vector 

where q(w) i s  a two-component vector which we can 
expand in powers of p :  

q ( w )  = q ( ~ ' ( w ) + p q ' ~ ~ ( w )  +pZq(21 ( w )  + . . . (2.9) 

From the set  (2.5) we get for the components of q'O'(w) 
a set  of algebraic equations which a r e  the same a s  the 
equations for the vector ~ ( w )  in a homogeneous med- 
ium : 

p2gn ) q(01 (tu) = eq2q(O1 ( w ) .  
("e;p" & (,-,) - ,z (2.10) 

Equating the determinant of this set to zero we get the 
following expression for q2: 

2 a 1  P 
q , , ~  = - - + - - 1 p2 F -(p2-4a)"' 

u ( 2 ) 2uz 
(2.11) 

(the minus sign corresponds to q,, the plus sign to 9,). 
The corresponding refractive indices a r e  

so that 

n,, n2=a/u2= I q 1. (2.13) 

Using (2.11) and (2.12) we find the solution of the set 
(2.10) and it i s  convenient for us  to write it in the form 

q(O1 (q*) = C(w)qk-'"(p"4a)-" ~ ( q , ) ,  k-1.2, (2.14) 

where C(w) i s  an arbitrary scalar factor and ~(q, )  the 
two-dimensional vector 

and the w-dependence of q, is  given by Eq. (2.1 I ) ,  
where a = ~ ( w ) .  

The scalar factors in (2.14) and (2.15) a r e  chosen 
such that the x-component of the Poynting vector ll 
= (c /b)Re[E x H*] has the simplest expression. In- 
deed, substituting (2.7) into II, we get 

Changing to the variable w and evaluating (2.16) in the 
zeroth approximation in p by means of (2.81, (2.9), 
(2.141, and (2.15) we find, using Eqs. (2.12) and (2.13), 
that 

It follows from the equation divn = 0  that in our case 
II,=const. From (2.17) we then get the identity C(w) 
= const [it is clear from (2.8) that without loss of gen- 
erality we can assume the phase of C(w) to be constant]. 
We note that this identity i s  also obtained from the con- 
dition that the set of equations for the components of 
qU)(w) from (2.91, which we can obtain from the set 
(2.5) in the next order in p ,  has a solution. 

The general solution of the set (2.5) in the lowest 
WKB approximation can thus be written a s  a linear com- 
bination of solutions of the form 

where C=const, while ~ ( q , )  is  given by Eq. (2.15). 

We note also that it follows from (2.17) that the 
Poynting vector and the wave vector have in the same 
direction when q =q, and a r e  oppositely directed when 
q =q, relative to the external magnetic field. 

It follows from Eq. (2.11) that the graphs of the 
transverse wave number q a s  functions of a have a t  
constant p and u the form shown in Fig. 1, 

FIG. 1. Transverse wave number q as function of the dimen- 
sionless density ff when u< 1 /2 (a) and when u > 1 /2 (b). 
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with a,>> 1 [see (2.311. (3.2) the form 

To find the conditions for the applicability of the WKB 
solution (2.18) we substitute it into the set (2.5). Drop- 
ping terms containing a" and a ", we require that after 
cancelling the exponential factor there remain only 
those terms which leads to expression (2.11) for q2. 
Taking into account the inequalities [see Fig. 1 and Eq. 
(2. l l ) ]  Iq, I S Iq,I b< 4) and lq, 1 Iq, 1 (u> 31, we find 
that the above-mentioned requirement is  satisfied, if 

where k = l  whenu< i a n d k = 2  whenu>i .  

This i s  the required condition for the applicability of 
the WKB solution (2.18). It i s  clear that it i s  not satis- 
fied near the special points where a =a, and a =p2/4 
(Fig. 1). 

In the vicinity of the point where a =a, we have ac- 
cording to (2.11) 

and inequality (2.20) takes the form 

On the other hand, in the vicinity of the point where 
a and Iq, 1 = Iq, I = Iq, l (Fig. 1) we find from 
(2.20) when u < 4  ') 

da l o p  Ix I aTT ylp'-4aI ( 1 - 4 ~ ' ) "  

It follows from (2.21) and (2.22) that the region of ap- 
plicability of the WKB solution in the vicinity of the sin- 
gular points narrows down a s  u - 3. 

3. REFLECTION FROM THE POINT WHERE a=p2/4 

We consider a wave with u < 3 propagating in the direc- 
tion of increasing density in the vicinity of the singular 
point where a =p2/4 (Fig. la). Without loss of general- 
ity we may assume that this point is  the point x=O near 
which 

It follows from (2.11) that for x < 0 the values of qf,, 
are  real and for x > 0 complex conjugate, and we as-  
sume that 

Let q=q, in the incident wave. We shall look for the 
WKB solution of the set (2.5) for x <  0 in the form [see 
(2.1811 

where the first  term corresponds to the incident wave 
and the second one to the reflected wave [see the re-  
mark after Eq. (2.18)]. The coefficients C, and C, 
must be chosen such that when x >  0 (3.3) changes into 
the wave which is damped a s  x - .o. At sufficiently 
large positive x the latter must have in agreement with 

cp(z) - Cqa-" (pz-4a)-" x ( q , )  exp (3.4) 

To determine the connection between the coefficients C,, 
C,, and C we must trace how the function (3.4) changes 
when we change continuously from x > 0 to x < 0. As, 
however, the expressions (3.3) and (3.4) a r e  not valid 
for small x, this transition must proceed in the com- 
plex plane, a s  is  done in Zwaan's .method (see, e. g. , 
Ref. 1). 

To simplify the calculations we assume temporarily 
that the singular point l ies in the complex plane, put- 
ting in (3.1) 

x+t-te, (3.5) 

where E > 0 is  a small quantity; after finishing the cal- 
culations we let E - 0. 

We now introduce a new variable 

and assume that -u<cp=arg w -Cu. 

We show a t  the end of this section that the WKB ap- 
proximation is valid also when Iw I << 1, provided p2D 
is sufficiently large. For small lw l we get from (2. l l ) ,  
using (3.11, (3.51, and (3.6) 

One checks easily that a s  E - 0 the values of q,,, on the 
real  axis will be in exact agreement with the rule for the 
signs in (3.2). 

We change in the solution (3.3) and (3.4) to the var- 
iable w and make the transition above the singular point 
for Iw 1 = const << 1 and for increasing argument of w 
from zero to I (Fig. 2). In that case ( e " / ~ ) ' / ~  - ( I ~ l e ~ i ~ ) ~ / ~ = - l w 1 ~ / ~ = - ( ~ ~ ' w ) ' / ~ ,  i .e. ,  

Correspondingly, expression (3.4) changes into the 
first term of (3.3) with a coefficient C,=C exp(-ia/2). 

The second term in (3.3) ar ises  a s  a result of the 
Stokes phenomenon (see, e. g. , Ref. 3). To understand 
the cause of this phenomenon we determine the Stokes 
line for our problem, taking into account its specific 
properties. To do this we introduce the quantity 

FIG. 2. Direction of contours and Stokes lines in the vicinity 
of the point where cu =p2/ 4. 
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For small values of the difference $-u this condition 
is  very stringent. 

FIG. 3. Integration contours for the evaluation of the tunnel- 
ing transformation coefficients. 

which i s  the ratio of the exponentials of the correspond- 
ing WKB solutions (2.18). For small lw l 

We now define the Stokes line a s  the lines where K is 
real ,  i.e. , according to (3.101, where sin(3cp/2)= 0. 
For small iw I these lines a r e  three rays S, (k = 1,2 ,  
3) (Fig. 3) corresponding to the angles cpl = 0, cp, 
= 2 ~ / 3 ,  cp, = -2u/3. It also follows from (3.10) that on 
the lines S, and S, the modulus of K i s  a minimum and 
on the line S, a maximum. According to the meaning 
of the Stokes phenomenon this means that for the above- 
indicated motion in the upper semi-circle (Fig. 2) on the 
line S, the solution with q =ql "appearsw and changes in- 
to the solution with q = q, a s  cp - r .  This explains the 
appearance of the second term in (3.3). To find i ts  
coefficient we shall move along the lower semi-circle 
in Fig. 2 where cp changes from zero to -u. In that 
case (eirw)'/" lw 11/2=(eirm)1'2, i . e . ,  qL- qL &=1,2) ,  
(p2 -4a)"l'- (p2 -40)-If4 and expression (3.4) changes 
into the second term in (3.3) with coefficient C, = C. 
However, the first  term in (3.3) (the coefficient C, of 
which we have already found) a r i ses  when we cross  the 
Stokes line S,. 

Putting now E - 0 in (3.5) we obtain for r ea l  x the 
solution given by Eqs. (3.3) and (3.4). 

The arguments given above do, of course, not con- 
tradict the uniqueness principle: the form of the asymp- 
totic solution (3.3) i s  independent of the direction in 
which we go round the singular point, a s  the latter i s  
only the point where the WKB approximation i s  inap- 
plicable, but is  not a singular point of the initial set  of 
Eqs. (2.5). The only difference between the two transi- 
tions i s  that the first  one enables us to determine C, and 
the second to determine C,. 

The energy fluxes in the incident and reflected waves 
in (3.3) a r e  equal. Indeed, according to (2.17) 

i .e. ,  in total internal reflection occurs the case con- 
sidered. 

Finally we point out that the condition for the applicab- 
ility of the WKB approximation (2.22) a t  lw I << 1 takes 
in this case the form 

We can similarly solve the problem of incidence of a 
wave with q = -9, upon the point where LY =p2/4. In that 
case q = -ql for the reflected wave and for the field 
beyond the point of reflection [i.e., in Eq. (3.4)] q 
= -9,. Here, too, total internal reflection occurs. 

In both cases the change in q in the vicinity of the re-  
flection point takes place continuously in agreement 
with Fig. l a .  

4. TRANSFORMATION OF WAVES CAUSED BY THE 
TUNNELING TRANSITION 

The process considered in the preceding section can 
be considered to be a complete transformation of the 
branches q, - q, (i + k) a t  the point where LY =p2/4. It i s  
clear from the method described above that the trans- 
formation of q, into q, occurs in those cases when the 
branch point lies in the complex plane. The process 
q, - q, can then be considered to be the result of the 
passage of a ray through the complex plane, similar to 
the classical trajectory of a particle when passing 
through a potential barrier.  We can therefore say that 
the transformation of the modes in the case considered 
i s  caused by a tunneling transition. 

We consider, for instance, the tunneling transforma- 
tion of a wave with q =ql and u < $ propagating in the 
positive direction of the x-axis. The asymptotic be- 
havior of the wave field a s  x - - then has the form 

Cq,-"(p2-4a)-~14 x ( q I )  exp (:! 2 - qi d~ ) , 
where x, i s  an arbitrary point. We shall look for the 
asymptotic behavior as x -  -- in the form 

+ C,q,-" (pa-4a)-" x(qa)exp (.:I z- ql dx ) . (4.2) 

The first  term in this expression corresponds to  a wave 
propagating in the positive direction while the second 
term according to the remark following (2.18) describes 
a wave propagating in the negative direction. 

To find the coefficients in (4.2) we continue (4.1) into 
the lower half-plane and afterwards go to x -  -.o along 
a contour enclosing the point x, closest to the real  axis, 
where LY(X,) =p2/4 . After going along the contour in- 
dicated the function q,(x) changes into q,(x) and (4.1) 
goes over into the second term of (4.2). Taking for the 
sake of convenience x, = Z1 =Re xl we find that 

where the contour L is drawn in Fig. 3. When making 
this transition we certainly intersect a Stokes line, a s  
a result of which the first  term in (4.2) ar ises  when a 
coefficient C,. We can determine the latter by moving 
along the real  axis. This gives 

C, =C. (4.4) 

The transformation coefficient, i. e. , the ratio of the 
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energy fluxes in the reflected and incident waves, i s  
determined by means of (2.17). After simple transfor- 
mations we get 

We now show that T <  1. To do this we consider the 
function 

$(yl== Im*'r  ( q l - q a ~ h .  
I, 

It i s  clear that $'(y) =Re(q, -q2). It then follows from 
the definition of x, that +(y) reaches an extremum in the 
point y = Imx, while in the range Imx, 9 y < 0 the func- 
tion $(y) is monotonic. As +(0)= 0 and $'(O) =q, -q, 
< 0 (this is clear from Fig. l a ) ,  we have $( y ) >  0 for 
Imx, 9 y < 0. Hence, the argument of the exponential in 
(4.5) i s  negative, i. e . ,  T < 1,  i. e. , the second term in 
(4.2) is exponentially small compared to the first one. " 

We note that one can give a reason for a shift of the 
contour into the lower half-plane to find C2 by consid- 
ering the transition from (4.2) to (4.1). When moving 
into the lower half-plane the ratio of the first term in 
(4.2) to the second, which is  proportional to 

decreases and this makes it possible to "notice" the 
second term, notwithstanding the smallness of C, (cf. 
Ref. 1,847). 

One can similarly also consider other cases, for in- 
stance, the transformation of a wave with q =  -q,, in- 
cident in the negative direction, into a wave with q 
= -9, where, due to (2.17) the energy flux is positive. 
In this case the appropriate asymptotic behavior of the 
wave a s  x - -4 is obtained from (4.1) by replacing i by 
-i. However, in that case one must continue the pas- 
sing wave into the upper half-plane along a contour en- 
closing the singular point x: closest to the real  axis in 
the upper half -plane where q, =q2. As a result we a r e  
led to an asymptotic behavior a s  x - obtained from 
(4.2) by replacing i by -i. The transformation coeffi- 
cient now has the form 

where ?;=Rex:. The smallness of the coefficient T is  
proved in the same way a s  before. 

One can similarly consider the case of the singular 
point where q,(x)=O. If that point lies on the real axis, 
total internal reflection of the wave with q =q, occurs 
in it (Fig. la). If, however, it lies in the upper half- 
plane, we a re ,  by analogy of the earlier considerations, 
led to an incomplete q, - -q, transformation, i. e. , if 
the wave has the asymptotic behavior (4.1) a s x - a ,  in the 
asymptotic expression a s  x- -a there occurs an 
additional term proportional to 

This process is  completely analogous to above-barrier 

r e f l e c t i ~ n ' * ~ * ~  and the transformation (reflection) coef - 
ficient now has the form 

In particular, if q,(x) vanishes on the real  axis, x, = 5, 
and T =  1. In that case, the region bordering the point 
x, can also be studied using Airy functions. 

If, however, the point where q,(x) = 0 lies in the low- 
e r  half -plane, it corresponds to the transformation 
-9, - q,. The corresponding coefficient T i s  given by 
a formula similar to (4.7). 

In a similar fashion one considers the case3' when 
q2(x) = 0 for u > i. 

When there a r e  other singularities present of the 
functions q,(x) (such a s  poles) it is necessary to take 
them also into account provided they lie no farther from 
the real axis than the singularities considered above. 

5. REFLECTION AND REFRACTION OF A WAVE 
INCIDENT ON A SMOOTH TRANSITION LAYER 

An interesting and important example in which the 
above results can be used is  the incidence of a wave 
upon a smooth transition layer with a decreasing den- 
sity, specified, for the sake of argument, by the ex- 
pression 

where A, <A,< 0 [A, -A,>> 1 because of (2.311. We shall 
assume that in the incident wave q =q, and u < i, with 
O(X) +p2/4 for a11 -4 < x <  a. We write 

where the points x, and x, a r e  defined by the relations 

and a, is  given in (2.19). Thus, ql(xo) = 0 and ql(xl) 
=q,(x,). We shall assume that 1 r01 < 1 and 1 T, 1 > 1. 

' 

The former means that the point x, where total reflec- 
tion of the first  branch occurs lies on the real  axis. 
The second condition means t b t  the point x, where the 
first  branch changes into the second one lies in the 
complex plane. The conditions IT,, I<  1 and IT, 1 > 1 lead 
to the following limits on the quantity p2: 

[we recall that u ( l  -u) f + eve~ywherel. 

We now introduce instead of A, a new constant b 
= b(p,u,Az): 

and express A, in terms of b and 7, = ( a 1  -p2)/az.  
We then get from (2.11) and (5.1) 

From what we have said earlier and Fig. 1 it follows 
that the graph of q1,,(7) must have the form shown in 
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FIG. 4. Transverse wave number q a s  function of r = tankh/D) 
for the density profile (5.1). 

Fig. 4. The region of propagation of waves with q=*q, 
is  -- < x <  x, (-1 < T <  To), and waves with q =* q, can 
propagate a t  -- < x < a, which corresponds to -1 < T 

< 1. The region T, < T< -1 is not realized on the real  
x-axis. Equation (5.2) for x, has an innumerable set  of 
complex roots: 

x, 1 /?,I-I n 
-=-In- - t i - - +  inn; 
D 2 l ? , l t l  2 

Apart from (5.7) there a r e  also other singularities of 
q,,, in the complex plane, viz., the points where T=-. 

These occur when x/D = in/2 +inn, where n= 0, *I, *2, 
. . . The analysis of the behavior of the function (5.6) in 
the vicinity of these points shows that they a r e  not im- 
portant for transformation processes. 

There remain thus the two points (5.7) which a r e  
closest to the real  axis, for which Imx,/D =rn/2. Ac- 
cording to the results of the preceding section they 
a r e  responsible, respectively, for the tunneling trans- 
formations q, - q, and -ql - -9,. On the other hand, in 
the point x, = artanhr, (one verifies easily that T, = T, 

+ 1/b) there occurs total reflection: q, - -q,. When 
x > x, the quantity q, becomes pure imaginary. 

As a result it i s  clear that when a whistler wave with 
q=q, i s  incident upon the layer (5.1) the asymptotic be- 
havior of the complete solution &(XI = {@(XI, F(x)} a s  
x-x,- has the form 

+ ~ . q i ' ~ ( p ~ - 4 a ) - '  x(q2)exp (-i l j  qz dx) , (5.8) 
=o 

while a s  x - x, - -.o 

+ C/q,-" (pz-4a) -" x(qZ) exp z - q, dz: . c.:i ) 
Here C, i s  the amplitude of the incident wave (q =q,), 
C; that of the reflected first  branch (q = -q,), and Ci  
that of the second branch (q =q,) which is formed a s  a 

result of the tunneling transition q, - q, and which i s  
moving in the negative direction. Correspondingly, in 
(5.8) C, i s  the amplitude of the wave formed as a re -  
sult of the tunneling transition -9, - -9, and moving in 
the positive direction. 

The coefficients in (5.8) and (5.9) can be expressed 
in terms of C,. When determining C and C: it i s  suf- 
ficient to repeat verbatim the traditional arguments 
used in the case of total reflection; this gives1 

The coefficients C, and Ci can be expressed, respec- 
tively, in terms of C; and C, by using Eq. (4.31, mak- 
ing in i t  the necessary transformations. The coeffi- 
cient for the transformation of the branch -9, into the 
branch -q,, propagating "forward" is calculated using 
Eq. (4.6) and can easily be changed to the form 

where 

When evaluating the integrals in (5.12) we use the re-  
lations 

and change to a new integration variable tan y = s. As a 
result we get 

(we recall that T,< -1). It i s  convenient to assume 
firstly that k =2. The integrand in (5.14) has then only 
one singularity in the upper half-plane-a pole at s = i . 
This makes it possible to close the integration contour 
in the upper half-plane and to get the answer a t  once. 
Afterwards we can extend the result also to the case 
k = 1. We write the final expression in the form 

- { ( 1 - 4 u ~ ) ~ ~ + [ p ' - 4 ( ~ ~ + ~ , ) 1 +  2(-1)bp[pz-4(A1+A2) ]")",k-i,2. 
2 s  

(5.15) 
Similarly we evaluate the coefficient for the trans- 

formation of the branch q, into the branch q, propagat- 
ing "backwards," T, = IC;/C, 12. Starting from Eq. 
(4.5) we find that T'= T. 

Equations (5.11) and (5.15) thus give the complete 
solution of the problem of the transformation of the first 
branch into the second one for the layer (5.1). 

We see  that the transformation coefficient T is ex- 
pressed in terms of four dimensionless parameters: 
w H D / ~  ,u, a,, = a(---) =Al +Az, and the longitudinal 
wave number p which determines the value a(x,)= a, in 
the point of total reflection of the ray q, [see (2.19)]. 
We can consider the quantity a(x,) a s  the minimum di- 
mensionless density in the region where the branch q, 
propagates (Fig. 1 ). 

One checks easily that T is a monotonically decreas- 
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ing function of p .  This makes it possible to simply 
make clear the behavior of T in the admissible range 
(5.4) of values of p. Using the fact that 

we find that 

As u - the width of the interval (5.4) tends to zero, 
and T,, increases, approaching unity, according to 
(5.18). 

6. CONCLUDING REMARKS 

We have studied above effects not been taken into ac- 
count in whistler-wave-propagation theories based upon 
geometric optics o r  on parabolic types of equations 
(linear and nonlinear ~chrGdinger equations). From 
the latter it follows, in particular, that total internal 
reflection takes place when a whistler wave q ,  with o 
< w  ,,/2 is incident upon a plasma layer parallel to a 
magnetic field and having a decreasing density. We 
verified that, indeed, part of the energy of the incident 
wave passes into the region of lower density thanks to a 
tunneling transformation into the second branch. 4 '  

As one application of the results we dwell upon the 
confinement of whistlers in plasma waveguides, assum- 
ing the latter to be oriented along the magnetic field. 
In such waveguides the density may be either higher o r  
lower than that of the surrounding plasma (we can call 
them, respectively, "compression" or "rarefaction" 
waveguides). The first ,  in particular, a r e  realized in 
the so-called magnetospheric ducts-plasma tubes with 
an increased density in which according to existing ideas 
whistler atmospherics with w  < o , / 2  a r e  channeled. 
From what has been said above it follows that the guid- 
ing of such waves in ducts is incomplete. It i s  clear 
from (5.18) that the loss of energy due to the tunneling 
transformation must increase a s  w - o $ 2 .  Similar 

conclusions can be reached also for compression wave- 
guides formed a s  the result of non-linear self-focusing 
of a whistler wave with w < w , / 2 .  The self-focusing ef- 
fect must be cut off the sooner, the closer the frequency 
i s  to w H / 2 .  When w >  w  ,/2 whistlers cannot be confined 
in plasma tubes with increased density. As far a s  rare-  
faction waveguides a r e  concerned, in principle, they 
channel ideally both when o < 0 ./2 and when o > w  , /2.  
We shall consider separately in more detail the propaga- 
tion of whistlers in plasma waveguides. 

In conclusion we note that the effects of a tunneling 
transformation can occur not only for whistlers , but 
also for other kinds of waves in inhomogeneous media. 

l ) ~ h e  propagation of waves in the vicinity of the point where 
ff =p2/ 4 is impossible when u >1/2 (see Fig. lb). 
' ~ r o m  energy conservation it follows that ICi I > I C I. How- 
ever, because T is small, the difference between IC1 I and 
IC I is beyond the limits of the first WKB approximation. 
We a r e  thus led to (4.4). We note also that the second term 
in (4.2) should be taken into account only when it exceeds the 
e r ror  in the determination of the first term in (4.2). This 
is just the reason why Eq. (4.2) makes sense only for suffi- 
ciently large negative x. 

3'0ne checks easily that q2(.d has no zeroes when u < 1/2. 
4 ) ~ h e  tunneling transformation is impossible a s  a matter of 

principle in geometric optics; on the other hand, in the 
Schradinger-equation approximation the branch q, is lost. 
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