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The distribution of the complex amplitude of a monochromatic field of complicated structure is discussed in 
relation to the existence of points where the amplitude is equal to zero. For a uniformly polarized f ~ l d  the 
"carrier" of a zero is in general a continuous line in three-dimensional space. On this line the wave front 
(surface of constant phase) has a screw dislocation. Solutions are found of the parabolic wave equations that 
describes the behavior of the amplitude near an isolated zero-line, and also near the place where a pair of zero- 
lines is created or annihilated. The statistical average of the number of zeros per unit area of wave front is 
found for a speckle-nonuniform field with Gaussian statistics. The use of flexible mirrors in the coherent 
optical adaptive technique (COAT technique) to transform nonuniform beams and reverse their wave fronts is 
discussed. 

PACS numbers: 42.10.D~ 

1. INTRODUCTION 

The properties of wave fields with large numbers of 
spatial nonuniformities have recently attracted the at- 
tention of research workers in connection with several 
problems, such a s  the application of speckle interfero- 
metry in astronomy1 and in holography,' the reversal of 
wave fronts of light in induced scattering,= and s o  on. 
Because of the interference of different angular compo- 
nents the intensity of such a field has local maxima and 
minima with characteristic dimensions Ar, - (k0)-' 
transverse to the central direction of propagation and 
longitudinal dimensions All ,  - (kg2)-'. Here k = 2n/X is 
the wave number, and 8 is the angular divergence. 

At those places where the complex amplitude has not 
simply a minimum but an exact zero value, the wave- 
front surface has a dislocation. The question of dislo- 
cations of the wave front is now being intensively studied 
(see, for example, Refs. 4-7). In Sec. 2 we formu- 
late the fundamental premises concerning zeros of the 
amplitude of a monochromatic field. In Sec. 3 we dis- 
cuss the standard solution of the parabolic wave equa- 
tion near dislocations of the wave front. In Sec. 4 we 
find the statistical mean number of zeros per unit area 
of the wave front of a speckle-inhomogeneous mono- 
chromatic field with Gaussian statistics. 

2. THE DIMENSIONALITY OF THE ZERO-CARRIER 
MAN1 FOLD 

Let us consider a random complex field E(x) which 
depends on a single (transverse) coordinate x. If i t  is 
formed by the interference of a large number of inde- 
pendent components, Re E(x) and Im E(x) a re  two inde- 
pendent random functions with Gaussian statistics. 
Figure 1 shows schematically a possible case of the 
actual forms of Re E(x) and Im E(x). Since Re E(x) 
takes both positive and negative values, in the intervals 
between them there must be points where Re E(x) = 0. 
The average interval between zeros is of the same or- 
der of magnitude a s  the correlation length. An exact 
formula can also be found (cf. , e .  g. , Ref. 8): 

where v, is the average number of crossings of the axis 
from below to above per unit length. In the general 
case none of the points xi that correspond to zeros of 
Re E(x) will coincide with any points x j  that a re  zeros 
of Im E(x). Therefore in general the intensity 

in general does not touch the axis of abscissas a t  any 
point. 

Let us now proceed to the case of two transverse 
coordinates x, y, for which 

E (x, y) =Re E ( x ,  y) +i Im E (x, Y). 

The zeros of the function Re E(x, y), i. e. , the solu- 
tions of the equation ReE(x, y) = 0, determine a number 
of curves in the x, y plane; see Fig. 2. In general 
these curves will intersect, giving rise to multiple 
zeros of the function ReE(x, y), but this is not impor- 
tant for us. There is another se t  of curves corre- 
sponding to ImE(x, y) = 0, and now the intersections of 
curves of one family with those of the other gives dis- 
crete points in which we a r e  interested, where 
1 E(x, y) l2 = 0; these a re  lines of zero intensity. If we 
consider the problem of the propagation of such zeros 
along the direction z in accordance with the wave equa- 
tion, the discrete points in the x, y plane (carriers of 
the zeros of ( E  1') a r e  converted into lines which twist 
about the intertwine in complicated ways ("snakes"; 
cf. the terminology of a previous paperQ). It is clear 
that in general these lines do not intersect each other 
in three-dimensional space. Moreover, a given line 
cannot appear singly a t  some plane z = const, nor can 
i t  disappear singly. Zeros in the pattern must appear 
o r  be annihilated in pairs; this simply corresponds to a 
change of sign of (t), on some one line; here t is the unit 
vector tangent to the curve. 

According to analogous considerations, in the plane 
case of the diffraction problem for a complex mono- 
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particular points of three-dimensional space a t  par- 
ticular instants of time. 

FIG. 1. Realization of random functions of one variable n : 
Re ~ ( n )  andImEk) ;  in the general case  zeros of theee func- 
tions do not coincide. 

chromatic field E(x, z) with the central direction of pro- 
pagation along the z axis, there must be discrete points 
with 1 E )2 = 0 ,  and their mean separation along x is 
-(kO,)", while that along z is -(kg:)-'. 

Let us now consider what new features come in when 
the vector character of the field E is taken into account. 
In the paraxial approximation, i. e. ,  when the diver- 
gence of the beams is small (8  << I), the longitudinal 
component E, of the field is very small, E, -E,02, s o  
that its contribution to the intensity is still smaller, 
61 -ZOO4. Therefore in the paraxial approximation we 
can set E ={E,(x, y, z), E,(x, y, z), 0). For  a field which 
is spatially completely polarized we have 

where e = (e,, e,, 0) is a constant unit vector, which in 
general corresponds to an elliptical polarization. Ow- 
ing to this, all of the foregoing considerations were 
given for a completely polarized field of the form (2). 
In the case of a spatially inhomogeneous state of polar- 
ization E,(r, z)  and E,(r, z)  a r e  linearly independent 
complex-valued functions, and the lines of their zeros 
do not in general intersect. 

If we do not specify that the field is monochromatic, 
in the most general case of a completely polarized 
wave the zero lines move mainly in the direction of 
propagation with a speed of the order of the speed of 
light. For nonpolarized fields zeros appear only a t  

FIG. 2. Trajectories of zeros of a random function on a two- 
dimensional plane : Re EG, y) = 0 on the solid lines, and I m E  
( x ,  y)= 0 on the dashed lines. The intersections of the solid 
lines with the dashed ones give points which a r e  zeros of the 
total amplitude. 

We shall make a number of comments on what has 
been said. Up to now we have been speaking about a 
random speckle pattern. It is clear, however, that the 
topological and dimensional arguments do not depend 
on the specific nature of the interfering fields. The 
only difference is that for regular fields zeros may not 
occur a t  all. Moreover, we have considered fields of 
"general form7* and have discussed those of their pro- 
perties that a r e  not destroyed by a small perturbation 
of the initial conditions. Under these assumptions 
and for regular fields a zero carr ier ,  if i t  exists a t  all, 
is a line in three dimensional space. Furthermore, 
the absence of monochromatically does not in all cases 
a t  once alter the picture. 

In many cases a factorization holds: 

E (r, z=O, t )  -f ( t )  E o  (r, z=o). (3) 

This will be the case, for example, when a quasimono- 
chromatic but plane wave passes through a fixed (un- 
changing in time) thin transparency. It is clear that 
zeros of the complete field 

E=f (t-z/c) E o  (r, z) 

a r e  determined by the spatial part only. We have al- 
ready given another example of factorization, namely 
Eq. (2) for a completely polarized field. The case can 
occur in which the behavior f(t) in time brings in a de- 
polarization but the function Eo(r, z )  is still to good ac- 
curacy the same a s  fo r  a monochromatic field. 

Finally, for  monochromatic fields a shift of the origin 
from which time is measured by a fraction of a period 
leads to an intermixing of the fields ReE and ImE. 
Only the properties of the function I E (2 are  invariant 
under such a shift, but not the functions Eo(r, z) ReE 
and ImE taken separately. In this respect the zeros of 
the fields ReE and ImE serve only for carrying through 
our arguments, but have no direct physical meaning. 
In contrast with this, the zeros of the intensity 1 E )2 a r e  
open to direct physical observation. 

3. SOLUTIONS OF THE PARABOLIC EQUATION WITH 
ZEROS OF THE AMPLITUDE 

We shall consider completely polarized monochro- 
matic fields with small angular divergence around the 
central direction of propagation z. In the paraxial ap- 
proximation, a s  is well known, the complex amplitude 
E(r ,  x) of such a field, defined by the equation 

E,=*(r, z, t )  = {ee-'"t+iL'E (r, z)  +e'e'"-'k~ p ( r ,  ~ ) } / 2 ,  (4) 

satisfies the parabolic equation 

aE 
2ik-  + ALE (r, z) = 0. 

az (5) 

Let us assume that a t  some point (which we designate 
a s  r, = 0) in the cross section z = 0 the complex ampli- 
tude has an isolated zero, E(O,0)=0. Owing to the 
continuity of the field i t  can be expanded in powers of 
the deviation r, z: 
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E (r ,  z) =Ar+B,hx,xh+Cz+ . . . , (6) 

and i t  follows from Eq. (5) that 

Let us first  consider a small neighborhood of the 
zero line. Then the terms quadratic in x and y can be 
neglected; i. e. , we can consider here B =0, and along 
with this C -BA/2n also can be omitted. Then a field 
of the form 

satisfies Eq. (5) exactly everywhere in space and has a 
zero of its amplitude on the straight line ( r  = 0 , ~ ) .  By 
a rotation around the z axis the expression (8a) can be 
reduced to the form 

E (r ,  z )  =e'"(Az+iA,y), (8b) 

where A,, A, a re  real  quantities. In these coordinates 
the constant-amplitude surfaces a r e  elliptic cylinders 
with generators along z and the ratio of semiaxes ax/ay 
=A,/A,. The phase cp(r)=argE(r) increases by 2n in 
passing around the zero line, since 

Since the entire field has the fast phase factor eih,  i t  
can be said that the zero line contains a screw disloca- 
tion of the wave front. We note that for Ax/Ay + * 1 the 
phase of the field depends on the angle y = a r c  tan (y/x) 
in a nonlinear, though monotonic, way. 

If a function Eo(r, z )  is a solution of the parabolic 
equation (5), then the function rotated by the two-di- 
mensional angle += (I&, Q,, 0), 

is also a solution of Eq. (5). Owing to this we can con- 
struct from Eqs. (8) the solution corresponding to the 
zero line r = $2 inclined a t  the angle $ with the z axis. 

Let us suppose that a field E(r ,  z )  consists of the field 
Eo(r, z) and a small correction u,(r). I t  is not hard to 
see that 

In other words, a small correction u, added to a field 
Eo(r, z), which has a line of zeros does not remove the 
zeros, but merely shifts the position of the line in the 
x, y plane. In particular, if u, -exp(ihz), then accord- 
ing to Eq. (9) this shift corresponds to a screw pertur- 
batuon of the line [d. Eq. (711. 

If in the expression (8b) one of the components of the 
vector A (for example, A,) is equal to zero, then this 
solution is degenerate and describes a zero on the en- 
tire plane y = z = 0. A zero of this type is unstable un- 
der  small perturbations. Therefore we shall examine 
the case with A, = 0, taking account of the terms aBi ,  
and C =iB,,/k in Eq. (6). It is not hard to verify that 
the solution of the form (5) with A, = 0, A, # 0 describes 
a field with a line of zeros whose tangent t at  the point 
r = 0, z = 0 is directed along the x axis, i. e.  , t ( r  = 0, 
z =O)=e,. Introducing the quantity iAceia a s  a common 

factor, we have from Eq. (6) 

E (r ,  z) =iA,"eia {y+b~~+2b+cy+b,y'+i(b,+b,) zlk).  (1 1) 

In this form this solution depends on a single common 
complex factor iA:eia and on three independent com- 
plex (i. e . ,  on six real) parameters: b,,, b,,, b,,. The 
normal vector n to the curve, a t  the point r = 0, z = 0, 
the radius of curvature p, and the torsion T of the 
curve a t  this point a re  given in terms of b,, by the 
formulas 

b,' -1 

n=e"cos a+ezsina,  a = a r c t g ( k [ ~ ( b ~ f + b v ~ ) + ( b ~ f ' + b n / ) ]  ) , 
(124  

P= I b='+b,' 1 {k' ( b,") '+ [ (b,'+ b,') b='+ (b="+bWN) bp1'1 ')-'/2. ( 12b) 

Thus there a r e  still three free real parameters. They 
can be characterized by considering the behavior of the 
phase and amplitude of the field near the lines of zeros; 
we shall not pursue the details. For  a random field 
with the divergence A@, -A@, - 9, we have in order of 
magnitude b -kg0, and from this the estimates for p and 
T: 

p-T-h. 

Along a given zero line the parameters of the ellipse 
that describes the surfaces of constant amplitude 
( A r  (2 = const o r  of constant phase 

will in the general case change, owing to the gradual 
change of the quantity A according to Eqs. (8) and also 
owing to the fact that the trajectory of the zero is not 
exactly Btraight. The sign of the phase change Acp 
= i 2n on going around the zero line along a closed path 
is,  however, a topologically stable feature. This sign 
is the same a s  that of the spiral (right o r  left handed) 
which the zero line describes when a small perturba- 
tion field u, i s  added which propagates a t  a small angle 
with the main field (8a). 

The difference N+ - N- of the numbers of zeros with 
positive and negative signs of Acp is conserved in the 
process of propagation. This means that there occur 
processes of creation and of annihilation only of pairs 
of zeros with opposite signs. On the average the num- 
bers of "positivev and "negative" zeros in a cross sec- 
tion of a speckle-nonuniform field a r e  equal. This fact 
is due to the assumption that the beam is statistically 
homogeneous. Actually, if the mean number of posi- 
tive zeros N+ (per cm2) were larger than N,, this would 
mean that on going around an area  S the phase would 
differ a shift 

AQ)=Zn(N+-N-)S. 

Since S -LL2 and the angle of inclination is 
h h AQ) a - - V q - - -  
2n 2n L, ' 

where L, is the transverse size of the region con- 
sidered, we have 

a-h (N+-N-) LL. (13) 

Accordingly, for a beam of unbounded cross  section 
(L, - m) the angle of inclination a of the rays increases 
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without bound for N+ # N,, which contradicts the assumed 
uniformity. 

In principle one can imagine a bounded beam in which 

Let us consider, for example, a field E(x, y, z) of the 
form 

E (x ,  y, 0) =P" exp in$ exp (-T'la') , 

r- (~"y')", 9-arctg ( y / z )  . (14) 

Such a field can serve a s  the profile of a mode of an 
optical resonator (cf. , e. g .  , Ref. 10). A field of the 
form (14) has a zero of the m-th order on the axis. 
Passage of a beam of this sort, with a bounded cross  
section, through a nonuniform phase plate (cf. e. g., 
Ref. 3) gives a speckle-nonuniform field in which 

Questions about the statistical description of such 
"twistedv beams a r e  also discussed in a paper by 
Shkunov and the writers. l1 Actually the total number 
of zeros in this field will be still larger, since pairs of 
zeros of opposite signs can be produced. 

4. THE STATISTICAL MEAN PROPERTIES OF THE 
ZEROS OF A COMPLEX GAUSSIAN RANDOM FIELD 

Let us first  derive the general expression for the 
mean number of zeros per suit area, N=N++ N-, for 
a statistically homogeneous complex random process. 
The total number of zeros in some region of the x, y 
plane with area  S can be written in the form 

Here E(x, y) = El(x, y) + iE,(x, y), and we do not write out 
explicitly the value z=0 .  The angle brackets indicate 
averaging over an ensemble of random fields. It is 
easy to verify that Eq. (5) is correct, by noting that 
each zero point of the total field will give (before the 
averaging) a contribution unity to the right side of the 
equation. We note, by the way, that positive zeros 
(see Sec. 3) correspond to positive signs of the Jaco- 
bian a(El, E,)/a(x, y), and that for negative zeros 
a(E, E)/a(x, y) <O. The absolute value of the Jacobian 
can be written in the form 

where we have introduced an abbreviated notation for  
the derivatives. It follows from this that 

NS- J& dy dEi dE; dEi, dE&~vdE,v (17) 
X w.(E~,E, ,  Ei,Ei.,E,E,v)6(Ei)6(E:) 

Here W, is the joint probability of the quantities El, E, 
and their gradients a t  the given point. Removing the 
integration over dE, and dE, and cancelling a factor S, 
we get 

Up to this point we have not used the assumption that 
the statistics of the field is Gaussian. If we do make 

this assumption, the quantity W, can be expressed in 
terms of the correlator of the complex field, and this 
last  is determined by the Van Zittert-Zernicke theorem: 

where j(B) is the normalized angular spectrum, and 
O =  (Ox, 8,). For  specific calculations i t  is convenient 
to  use the well known theorem that if Gaussian random 
quantities a re  uncorrelated they a r e  independent. From 
Eq. (19) we have 

By a suitable rotation of the z axis (i. e . ,  a displace- 
ment in the @,, @, plane) we can make the two compo- 
nents (03  and (0,) equal to zero, i. e . ,  choose the z axis 
in the direction of the center of gravity of the angular 
distribution. Then the complex gradients aE/ax and 
aE/ay a r e  independent of the field E(r)  itself a t  the 
same point r. By a rotation of axes in the x, y plane the 
correlation matrix 

can be transformed to principal axes, after which all 
three of the complex quantities (E, aE/ax, and aE/ay) 
a r e  independent at the given point. In this system of 
coordinates, in which (6) =0, and the matrix (6,6& is 
diagonal, the probability distribution of the parameters 
E1,E2,E1,,E2,,E1,,E,, is given by 

We(E, ,  El, E,, E,,, E,,, E,,) =n-"k'<0.')(0.'))-'Z-'exp {-Z-'(Ed 

+E~)/k2<0.1>-Z-1(E,,'+E~)/k'<0,')) exp (--I-'(E,'+E,')). (22) 

After this the integral in Eq. (18) can be calculated 
easily and gives, in the specified coordinates system 

Going back to the original (arbitrary) coordinate sys- 
tem, we can write the expression (23a) in the form 

We note that the probability distribution (22) enables 
us to discuss the statistical mean properties of the 
ellipses of constant amplitude [cf. Eq. (8)]. Since the 
complex vector A of Eq. (8a) is the same a s  the grad- 
ient V,E(r, z )  of the complex field. Thus the large 
semiaxis of this ellipse is most often oriented in the 
direction in which the angular divergence of the beam 
is smallest. 

Other interesting quantities a re  the average number 
M (per cmS) of points of creation and annihilation of 
pairs of zeros and their distribution m(a) ( ~ m - ~ r a d " )  
in the direction of the tangent n= (cosa, sincu, 0) to the 
zero line a t  the point of creation o r  annihilation. F o r  
this purpose i t  is convenient to introduce the gradient 
of the complex field in the direction n: 

a a E.-E,.+tE;.-- (ra a-  + sin a-) (Ei ( r ,  r )  +iE.(r, r ) ) .  (24) 
ax ay 
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The creation o r  annihilation of a pair of zeros with a 
given corresponds to the satisfaction of four real  condi- 
tions: 

El (r, Z) =O, El (r, z) -0, E,. (r, z,  a )  =0, E2. (r, z,  a) =O. (2 5) 

The quantity m(o)  is given by the expression 

If we a re  interested only in the total number 

the problem can be stated somewhat differently. 
Namely, the tangent vector to the zero line passing 
through a given point can be written in the form 

Then the point of production of a pair of zeros corre- 
sponds to the satisfaction of three conditions: 

E, (r, z )  =o, E, (r, z) =o, L. (r, z )  =o. (28) 

The calculations a r e  rather cumbersome, however, 
and we do not give them. 

5. CONCLUSION 

The problem of reversing a wave front of laser radia- 
tion has recently attracted much attention. Besides the 
methods of nonlinear optics (Mandel'shtam-Brillouin 
induced scattering, four-wave and three-wave proces- 
ses, reversal a t  a surface), there a r e  also discussions 
of the possibility of creating a flexible adaptive surface 
a coherent optical adaptive technique (COAT). To re-  
verse a wave front with a mi r ro r  i t  is necessary that a 
surface of constant phase of the light field coincide 
with the surface of the mirror .  We wish here to call 
attention to  the fact that when there is a simple zero 
in the incident field i ts  wave front is a many-sheet sur- 
face with a singularity of the type of a circular s ta i rs  
near the point of zero amplitude. This makes it clear 
that it is impossible with a smooth bending of a mirror  
surface to make i t  coincide with such a wavefront, not 
only in the neighborhood of the zero, but also fa r  away 
from it. Essentially the same remark applies to the 

idea of using a COAT technique to make perfect astro- 
nomical images. 

From our point of view it  is extremely interesting to 
elucidate the answer to the question: Is  it possible to 
use two (or more) COAT mirrors,  placed successively, 
to reverse a wave front of a field with amplitude zeros? 
For  this the field must have equal numbers of positive 
and negative zeros. Then with the f i rs t  mirror  one can 
try to make all the zeros of opposite signs annihilate 
each other on the way to the second mirror,  and it will 
have to reverse only a smooth wave front. We recall 
that also in the geometric-optics approximation there 
exist problems of beam transformation that require not 
fewer than two mi r ro rs  [cf. Ref. 121. 

In conclusion the writers thank V. V. Shkunov for 
valuable discussions of the properties of speckle-in- 
homogeneous fields. 
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