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A calculation is made of the profile of an absorption line of an atom trapped in a three-dimensional oscillator 
well. The radiative and Stark broadening effects are considered and the influence of the orientation of the 
incident wave relative to the symmetry axes of the well is discussed. When the frequency of vibrations of an 
ion in a well is much greater than the homogenous lime width, a resonance with a homogeneous width appears 
at the center of the absorption line. 

PACS numbers: 32.70.12, 32.60. + i 

A resonance absorption line of a gas usually exper- 
iences Doppler broadening. The present authors and 
Chebotaev have demonstrated1 that in the case of a par- 
ticle trapped in a potential well a resonance with a 
homogeneous widthappears at the center of the absorption 
line. Our treatment applies to the case when the wave- 
length of the absorbed radiation is considerably less 
than the dimensions of the well, i. e . ,  to  the optical 
and shorter range of wavelengths. Dicke considered2 
a homogeneous-width resonance of a trapped particle 
in the rf range, when the wavelength i s  comparable with 
the well size. 

lator well will be considered quantum-mechanically. 
This approach provides the simplest solution of the 
problem formulated here and i t  makes i t  possible to 
explain the existence of a resonance a t  the center of an 
absorption line. The same results can be obtained as- 
suming that a particle moves along a classical tra- 
jectory. However, in this case the derivation is more 
cumbersome because we need to solve the quantum 
transport equation for the density matrix in order to 
allow for the recoil and Stark effects. 

8 1. HAMILTONIAN OF THE SYSTEM 
Sufficiently effective ion-trapping methods a re  now 

available3s4 and these make i t  possible to confine an ion The wave function of an atom depends on the coordi- 

in a trap even for a few hours. In principle, the width nates of i ts  center of inertia r and on the set  of internal 

of a resonance is governed by the radiative lifetime of coordinates. We shall write the Hamiltonians in the 
form the energy levels. In the case of a trapped ion i t  should 

be possible to achieve spectral line resolution better 
& = $ + z ~ % + H ,  than the Doppler width. I (1) 

Our paper is concerned with the profile of a line due 
to optical transitions in an atom trapped in a three-di- 
mensional oscillator well. The profile of an absorp- 
tion line is an equidistant a r ray  of resonances which 
appear against the background of a Doppler profile be- 
cause of periodic motion of the atom. The radiative 
broadening of such resonances is found in 83. The 
two (in our opinion, main) mechanisms of inhomogeneous 
broadening of a line of a trapped particle a r e  con- 

sidered in 664, 5. One of these broadening mechanisms 
is associated with the Stark effect since the confine- 
ment potential is created by using an electric field. 
Different electric fields act  on an atom at  different 
points in a well and this gives r ise  to an inhomogeneous 
broadening of the line components. The second mech- 
anism is associated with the oscillator anharmonicity, 
i. e . ,  with the deviation of the potential from the 
rigorous harmonic oscillator form. This allowance 
for anharmonicity causes disappearance of periodic 
arrays of an ideal three-dimensional oscillator in the 
Doppler profile. However, the resonance a t  the cen- 
ter of the absorption line i s  retained and it  has a homo- 
geneous width. The dependence of the magnitude of the 
resonance on the direction of incidence of a light wave 
on a three-dimensional oscillator is analyzed in 86. 

The motion of an atom in a three-dimensional oscil- 

where p is the momentum operator of the atom; M is 
the atomic mass; xi is the projection of r on the axis i ;  
xi =(X, Y ,  2); Sd, is the frequency of a linear oscillator 
along the coordinate i and the frequency along the Z 
axis is assumed to be 52, =Sd; H is the part of the Ham- 
iltonian which is associated with the internal degrees 
of freedom and which determines the energy levels of 
an atom E, and i ts  eigenfunctions I v) related by H I  v) 
= E,]  v). 

We shall denote the eigenfunctions of Ho by 

where 1 n,) a re  the eigenfunctions of the harmonic oscil- 
lator: 

The eigenvalues of Ho a r e  

An atom in a three-dimensional oscillator well (trap) 
is acted upon by an electric field which gives rise to a 
Stark shift of the levels that we shall assume to be 
quadratic in respect of the field. The interaction as- 
sociated with this effect will be allowed for in the form 
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of a small correction to the Hamiltonian: 

V=-aEZ(r)/2, 

where o! is the operator that applies to the internal 
quantum numbers and whose matrix element a'"' 
= ( v l  or I v) is the polarizability of an atom a t  a level v. 
In the expansion of V a s  a Taylor ser ies  near the bot- 
tom of a well we shall retain the principal term ex- 
pressed in the form 

where E, is the characteristic intensity of the electric 
field in a trap and ai a r e  the characteristic dimensions 
of the trap. The energy correction associated with this 
perturbation is 

52. ABSORPTION-LINE PROFILE 

Let us assume that an atom in a trap is acted upon by 
an electromagnetic wave 

E (r, t )  =Ee-i*'+l"+c.c., 

whose frequency o is close to  the transition frequency 
a,, = (E, - E,)/Fi, where E, is the energy of the upper 
level and E, is the energy of the lower level [the index 
v in Eq. (2) assumes two values: v =  l ,2],  and k is the 
wave vector. The Hamiltonian of the interaction of the 
wave with the atom is 

where (2 Id 1 1) is the matrix element of the dipole mo- 
ment of an atom between the states (v). 

According to Ref. 5, the probability of a transition 
per unit time from a state i = (1; n,, n,, n) to all  the 
states f = (2; m,, m,, m) is 

where 

The probability w ,  is independent of the indices n, and 
n, of the initial state and, therefore, we can describe 
W, wi by 

w,, = &Bm,m-,,8 (m-n-z), 
-0 

(5) 

where W, = 2nj $,~/Fir ,  x = ( o  - w,,)/Q, and the values 
of B,,,-, can be calculated using formulas 7.388 (6), 
(7) in Ref. 6: 

B..,-.=e-'A"" (L? (A)) 'nl/ml, 

X = A/n, A = @/2M, and Ltn(X) a re  the generalized 
Laguerre polynomials. 

We shall now find the profile of an absorption line for 
a gas of atoms with a temperature T. We shall do this 
by averaging w,, using a distribution function p, =fie-@", 

where f l =  fin/T << 1, T is the absolute temperature in 
energy units, and 

Using the results in the Appendix, we find that the total 
probability of absorption a s  a result of the 1 -- 2 transi- 
tion is 

where p = w d n  >> 1, w, = kvo is the Doppler width, and 
v ,=(~T/M) ' /~ .  It should be noted that 

-- 
Equation (6) shows that the absorption differs from 

zero only a t  the incident field frequencies satisfying 
o = o,, + l a ,  where l = 0, i 1, . . . . The probability of 
absorption a t  these frequencies i s  proportional to the 
function D,, which describes a "discrete" Doppler pro- 
file shifted, a s  expected, by a value equal to the recoil 
energy A. 

53. RADIATIVE LINE WIDTH 

The line profile (6) can be derived ignoring the factors 
causing broadening of the individual components, i. e . ,  
broadening of the 6 functions. It is easiest to allow for 
the radiative decay of the levels 1 and 2. This is done 
by the following substitution in Eq. (6): 

where I' = (y, + y2)/2S2 is the homogeneous half-width of 
a line in unitsQ; y, and y, a r e  the reciprocal lifetimes 
of the levels 1 and 2. Instead of Eq. (6), we now have 

i. e . ,  the line profile is now a sum of the Lorentzian 
profiles whose amplitudes a re  proportional to D,. If 
IL >> I', then D, can be taken outside the summation sign 
a t  the point k = x ,  i. e. , 

where 

After summation we obtain 

f (z) =sh 2nPl (ch 2nr-cos 2nz). 

If I'<< 1, this function reduces-as expected-to a sum of 
nonoverlapping Lorentzian profiles of Eq. (7). If I'>> 1, 
then 

f (z) =1+2e-2ar cos 2nz. 
. 

This formula shows that a t  high values of I', we have 
f(x) - 1, i. e., Y ( x )  in Eq. (7) is the usual Doppler pro- 
file . 
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84. STARK EFFECT 

Allowance for a small correction to the Hamiltonian 
in Eq. (1) will be made using perturbation theory. 
Then, the matrix elements B,, a re  still given by Eq. 
(4), i. e . ,  we shall use unperturbed oscillator wave 
functions and allow for the perturbation by modifying 
E, and E,. The shifts of these levels will be denoted 
by 

AE, -=AEL?~~~ ,  A E ~ - A E : : ~ .  

The probability of a transition in the field of a travel- 
ing wave is still given by Eq. (4), which should now be 
averaged over the initial states n,, s, n with a distribu- 
tion function 

Pnln.neBsB~B exp[- (Blnl+p2n,+gn) 1, 

where /3, =m,/T << 1, and 0,  =AL&/T << 1. The total 
probability of absorption can then be described by 

w=W04 (2) IQ, 
(8) 

where we still have 

5?(z)dz-i. -- 
We can allow for the influence of the Stark effect on 

the absorption line profile by using the expressions for 
the energy correction (3). Substituting Eq. (3) in Eq. 
(9), we obtain 

where 

Ee' Am- (a(')-a(')) 

is the difference between the Stark shifts of the levels 
2 and 1, and L, = vo/ni is a characteristic size associ- 
ated with the amplitude of thermal vibrations of the i-th 
oscillator. The term containing kat2)  in Q will be 
omitted because i t  results in just a slight renormaliza- 
tion of 9. 

Bearing in mind that 

we can reformulate Eq. (8) a s  follows: 

The summation over n, and n, is performed in an ele- 
mentary manner; the summation over n is carried out 
using the results in the Appendix. Assuming, a s  in 83, 
that D, is a slowly varying function of k ( p  >> 1 y, I), we 
obtain 

In the derivation of f(x) we have made the substitution 
sinPiy,.r/j3, - yir, since 8 ,  << 1 (Pi -lo-= a t  T = 1°K and 
for 9 - lo5 sec"). 

The function f ( x )  is periodic and the period is unity. 
Therefore, we shall consider i t  in the interval 0 9 x < 1. 
In the case when y, =y, = y3 = y >0, calculation of the in- 
tegral gives 

If y << 1, then 

The Stark effect shifts the maximum of an individual 
component by 3y/2. The width a t  half-maximum is 
then 3 . 2 ~ .  In the limit y -- 0, we have f (x) - 6 (x ) .  

In the case when y, = y, = y 20 and I Y, I << y, integra- 
tion and summation with respect to k gives 

If y<<1, then 

Thus, the Stark effect produces the same broadening 
and shift of all the line components. Naturally, the 
periodicity of f(x) is retained, exactly a s  in the case of 
radiative broadening (83). The shift and broadening 
of a single component is of the order of AwLi2/ai2. The 
factor Lia/ai2-T allows for the reduction in the Stark 
shift a s  a result of cooling since the characteristic size 
associated with the amplitude of thermal vibrations 
becomes less than the trap size. We shall now obtain a 
numerical estimate. For  a trap4 of linear size -2501, 
we have E, - lo4 V/cm, S2 = 2.4 MHz. If this trap is to  
confine ions characterized by L, -a, and Iat" - at')[ 

cm3, then 

q=yP-iO MHz . 

This means that i t  is possible to resolve the individual 
line components either for transitions for which 
la(')- << cm3 o r  by cooling the trapped ions. 

55. OSCILLATOR ANHARMONICITY 

In a real  trap the potential to which an ion is sub- 
jected differs from the oscillator form. This means 
that the potential near the bottom of the well expanded 
a s  a Taylor ser ies  contains not only the terms 
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FIG. 1. Arrows identify transitions of frequency w21= (E2 
- ~ 3 / f i .  

but also the corrections associated with the anharmoni- 
city. We shall show that the deviation of the potential 
from the harmonic-oscillator form flattens the periodic 
array in the line profile with the exception of the reso- 
nance at the line center. It should be noted that in the 
case of an arbitrary potential the energy of a particle 
excited at the upper and lower levels is written in the 
form 

where n,, %, and n, a re  the quantum numbers repre- 
senting the state of the center of gravity of an atom ex- 
periencing this potential. 

There are  many transitions (of the order of Fi=/3- ' )  
with n, = m,, % = m,, and n, = m,, which have the same 
frequency w,, = (E, - E,) / t i .  This sequence of transi- 
tions gives rise to a resonance at the line center (see 
also Fig. 1). In the case of different quantum numbers 
of the upper and lower levels we do not generally find 
a sequence of transitions with identical frequencies, 
i. e. ,  there a re  no resonances at other frequencies. 
Thus, in the case of an arbitrary potential the line ab- 
sorption profile is in resonance with a homogeneous 
width at the background of the Doppler profile. The 
magnitude of this resonance depends on the actual form 
of the potential. 

56. THREE-DIMENSIONAL OSCILLATOR 

We shall now find the dependence of the absorption 
line profile on the direction of propagation of an elec- 
tromagnetic wave specified by the angles 8 and cp in a 
spherical coordinate system. The wave vector has the 
projections 

kx-k sin 0 cos cp, k,-k sin 0 sin cp, 

kt=k cos 0. 

Calculations similar to those carried out in 62 give, 
for the case of an arbitrary incidence of a light wave 
relative to the symmetry axes of an oscillator well, 
the following line profile: 

where I,, is a Bessel function with an imaginary argu- 
ment, 

In contrast to the one-dimensional oscillator of 02, 
Eq. (10) describes three periodic resonance arrays. 
We shall be interested in the resonance a t  the center 
of the absorption line. The amplitude of this resonance 
is equal to the term with m = n =Y= 0 inY(0) of Eq. 
(10): 

sin' 0 cosa cp sin' 0 sin' cp 
~ - L . e x p [ -  n r  f ( + + wsz 0 )  ] 

vtl vt' 

We shall consider the case when 1.1 >> 1. If the wave 
travels along the Z axis (8 = O), then 

A-ilnkpI'. 

We shall continue this analysis for small angles 8 << 1, 
but we shall assume that 1.18 >> 1. When cp << 1, i.e., 
when the wave travels almost in the XZ plane, the 
formulas for two specific cases a re  a s  follows: 

These formulas demonstrate a strong dependence of 
the amplitude of the resonance at the center of the ab- 
sorption line on the angles 8 and cp. 

We shall now estimate the precision with which a trap 
has to be oriented relative to the incident wave in order 
to ensure that the resonance amplitude i s  of the same 
order a s  that of the Doppler profile. In these estimates 
we shall assume that 1.1 - lo3, r - lo", and v, - 1. For 
the angles 8 - 10- and cp - lo", the resonance amplitude 
is of the order a s  the Doppler profile (A -Do). Thus, 
we find that when r << 1, a resonance may appear at the 
center of the absorption line and this resonance has a 
homogeneous width and fairly high amplitude. 

The authors a re  grateful to V. P. Chebotaev for his 
interest and numerous discussions. 

APPENDIX 

We need the sum 

where z is a complex number. We shall carry out sum- 
mation using Eqs. 8.976 (1) from Ref. 6 and we shall 
assume that I Pz 1 << 1. Then, 

where 1.1, = 4A//3 and I, (t) is a Bessel function with an 
imaginary argument. In our case, we have I g2/2z I >> 1, 
so that we shall find the asymptotic value of I,(t) for 
I t 1 >> 1 and arbitrary k. We shall do this employing the 
integral representation of Ref. 6 [ ~ q .  8.431 (5)] 

1 "  
l ( t ) -  - j et " @ cos k0d0. 

n 
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The main contribution to the integral in the I t 1 >> 1 case 
is due to a small region 6 - ltl-1'2 near zero and, there- 
fore, 

It follows from the above formula that 

We shall now assume that z = 1 in D,. Then, to within 
terms of the order of exp(-n2 y2), we find that 
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