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The problem of the Jahn-Teller effect for an impurity in a twofold orbitally degenerated state in the case in 
which allowance is made for the linear and quadratic interactions of the impurity electrons with the crystal 
phonons is solved. The electron-phonon interaction leads to the appearance of a many-electron formation of 
the polaron type localized in the vicinity of the impurity, and either executing a damped motion, or tunneling 
between the minima of the adiabatic potential. The energy spectrum and the properties of the vibronic states 
are investigated. As an example, the effect of the relaxation transitions not involving spin flip on the EPR 
spectrum is considered. 
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1. INTRODUCTION 

The impurity characteristics of crystals activated by 
Jahn-Teller (JT) ions include a number of specific 
properties that manifest themselves in a broad range of 
experiments.' TO interpret these experiments, we nor- 
mally use the so-called cluster approximation, which 
consists in the replacement of all the vibrational de- 
grees of freedom of the crystal by one o r  several effec- 
tive modes.' This approximation satisfactorily de- 
scribes the integral characteristics (for example, the 
envelope of the impurity absorption or luminescence 
bands), but cannot serve as a basis for the analysis of 
the effects connected with the fine structure of the vi- 
bronic spectra. In particular, there is lost in the clust- 
e r  treatment information about the JT-interaction-in- 
duced reconstruction of the projected density of states 
of the crystal.3 This circumstance makes it necessary 
for us to take the interaction of the impurity electrons 
with the entire phonon continuum into consideration in 
discussing the majority of experimental situations. 

The multimode JT problem is usually simplified by 
taking only the linear vibronic interaction into account. 
It i s  precisely within the framework of such a model that 
the previous attempts to investigate the multimode JT 
effect for an orbital doublet were made.35 As a result 
of this approximation the symmetry turns out to be high- 
e r  than the original symmetry, and this leads to addi- 
tional degeneracy of certain excited vibronic states. Al- 
lowance for the quadratic electron-phonon interaction 
removes the "accidental" degeneracy, and additional vi- 
bronic states appear in the energy spectrum. In those 
cases in which the experiment under discussion does not 
allow the observation of, or resolution of the spectral 
transitions into, the indicated additional levels (because 
of the selection rules in the case of an optical transi- 
tion, etc.), or  in which the presence of such levels has 
no effect on the observables (some EPR situations; see 
below), we can restrict ourselves to the linear vibronic 
interaction. 

It is,  however, known from the results of investiga- 
tions of molecules that a JT system acquires essentially 
new properties even when, in the presence of a strong 
linear vibronic coupling of the orbital E-term states to 

the E-vibrations, allowance is made for the weak quad- 
ratic coupling. The quadratic interaction leads to the 
appearance of three minima in the nuclear potential en- 
ergy. In the presence of a sufficiently strong vibronic 
coupling, the system may become localized in one of the 
minima, and subsequently tunnel through the potential 
barriers, which leads, in particular, to the tunneling 
splitting of the vibronic levels. It i s  natural to expect 
that such anomalies in the behavior exist also for multi- 
mode systems, and, consequently, in the general case 
we should, take the quadratic vibronic coupling into ac- 
count when interpreting experiments on impurity-con- 
taining crystals, for which the fine vibronic structure 
of the energy spectrum is of current interest. 

In the present paper we solve the problem of the JT  
effect for an orbital doublet in  the case of a strong lin- 
ear and a relatively weak quadratic interaction between 
the impurity electrons and crystal phonons with an ar- 
bitrary dispersion law. As an example, the results ob- 
tained a r e  used to analyze the temperature dependence 
of the EPR spectra of an impurity ion in a twofold orbi- 
tally degenerate state. 

2. THE VlBRONlC SPECTRUM OF AN IMPURITY- 
PHONON SYSTEM 

Let us consider an impurity center in a crystal whose 
symmetry admits of the existence of an electronic orbi- 
tal doublet. We shall limit ourselves to the discussion 
of centers of small radius, and assume that the orbital 
doublet i s  separated by a substantial energy gap from 
all the remaining electronic states. Assuming, for sim- 
plicity, that the electrons of the impurity a re  localized 
inside the first coordination sphere, we can write the 
Hamiltonian of the impurity-phonon system in the form 

1 
H = - C (p?+~aqx'q.')+V(Qi.o.-Qie~z)SW[(Qi?-Qsr2)~z-2QtsQis~zI. 

,, 
(1 

Here H i s  the sum of the Hamiltonian for the crystal vi- 
brations and the operator for the first- and second-or- 
der electron-phonon interactions. The summation over 
n implies the consideration of all the values of the wave 
vector and all the branches of the normal-mode vibra- 
tions of the lattice with the impurity; the w, a re  the fre- 
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quencies of the normal-mode vibrations of the impurity- 
containing crystal, the q, and p, are  the normal coor- 
dinates and the corresponding conjugate momenta, Vand 
W are  the linear- and quadratic-vibronic-coupling con- 
stants, the Q1, = C,a,(ly)q,, (Y = 8, c) a re  the symme- 
trized displacements of the atoms of the first coordina- 
tion sphere, the a,(ly) a r e  the Van Vleck coefficients, 
and 0, and U, are the Pauli matrices defined in the basis 
of the states of the electronic doublet. 

Let us go over from the normal coordinates q, to the 
symmetrized displacements Q,, of the atoms of all the 
coordination spheres surrounding the impurity center 
under consideration: 

where n numbers the coordination spheres, the r a re  
the irreducible representations according to which the 
displacements of the atoms of the corresponding coor- 
dination sphere transform, and the y' s denote the rep- 
resentation-matrix rows. For details about the trans- 
formation (2) and the explicit form of the coefficients 
aX6zry) in certain particular cases, see Ref. 1. Withal- 
lowance for (2), we have 

Here we have retained only the terms with r =E, which 
are  the ones that are  active in the J T  effect. Let us 
note that, since w2 i s  a scalar under the operations of 
the symmetry group of the crystal, (w2)z=w:,6,,,, In 
(3) and below the indices n and n' number both the vari- 
ous coordination spheres and the various E-type irre- 
ducible representations according to which the displace- 
ments of the atoms of a given coordination sphere trans- 
form. 

A specific characteristic of systems with electronic 
degeneracy is the substantial coupling between the elec- 
tronic and nuclear motions, a coupling which manifests 
itself in the fact that the potential-energy operator has 
the form of a matrix whose eigenvalues (the adiabatic 
potentials) are, generally speaking, devoid of the physi- 
cal meaning of a potential energy. As is well known,6 in 
the absence of the quadratic terms of the vibronic inter- 
action, the multidimensional surface of the bottom sheet 
of the electronic doublet's adiabatic potential possesses 
a one-dimensional equipotential continuum of minima- 
a circular through whose depth (the JT  energy) i s  pro- 
portional to the square of the linear-vibronic-coupling 
constant. With allowance for the quadratic vibronic in- 
teraction, there appear three minima at the bottom of 
the trough. Thus, in the case of a strong linear vibronic 
coupling, the bottom sheet of the adiabatic potential in 
the vicinities of the absolute minima i s  separated from 
the upper sheet by an appreciable energy gap. This in- 
dicates that, in the lowest vibronic states, the electrons 
are able to follow the motion of the nuclei, and that the 
nuclei move in the mean field of the electrons. In other 
words, in the case of a strong vibronic coupling for the 
lowest-lying states, the adiabatic potentials have the 
physical meaning of a nuclear potential energy, i.e., 

the adiabatic approximation i s  applicable. The criteri- 
on for the applicability of this approximation is the in- 
equality EJT >> Ewmax (where Em is  the Jahn-Teller en- 
ergy), i.e., the energy gap between the sheets of the 
adiabatic potential should be much greater than the high- 
est phonon frequency of the crystal. 

Let us carry out with the aid of the operator 

a unitary transformation to the adiabatic electronic- 
state basis in which the electron-potential-energy ma- 
trix for an arbitrary nuclear configuration i s  diagonal. 
In (4) we use the polar coordinates: Q, =p&, (y = 8, c), 
A, =cos cp,, A,= sin q,. Below we shall be interested 
in only the bottom sheet of the adiabaticpotential, since 
the vibronic structure of the upper sheet's spectra is 
normally not observed in experiments. Omitting the 
terms containing nondiagonal electronic matrices, and 
retaining in the Hamiltonian only the terms pertaining to 
the bottom sheet of the adiabatic potential, we obtain 

In deriving (51, we restricted ourselves to the case of a 
not too strong quadratic vibronic coupling: we took into 
account in the Hamiltonian only the terms linear in W. 
The criterion for the applicability of this approximation 
will be indicated below. 

The coupling between the first coordination sphere, 
which interacts directly with the impurity center of 
small radius, and all the rest of the coordination spheres 
of the crystal i s  described by the following term of the 
Hamiltonian (5): 

Owing to the factor cos(cp,- qi), the electron cloud and 
the deformation wave of the first coordination sphere 
draw the corresponding deformation of the other coor- 
dination spheres into their coupled rotary motion. As a 
result, a deformation wave covering the whole crystal 
runs around the impurity center. Furthermore, owing 
to the factor pipn, the radial deformation pulsations in 
the first  sphere can be transferred to the other coor- 
dination spheres and propagated through the crystal in 
the form of waves radiating from the impurity center. 

In the absence of the quadratic terms of the vibronic 
interaction, there arises as  a result of the "accidental" 
raising of the symmetry to the axial-symmetry level an 
additional integral of the a/acpi motion. The motion as- 
sociated with the variable cpi gets separated from the 
motion along the remaining degrees of freedom, which 
can be reduced to harmonic vibrations at the bottom of 
the trough.3 In other words, the interaction between the 
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first coordination sphere and all the remaining spheres 
occurs only on account of the p pulsations. This can 
easily be seen if we shift all the cp, in (5) by the quantity 
cp, with the aid of a unitary transformation with the 
operator 

With allowance for the quadratic vibronic coupling, 
which corrugates the bottom sheet of the adiabatic po- 
tential, the symmetry gets lowered to the point-group 
symmetry of the impurity center in the crystal (e.g., to 
cubic symmetry), and the cp, motion no longer sepa- 
rates. But in this case also it i s  convenient to trans- 
form the Hamiltonian with (6), as a result of which 
transformation the interaction of the rotation of the de- 
formation wave of the first coordination sphere with the 
remaining degrees of freedom is described by only the 
last term in (5). 

Let us seek the eigenfunction of the Hamiltonian (5) in 
the form ?I'=~~;''~. Performing the transformation (6), 
we obtain for the Hamiltonian whose eigenfunction i s  x 
the expression 

3R' - W cos (Q..' + -) . 
2VQie 

Here we have set p1~Qle .  

Although, as  has already been noted, the motion along 
the trough cannot in the general case be separated from 
the vibrations at the bottom of the minima, We can carry 
out an adiabatic separation of the motions i f  the spacing 
of the energy spectrum of the rotational subsystem is 
small compared to the spacing for the vibrational sub- 
system, i.e., if Aw,,<< Aw,,,. In this case the vibra- 
tions at the bottom of the minima in the trough and the 
rotation along the trough are  respectively treated as  the 
fast and slow subsystems. We shall assume that the 
condition for the applicability of the adiabatic separation 
of the motions in the case under consideration i s  ful- 
filled; we shall discuss this approximation at the end 
of the present section. 

Let us consider the spectrum of the fast subsystem, 
whose Hamiltonian can be obtained from (7) by elimin- 
ating the terms with a/acp,: 

H,, contains one degree of freedom less than the origi- 
nal Hamiltonian (7) (cpl is regarded as a parameter). At 
not too high temperatures, when only a few of the low- 
est vibronic states, for which the amplitude of the nu- 
clear displacements i s  small, are  populated, the mo- 

tion of the nuclei along these degrees of freedom can be 
reduced to harmonic vibrations about the equilibrium 
positions. 

To determine the equilibrium positions Q:' and P:', 
let us write down the equations of motion for the opera- 
tors Q, and P,, and carry out a quantum-mechanical 
averaging of both sides of the equations: 

- - .  - - .  
~H,,I~P.,=-Q.~=o, aHvib/aQ,,v=P,T=o. (9) 

The solution, Q:' and P:', to this system can be 
sought in the form of a series in powers of V and I/V 
(we retain only the leading terms in 1/V): 

where 

The equilibrium positions Q:' and P:' can, generally 
speaking, be determined by the above-described meth- 
od, i.e., using the system of equations (9), only for the 
harmonic Hamiltonian. In our case we should have 
solved the system of equations (9) together with a chain 
of equations for the Green functions corresponding to 
the mean values of the various Q,- and P,-operator 
combinations that arise in (9) (a self-consistent solu- 
tion). A s  can be verified, to within the leading terms in 
1/V this more consistent method leads to the same re- 
sults. 

The result has a clear physical meaning. The adia- 
batic state of the impurity electrons at the points Q$' 
and Q::' has a symmetry lower than the original cubic 
symmetry of the impurity center. Owing to the elec- 
tron-phonon interaction, the atoms of the crystal lattice 
feel this lowering of the symmetry of the electron densi- 
ty, and readjust themselves to it by changing their 
equilibrium positions. As was to be expected, this 
change i s  proportional t o  the vibronic coupling constant. 
The static displacements (10) can be interpreted as  a 
wave packet of the normal modes of the parent (without 
the JT  effect) crystal. In other words, the low-symme- 
try electron distribution in the minima of the adiabatic 
potential i s  "dressed in a fur" of parent phonons, i.e., 
we a re  dealing with a polaron type of formation. 

Making in (8) the substitution Q,- Q$' + Q,, where 
the Q:' a r e  given by the expression (lo), we obtain in 
the harmonic approximation in the Q, the following form 
of the Hamiltonian for the vibrations at the bottom of the 
minimum: 

Thus, in the limit of a strong linear and a relatively 
weak quadratic coupling, H,,, breaks up into a sum of 
two commuting parts, H:; and H:;, with respect to the 
variables with the indices 0 and & respectively. This i s  
explained by the fact that the symmetry of the system in 
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the minima is lowered to D4,. The E representation of 
the 0, group according to  which the JT-active vibrations 
transform then becomes reducible, and breaks up into 
the representations A, and B,. The variables with the 
indices 6 and E a r e  separable because of the fact that we 
a r e  considering the vibrations at a minimum lying on 
the 0 axis, for which the coordinates Q ,  and Q,, trans- 
form according to the representations A, and B,. 

The Hamiltonian H!:; coincides with the Hamiltonian 
for the case in which only the linear vibronic interaction 
is taken into consideration; the density of states corre- 
sponding to it has the form3 - 

i 
p~,=Irn GB,(o+i&) ts+e - ( a b d p a  (a,) 

2 [Re Ga(o)  + p ] l + p , a ( o )  ' (1 3) 

Here p o ( w )  =ImGo(w) is a known projected E-type den- 
sity of states of the parent (without allowance for the vi- 
bronic interaction) crystal, ReGo(w) is the Hilbert 
transform of po(w), and Go(w) is the Green function of 
the parent crystal. As can be seen from (131, the JT  ef- 
fect not only leads to the appearance of localized and 
pseudolocalized states, which a r e  packets of the "old" 
parent (without allowance for the J T  effect) crystal 's 
phonons localized near the impurity, but radically 
changes the entire projected density of states of the 
crystal a s  well. 

The appearance of localized and pseudolocalized J T  
states in the density of states corresponding to the vi- 
brations in the A, subspace is also possible a s  a result 
of the quadratic vibronic interaction. Owing to the lo- 
calized nature of the perturbation, the Dyson equation 
for the equal-time Green functions can be solved exact- 
ly, and the dispersion equation determining the positions 
of the localized and pseudolocalized states has the form 

It is convenient to solve Eq. (14) graphically (see Ref. 
3). In the case of a sufficiently weak quadratic vibronic 
coupling, (14) may not possess any real  roots. Let us, 
for comparison, note that the behavior of the anomalies 
in the density of states of the B, vibrations does not de- 
pend on the vibronic-interaction constant at all, and is 
completely determined by the dynamical characteristics 
of the crystal itself. 

Returning to the consideration of the slow subsystem 
corresponding to the rotation of the entire system a s  a 
whole along the trough, let us average the total Hamil- 
tonian (7) over the ground state of the fast subsystem. 
Retaining only the leading-in order of smallness of I/V 
and W-terms, we obtain 

Hm=aaa/aq,'+p cos h , - E j r ,  (1 5) 

where 
a = - h ' / 2 ~ ( 7 ) ' ,  @ = - P W ( ~ ) ' .  

As was to be expected, the Hamiltonian (15), which de- 
termines the vibronic spectrum of the system, coin- 
cides in form with the corresponding Hamiltonian for 
the molecular E-e-type J T  system considered in Ref. 
7. But in contrast to the molecular case, in (15) the 
parameters o! and f l  a r e  determinedby the phonon dis- 
persion law for the crystal lattice [w2= -ReGo(0)]. 

The solution to Eq. (15) can be obtained in the analyti- 
cal  form in the limiting case of small  f l  by treating the 
t e rm Wp, cos 3q7, a s  a perturbation, and choosing a s  the 
wave functions of the zeroth approximation the solution 
to the linear ( ~ @ e )  problem. The selection rules a r e  
such that the perturbation splits up those of the twofold 
degenerate states of the linear problem for which the 
quantum number that numbers them is I m 1 =$(2n + I ) ,  
where m ==ti, &, . . ., n = 0,1,2,  . . .. In particular, the 
excited level (with m =*$I closest to the ground level is 
split. The ground state (with m =&)  remains twofold 
degenerate. Corresponding to the obtained vibronic 
states a r e  the slowed-down rotations of the above-dis- 
cussed polaron-type formation, during which the latter 
undergo multiple above-the-barrier reflections. For 
large P, the minima of the adiabatic potential a r e  sep- 
arated from each other by barr iers  through which the 
polaron formation tunnels. In this case the polaron 
formation is localized for a significantfraction of the 
t ime near one of the fourfold axes of the cubic system, 
"occasionally" hopping from axis to axis. The solutions 
to (15) a r e  investigated in detail in the quasiclassical 
approximation in Ref. 8, where among the expressions 
obtained a r e  expressions for the magnitude of the tun- 
neling splitting 3 r .  The vibronic energy levels for ar- 
bitrary f l  values a r e  obtained numerically a s  functions 
of the parameter B/CI in Ref. 7. The numerical values 
of the vibronic-reduction factors for the matrix ele- 
ments a r e  given in Ref. 1. 

Let us discuss the cri teria for the applicability of the 
above-obtained results. The energy spectrum for the 
problem under consideration is a superposition of the 
continuous spectrum corresponding to the fast subsys- 
tem (the vibrations at the bottom of the minima) and the 
discrete spectrum (in resonance with the continuous 
spectrum) of the slow subsystem (the damped rotation 
along the trough o r  the tunneling between the minima). 
Because of the strong linear vibronic coupling, the po- 
sitions of the rotational levels w,, of the slow subsys- 
tem a r e  shifted into the region of low frequencies, at 
which the density of states p(w) of the vibrational (fast) 
subsystem is low [for w,,c 10-30 cm", p(o)- 0 a s  w - 01. Because of this, the nonadiabatic corrections due 
to the states of the continuous spectrum, for which the 
condition (fiw,, << Ew,,,) for the adiabatic separation of 
the motions is not fulfilled, a r e  quite small. The adia- 
batic motion-separation approximation also imposes a 
condition on thestrength of the second-order vibronic 
interaction: WU" << 1. This same condition was used in 
the derivation of the Hamiltonian (5). 

The separation of the sheets of the adiabatic potential 
is possible i f ,  with allowance for (121, 

In the weak-quadratic-coupling approximation wwT<< 1, 
we obtain the following limitation on the magnitude of 
the linear-vibronic-coupling constant: v2 >>t~w,,/w~, 
or ,  in the Debye approximation for the crystal vibra- 
tions, v2 >>tw;,. Large V values also ensure the a p  
plicability of the harmonic approximation. 
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3. THE ORIGIN OF THE ISOTROPIC EPR SPECTRUM 

The effects connected with the multimode character of 
a JT  system can manifest themselves in the infrared 
and optical spectra, in the EPR and Raman-scattering 
spectra, etc. Here we shall consider one of the ques- 
tions that generally cannot be consistently considered 
within the framework of the molecular model: the ori- 
gin of the isotropic line in the EPR spectra of paramag- 
netic impurity centers with a ground-state electronic 
doublet. 

At low temperatures the EPR spectrum of an orbital 
doublet possesses a characteristic cubic angular de- 
pendence. As the temperature rises, there appears 
against the background of the cubic spectrum [e.g., at 
temperatures ranging from several degrees K for A$: 
MgO to  several tens of degrees K for A ~ ~ : c ~ O  (Ref. 9)] 
an isotropic line that increases in intensity with the 
temperature. There are  two possible mechanisms for 
the appearance of the isotropic line. One of them i s  
connected with the increase of the Boltzman population 
of the singlet vibronic state closest to the ground-state 
vibronic doublet, and providing the EPR spectrum. The 
other mechanism stems from the effect of motion-in- 
duced thermal narrowing of the inhomogeneously broad- 
ened EPR line (motional narrowing).'' In the present 
paper we shall consider the effectiveness of just this 
second mechanism. 

The experiments can be discussed in the basis of the 
states of the ground and first-excited vibronic terms. 
The paramagnetic center in the sample and its immed- 
iate surroundings form a cluster that i s  distorted as  a 
result of the JT effect. The random local deformations 
of the crystal lattice additionally distort the cluster, 
i.e., split the twofold degenerate vibronic ground level, 
and mixes its states with the excited vibronic singlet 
term. If the magnitude of the local strain 6 (6" 1-5 
cm-*) is much smaller than the energy gap, 3 r ,  between 
the ground and first excited vibronic states, i.e., if 
6/3r << 1, then the admixture is negligible. This means 
that the system i s  to a large extent distributed among 
the three minima of the adiabatic potential, and, from 
the point of view of the EPR spectra, the situation cor- 
responds to the case of the multimode dynamical JT ef- 
fect considered in detail in Ref. 11. For 6/3r >> 1, 
three new states I i) (i = 1,2,3) are  formed a s  a result 
of the mixing of the excited singlet term with the split 
doublet. It can be shown that each of these three lowest 
states i s  localized in "its own" i-th minimum.'' Each 
of the distorted configurations of the cluster, i.e., each 
of the minima, has its own g-factor value and, conse- 
quently, its own EPR-signal frequency. As the temper- 
ature increases, the vibrations of the surroundingcrys- 
tal  lattice intensify, and, under the influence of these 
vibrations, the cluster begins to go over from one dis- 
torted configuration into another, i.e., from a minimum 
to a minimum. If the probability per unit time, R, for 
transition between any pair of minima significantly ex- 
ceeds the difference between the EPR-signal frequen- 
cies corresponding to these distorted configurations, 
i.e., if R >>I w, - w, I ,  then instead of two signals at the 
frequencies w, and w, we shall observe a single iso- 
tropic signal at an intermediate frequency. 

The temperature dependence of the shape of the spec- 
trum for the three-level system actually in question 
here can be analyzed in much the same way as  i s  done 
in Ref. 11 on the basis of the Bloch-Redfield theory. 
We omit this analysis here, since allowance for the 
phonon dispersion does not give r ise  to any significant 
features in the line shape of the low-temperature EPR 
signal (the shape of the spectrum i s  quite fully investi- 
gated in the cluster approximation in Ref. 12). On the 
other hand, the results for the relaxation processes of 
motional narrowing of interest to us can be obtained by 
a simpler method without a detailed analysis of the line 
shape. 

A paramagnetic center in a crystal can be treated as  
a dynamical subsystem in a phonon thermostat. The 
dynamical subsystem i s  described by the Hamiltonian. 
H,, + Hd., +HZ, where H,, is the Hamiltonian, (1 5), for 
the damped rotations, Hd., i s  the operator for the inter- 
action of the impurity electrons with the random-lat- 
tice-deformation field,'' and HZ i s  the Zeeman spin 
Hamiltonian of the orbital doublet.13 The vibrational 
subsystem, described by the Hamiltonian ( l l ) ,  acts a s  
a dissipative subsystem. As follows from (71, the o p  
erator for the interaction between the dynamical and 
dissipative subsystems has, up to the leading order in 
the small parameter I/V, the form 

The random strains lock the dynamical subsystem in 
the i-th minimum, thereby producing the state I i). The 
single-phonon relaxation processes a re  accompanied by 
nonradiative transitions, induced by the operator (16), 
between pairs of states, li) and Ik), of the dynamical 
subsystem in the minima. The transition probability is 
given by the expression 

where M = (i I a/acpl I k) i s  the vibronic-reduction factor 
for the angular-momentum operator,' n(w) = [exp@w/k~) 
- I]" a re  the phonon occupation numbers, and pq(w) is 
the crystal's density of states (13) renormalized by the 
JT interaction Rib corresponds to a transition from a 
shallower minimum into a deeper one. As can be seen 
from (16), only the B1 crystal-lattice vibrations unper- 
turbed by the quadratic vibronic interaction a re  active 
in the transitions occurring without spin flip between 
the Zeeman sublevels, which are  the transitions of in- 
terest to us here. This corroborates the assumption 
made in Ref. 11 that the weak quadratic interaction has 
no effect on the spectral density of that part of the dis- 
sipative subsystem which participates in the relaxation 
processes not involving spin flip. 

The transition probability (1 7) coincides up to the 
factor1 M < 1 with the transition probability when allow- 
ance i s  made for only the linear terms of the vibronic 
interaction, and, thus, the estimate given in Ref. 11 for 
the magnitude of the quantum-mechanical transition 
probability P =~ /n (w)  for the case of the Debye disper- 
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sion law for the lattice vibrations of the parent crystal, 
namely, PS ~ ~ - 1 0 ~ ~ v - ~  cm3/sec4, where v i s  the lowest 
of the longitudinal and transverse velocities of sound in 
the sample, remains valid. The characteristic values 
for the difference between the EPR-signal frequencies 
in the various distorted configurations I w, - w, 1 - 0.1 , 

cm'l. For the majority of materials v a lo5  cm/sec, 
which yields P-10' sec", or, in energy units, AE-10'~ 
cm". Thus, the inequality R >> I w, - w, I, whose fulfill- 
ment i s  necessary for the motional-narrowing mechan- 
ism to be effective, i s  violated at temperatures charac- 
teristic of the experimental observation of the isotropic 
line.9 

In (17) we have taken into account only the single-pho- 
non processes; the probability for the n-phonon process 
contains the coefficient Van, and therefore their contri- 
bution to the case, under consideration here, of a strong 
linear vibronic coupling i s  small at low temperatures. 

It follows from the result obtained that the direct re- 
laxation processes, which are  present at relatively low 
temperatures, as a rule do not in situations with the 
strong JT effect lead to the narrowing of the EPR line. 
In other words, if the isotropic spectrum appears at low 
temperatures, then we can unequivocally conclude that 
6 < 3 r ,  and that the cause of the appearance of the iso- 
tropic line is the population of the vibronic singlet. The 
isotropic spectrum that arises at high temperatures al- 
lows us to conclude that 6 2 3 r ,  and that the isotropic 
line is due to the many-phonon relaxation. 

CONCLUSION 

The considered system, which comprises of impurity 
electrons and phonons interacting with these electrons, 
is, as  has already been noted, a formation of thepolar- 
on type. The latter differs from the normal polaron in 
two respects. First, all the electrons participates in 
the JT effect, and, therefore, the formation in question 
i s  a many-electron one. Secondly, the vibronic coup  
ling, which leads to the appearance of this formation, is 
due not only to  the electrostatic but also to the exchange 
interaction, and i s  important not just in ionic crystals. 
In the particular case of the JT  effect for a single im- 
purity electron in an ionic crystal, the formation under 
discussion reduces to a normal polaron localized in the 
vicinity of the impurity. 

The surface of the adiabatic potential is a deep trough 
with three minima located at its bottom. The polaron- 
type formation executes a damped rotary motion or tun- 
nels (depending on the height of the potential barrier) a- 
long the trough. The Bl- and Ai-type vibrations at the 
bottom of the minima are  internal degrees of freedom of 
the polaron formation. These vibrations lead to new 
projected density of states of the crystal, renormalized 
by the linear (B,) and quadratic (Ai) vibronic interac- 
tions. The motion of the polaron formation along the 
trough shapes the discrete rotational vibronic spectrum. 

A strong linear electron-phonon coupling changes 
substantially the projected density of states of the crys- 
tal: the new density is inversely proportional to the 
original density in the frequency regions where the lat- 

ter  has an appreciable value, i.e., where po(w)>> (ReGo 
+0';2) [see (1311. Pseudolocalized and localized states 
can, however, arise in a region where the original den- 
sity of states is low or  equal to zero. Thus, the con- 
siderable reconstruction of the spectrum resulting from 
the introduction of the JT  impurity into the crystal ma- 
trix will be observed in experiments in which the pro- 
jected density of states manifests itself (infrared ab- 
sorption, Raman scattering, e t~ . ) .  In this case the 
shape of the single-phonon satellite does not allow us to 
draw any conclusion about the form of the original den- 
sity of vibrational states of the lattice. In those experi- 
mental situations in which the crystal provides a con- 
siderable background, or in which the total density of 
states i s  measured (e.g., in neutron scattering), the vi- 
bronic interaction may lead to the appearance in the vi- 
brational spectrum of peaks whose intensity has the 
concentration smallness. Let us also note that, as can 
be shown, p,, i s  not sensitive to the defect of the lat- 
tice's force constants connected with the introduction of 
the impurity." These constants change the curvature 
of the minimum in the radial direction, while p cor- B 1 
responds to the vibrations orthogonal to the radius. 

We have estimated the probability for the relaxation 
transitions occurring without spin flip under the as- 
sumption that the vibronic- interaction-redefined densi- 
ty of states of the crystal does not contain a pseudolo- 
calized state in the region of low frequencies o,,@w,, 
< 10 cm-I). In the above-considered case of an ex- 
tremely strong linear vibronic coupling, such a state 
does not arise at the low frequencies of interest to us. 
But the appearance of a pseudolocalized state in the re- 
gion of frequencies, wrr,  essential to the relaxation pro- 
cesses is possible in real systems with a sufficiently 
strong JT interaction. The appearance of such a state 
gives rise to the Orbach relaxation. This circumstance 
can radically change the temperature dependence of the 
shape of the spectrum and the probability for the relax- 
ation processes. 

te his circumstance was pointed out to the authors by G .  S. 
Zavt. 
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