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An analysis is made of the characterktics of self-induced transparency (SIT) in an optically anisotropic 
(uniaxial) medium containing impurity centers. It is assumed that (as is true of a large class of laser crystals) 
the optic axes of the impurity and matrix coincide. Solutions of the field equations in the form of solitons (2r 
pulses) traveling in an anisotropic crystal are obtained for light frequencies corresponding to impurity 
resonances and a study is made of the dependence of the characteristics of these pulses on the direction of 
their velocity u and polarization P. It is shown that, by analogy with waves in linear crystal optics, SIT pulses 
traveling in such a medium are either ordinary ( f lu)  or extraordinary (when the angle between P and u is not 
the right angle). A relationship is obtained between the pulse duration and its velocity. It is demonstrated that 
only in the case of extraordinary pulses does this relationship contain the dependence on the d i i t i o n  of 
propagation. The feasibility of experimental investigation of the phenomena described is considered. 

PACS numbers: 42.65.G~ 

§ 1. INTRODUCTION 

A theory of self-induced transparency (SIT) was de- 
veloped by McCall and Hahn in 1969. ' They and other 
investigators (see reviews2 and monograph3) studied 
propagation of an electromagnetic coherent wave in a 
resonant isotropic medium, i.e., they considered only 
the media whose polarization vector P has the same 
direction a s  the electric field vector E of the wave. In 
these investigations the interaction between molecules 
was ignored. This approximation is justified for gases 
and also for crystals in the vicinity of a resonant tran- 
sition in impurities when the impurity concentration is 
sufficiently low. However, in the case of crystals the 
polatization vector is collinear with the electric field 
vector only for waves traveling along the principal 
axes of the permittivity tensor. Consequently, i t  
would be interesting to study the characteristics of 
SIT in anisotropic crystals for an arbitrary direction 
of wave propagation. 

We shall consider SIT in an optically anisotropic 
(uniaxial) medium containing impurity centers. In this 
case the permittivity is cij = E:) + 4rxij, where c: i s  
the permittivity of the matrix, and xi, is the polar- 
izability of the impurity centers whose interaction with 
one another i s  ignored. We shall assume, a s  is true 
of many laser crystals (see, for example, Ref. 41, 
that the optic axes of the impurity and matrix coincide. 
It follows that xij = O  for i # j ,  X11=Xz2 'X~ ,  X S S ~ X ~ J ,  and 
similar relationships apply also to the tensor &$). 

We shall assume also that resonances of the tensor x,, 
lie in the transparency range of the matrix'' and we 
shall bear in mind that the resonance frequencies w, 
and w,, of the quantities x,(w) and xIl(w) [(xL(wL)= - and 
x,,(w,,) = -; dissipation is ignored] a re  always different. 
We shall assume this difference to be sufficiently large 
and in discussing SIT in the w aw, case, we shall ig- 
nore the frequency dependence x,,(w), whereas in dis- 
cussing SIT with w a: w,,, we shall ignore the frequency 
dependence x,(w). 

In a study of the propagation of an intense light pulse 
of frequency located in the vicinity of one of these 
resonances it is necessary to apply (under the above 

conditions) the nonlinear relationship between the po- 
larization of an impurity and the field under SIT condi- 
tions only to that component which corresponds to the 
polarizations of oscillations of a given resonance. In 
the case of the other "nonresonant" components of the 
polarization of the impurity and all the components of 
the polarization of the matrix we can use the conven- 
tional relationships from linear crystal optics. 

$2. SELF-INDUCED TRANSPARENCY IN THE 
REGION OF A RESONANCE OF xll(w) 

When the frequency of the electric field w i s  close to 
w, only the z components of the polarization of an im- 
purity, i .e., the quantity P, (the z axis is directed along 
the optic axis, Fig. I ) ,  depends nonlinearly on the 
field component E,. The intensity of the electric field 
in a medium can be written in the form 

E(r, t )  =e(r, t) exp [ i  (kr-ot+cp(r, t)) 1, (1 ) 

where e(r,  t )  and cp(r,t) a r e  real functions; similar ex- 
pressions apply also to  the polarization per unit vol- 
ume of the medium P and to the electrical induction D. 

We shall consider a wave with a wave vector k making 
an angle 6 with the z axis. In view of the isotropy of the 
medium in the xy plane, we can assume that the vector 
k lies in the plane yz without any loss of generality. 
Then, 

kr=k,z+k,,y=k(z cos 0+y sin 0) =kc, (2 

wherek=lk l  a n d g = z c o s e + y s i n 6 .  Weshallcon- 
sider only the case of plane waves, i .e ., we shall as- 
sume that the quantities e ( r , t )  and rp(r,t) a re  functions 
of time t and of a single spatial variable g. 

In this sense the investigated waves a re  similar to 
one -dimensional solutions for SIT in isotropic pro- 
blems. 

The wave equation for the field E has obviously the 
form 
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the condition divD = 0 can be written in the form 

where we have applied the condition div DIdiv (E + 4nP) 
=O. A s  mentioned earlier, all the quantities in a 
plane wave described by Eq. (1) or Eq. (2) are  inde- 
pendent of the coordinate x .  Therefore, a system of 
three equations (3) for the field components Ex, E,, 
and E, splits into a system of two coupled nonlinear 
equations for the components E, and E, : 

and an independent linear equation for the component 
Ex : 

Since we have assumed that the resonance frequency 
w,  i s  far from w,,, the relationship between the polar- 
ization components P,,, and the field components Ex,, 
can be regarded (as mentioned earlier) as linear, i.e., 

and we can ignore the dependence of c,  on w. The 
equation for Ex i s  linear [see Eqs. (3b) and (411. 
Therefore, its solution has the usual form 

~=-mnst .  e1(%+"), (5 

where w and k are linked by the dispersion relationship 

corresponding to an ordinary linear wave in a uniaxial 
crystal: 

We shall now consider a system of two equations (3a) 
for the field components E, and E,. We can find the 
coupling between these components employing the con- 
dition that the field D is  transverse: 

div D-div (d (6 ,  t )  axp [i(kc-ot+cp(t, t )  ) 1) =O. 

Since 

where dc=d,cos 0 + d ,  sin 0  i s  the projection of the vec- 
tor d onto the direction of k. 

The only real solution of Eq. (8) i s  dc(f, t )  = 0. It 
follows from the condition dt = 0 that d,/d,= -cot 0  and 
hence we can express the quantities E, and P, in terms 
of the z component of the electric field and polarization: 

When the relationships in Eq. (9) are  substituted into 
Eq. (3a), we obtain the following equation containing 
only the functions E, and P,: 

It should be stressed that we have not assumed any 
specific dependence of the polarization component P, 
on the electric field component E, and, consequently, 
Eq. (10) holds for any medium with uniaxial anisotropy 
and with a linear relationship between the po1ari:zation 
and field components given by Eq. (4) in the xy plane. 
If, for example, we assume that P, and E, are also re- 
lated linearly 

we find that in this case Eq. (10) has a solution in the 
form of a plane wave of constant amplitude, and the 
wave vector k and frequency w are linked by the dis- 
persion relationship for an extraordinary waves 

Following now the theory of SIT of Refs. 1-3, we 
shall utilize the nonlinear relationship between P, and 
E, and assume that the field E, interacts with an im- 
purity which is  a two-level system for which the dipole 
moment p of a transition, found including a correction 
for the effective field (see, for example, Ref. 71, is 
directed along the z axis. If in this case we ignore all 
the relaxation processes and consider only the case of 
exact resonance (i.e., if we assume that the field fre- 
quency i s  w = w,), we obtain the following expression 
for the total polarization P, created by the field 
E,(f, t )  = e,(g, t)e''M'u" : 

where p is'the density of two-level systems. 

The expression (12) i s  a special case of the solution 
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of the Bloch eq~a t i0ns . l '~  In describing real situations 2n pulse). 
we naturally have to allow for a possible detuning of We shall introduce a variable 7 = t  - t;/u, where u i s  
the field frequency w from the exact resonance a s  well the velocity of such a pulse. We then find from Eq. 
as for the inhomogeneous broadening of the transition 
line, occurrence of phase modulation (rpf O), etc. All 

(1 3) that 

these effects have been discussed in detail in the the- 
ory of SIT. "= It has been found that allowance for them ceY I 1 -=-sin \Y, -= fig 

d+ rPz 
nu" ( i - c o  0 ) .  (14) 

results in some change in the shape and parameters of rpz eci' (c/unz-i) e, 

a pulse propagating in a medium. Since we shall be 
interested in the effects of anisotropy, we shall study 
them employing the simplest nonlinear relationship 
(12) which permits us to study the most important new 
features of SIT in the case under discussion. 

We shall seek solutions of Eq. (10) satisfying, a s  in 
Eq. (12), the condition of slowness 

In this case Eq. (10) for a field of general form (1) can 
be reduced to a system of equations for the field am- 
plitude e,(g, t )  and phase rp(t;, t). We can easily show 
that this system of equations has the form: 

Thus, in our case the self-similar solution is in the 
form of a soliton of duration rp depending not only on 
the velocity u, as in the case of isotropic media, but 
also on the direction of the wave vector relative to the 
optic axis. If 8 = r/2 (propagation across the optic 
axis), the expression for 7, is identical with the cor- 
responding expression for an isotropic medium char- 
acterized by & = &(:) : 

When the angle 8 is reduced, the soliton duration for 
a fixed velocity u can both increase o r  decrease, de- 
pending on the relationship between the parameters 
c/u(&,'p))lt2 and . Expanding the expression for 
7, based on Eq. (14) in powers of cosa 8<< 1, we obtain 

It follows from the second equation of this system 
that the assumption of absence of phase modulation 
cp= 0, used to derive Eq. (12), i s  justified only when 
the frequency w and the wave vector k satisfy the fol- 
lowing dispersion relationship: 

This expression gives the dispersion law for the car- 
r ier frequency in Eq. (12), i s  a special case of Eq. (111, 
(111, and reduces to the latter if x, ,  = 0. Its origin is 
self-evident since the polarization of the impurity 
molecules along the z axis given by Eq. (12) is, under 
SIT conditions, shifted in phase away from the field by 
r/2 and, consequently, i t  makes no contribution to the 
dispersion relationship, although i t  does give r ise  to a 
dependence of the field amplitude e, on the spatial and 
temporal variables. 

The substitution of Eq. (12) into Eq. (10a) gives the 
following nonlinear equation for e, : 

where n, i s  defined by Eq. ( l la) .  Equation (13) reduces 
to the sine-Gordon equation for the function 4, for 
which we can solves the Cauchy problem and'investi- 
gate the solution for any initial condition. However, 
we shall consider here only the influence of the aniso- 
tropy on the parameters of a self-similar soliton solu- 
tion of the sine-Gordon equation (which is known a s  a 

It is therefore clear that for a fixed value of the soliton 
velocity u, i t s  duration T, i s  a nonmonotonic function of 
8, decreasing on reduction in 8 from the value 8= n/2 
and then rising in the limit 8- 0 when the inequality 
u(  &:d )'I2/= > 3/2 - s1/2 &I(Pi is obeyed. However, when 
u(&$))llz/c <3/2 - c1/2 E:") , the dependence of the soli- 
ton duration rp on the angle 8 is monotonic. Figure 2 
shows the dependence of T, on 8 for certain values of 
the parameters u(E,IO) )'I2/= and cL/&t) . 

Substituting the expressions for E, and P, found from 
Eq. (14) 

FIG. 2. Dependences of the relative duration of a soliton on 
the angl 0 for different values of the parameters U(&!~))'/~/C 

and q/JO) in the c a s e  of a resonance of ( w). 
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into Eq. (9), we obtain the final expression for the field i s  nondegenerate but a unit cell of a crystal contains 
component E, : two molecules. In this case a substituted molecule 

may have two orientations, since the dipole moments of 
ctg 0 E,= - - + ( ~ ~ ' - 2 n i p ~ ~ ~ ~  th- = ~ : l ) + f ~ ( : ' .  1 (16) a transition in an impurity may be oriented along the 
EL 7 9  x and y directions, respectively. These two alterna- 

This component E, has a part E?) with the same 
phase a s  the component E, and a part E?) shifted in 
phase by r/2. Therefore, the direction of the vector 
E in the yz plane i s  not constant but oscillates at the 
field frequency about a certain average value whose di- 
rection governs the direction of the Poynting vector 
S in the wave.' The angle 8' between the Poynting vec- 
tor S and the optic axis of the medium i s  given by 

which in our case replaces the familiar expression 

from linear crystal optics. 

Our solutions for an ordinary pulse (5) and an extra- 
ordinary pulse (15), (16) in a uniaxial medium in the 
region of resonance of x,,(w) a re  independent. This 
means that a pulse with an arbitrary polarization may 
be expanded into ordinary and extraordinary pulses, 
which propagate in a medium indepedently of one 
another and normally along different directions and 
different velocities. 

Under these conditions (i.e., when w = w,,) an extra- 
ordinary pulse should be stationary (stable) and this 
theoretical prediction should be borne in mind in de - 
signing suitable experiments. We shall now consider 
SIT under conditions such that the field frequency i s  
w rr w,, i.e., i t  is close to the resonance frequency of 
the transverse polarizability of the impurity molecules 
x,(w). 

83. SELF-INDUCED TRANSPARENCY IN THE 
REGION OF A RESONANCE OF x,(w) 

In this case the nonlinear relationship between the po- 
larization of the medium and the field applies only in 
the xy plane, whereas the component of the polarization 
vector along the z axis i s  related linearly to the field 
component E, 

The optical isotropy in the xy plane applies to crystals 
with different unit cells. In particular, a unit cell may 
contain an impurity molecule, whose symmetry group 
is such that the components p, and of the dipole mo- 
ment of a transition at a frequency w, transform in 
accordance with the same irreducible representation of 
the group. We shall call this case degenerate. In this 
case the direction of the polarization P, in a plane is 
always the same as  the direction of the field E, in the 
same plane. 

We can also have a different situation when a transi- 
tion of frequency w, in each of the impurity molecules 

tives are  indistinguishable in linear electrodynamics: 
in both cases the form of the tensor E,, i s  the same. 
However, in our case when the polarization is related 
nonlinearly to the field, these two situations a re  basic- 
ally different and should be considered separately. 

a. We shall begin with the degenerate case. We shall 
consider the propagation of an electromagnetic wave 
with a wave vector k which has the spherical coordi- 
nates cp, 6' (Fig. 3). We shall adopt a coordinate sys- 
tem Eqf with the t; axis directed along k. This can be 
done by rotating the initial coordinate system about the 
z axis through an angle cp and then about the q axis 
through an angle 8. The vectors in the old and new 
systems a re  related by 

where A,, i s  the rotation matrixs; similar relationships 
apply also for P and D. 

The wave equation for the vector E still has the form 
(3). From Eq. (3) we can obtain equations for the field 
components 

En=-& qE.+cos &, 
Ec=cos B(cos cpE.+sin qE,) -sin BE,-cos BE,-sin BE., 

which have the following form 

where E ,  is the projection onto the xy plane of the 
component of the field directed along k. 

We shall now use, a s  in Sec. 2, the condition that 
the field D is transverse. In the case under discus- 
sion this condition has the form 

Dc=sin BD,+cos BD,=0, 

so  that allowing for Eq. (18), we obtain 

8 
FIG. 3. 
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Substituting Eq. (21) into Eq. (20), we finally obtain 
the following equation for the component El:  

(22) 
As in the preceding section, i t  i s  assumed in the 

derivation of Eqs. (191, (20), and (22) that (exactly as 
in the case of plane waves) all  the functions depend on 
just one spatial variable & and on time t .  

It should be noted that Eqs. (19) and (22) a re  not in- 
dependent. Since the polarizations P, and Pl lie in 
the xy plane, each of them is governed by the total 
projection of E l  onto this plane. Therefore, in order 
to investigate the propagation of a wave a t  an arbitrary 
initial polarization and allow for the nonlinear relation- 
ship between the polarization and the field, i t  is neces- 
sary to solve the system of equations (IS), (22) which 
clearly requires numerical methods even after going 
over to slow variables. In view of this, we shall con- 
sider the propagation of waves only in two special 
cases: 1) when the field E is polarized along the 77 
axis (E =E,, E, =PI = 0); 2) E, = 0. In the former case 
we can use the relationship between the polarization P, 
and the field E, in the form of Eq. (12) and we clearly 
obtain from Eq. (19) the usual 2 r  pulse of McCall and 
Hahn with the dispersion w = c k / (  c,(O) )'I2 and the dura- 
tion T, independent of the angles. Thus, this wave i s  
an analog of an ordinary wave in linear crystal optics. 

In the latter case there is a dependence on the direc- 
tion of the wave vector. Then, the solution also has 
the form of a 2 r  pulse with the dispersion law 

and the duration 

The expression (23) is in the form of the dispersion 
relationship for the linear case of Eq. (11) when x,=O. 
This agreement and the form of the dispersion for an 
ordinary wave a re  due to, a s  pointed out in Sec. 2, the 
absence from the expression (12) for the impurity po- 
larization of a term which has the same phase as the 
field E, o r  E,, respectively. The field with the com- 
ponents E l  and E, i s  obviously an analog of an extra- 
ordinary linear wave. 

When a wave propagates along the optic axis (angle 6' 
= 0) we have nit = cy) and the formula for the duration 
rp is of the same nature as the formula for the duration 
of a soliton in the isotropic case. However, if 6<< 1,  
the expression (24) can be expanded a s  a ser ies  

r I - e ~ e y '  ) e z ~  +- 
2 l-tz (elo) "/c 

and, consequently, the dependence of T, on the angle 6 
for a fixed velocity of a soliton u once again is non- 
monotonic for u( c,(~) )lt2/c > 3/2 - c , , / % E ~ ) .  ~f 6 - n/2, 
the duration of a soliton increases and for 6= n/2 
(propagation across the optic axis) we have an extra- 
ordinary wave in the form of a linear wave whose 
polarization i s  directed along the z axis. Figure 4 
shows the dependences of the soliton duration r on the 
angle 6 for some values of the parameters U ( L $  )lI2/c 
and E,,/E?) in the case under discussion. 

Substituting the solutions for El and Pl into Eq. (21) 
and averaging in the same way as in Sec. 2 over the 
field period, we find that instead of Eq. (17a) we have 
an analogous expression 

b. We shall now consider a crystal whose unit cell 
contains two molecules, when a substitutional impurity 
has a nondegenerate transition frequency w,, and the 
dipole moment of the transition in the impurity replac- 
ing the first  o r  second molecule of the matrix is di- 
rected along the x and y axes, respectively. As men- 
tioned a t  the beginning of this section, in the linear 
theory this case is indistinguishable from a degenerate 
transition. However, if the polarizations P, and P, 
a re  nonlinear functions of the corresponding field com- 
ponents Ex and E, [see, for example, Eq. (12)], the 
polarization P, in the xy plane is not collinear with the 
direction of the field El in the same plane, in contrast 
to the case of a degenerate transition. This is a con- 
sequence of the trivial circumstance that the ratio of 
two nonlinear functions is not proportional to the ratio 
of their arguments. In this case, we can obtain Eqs. 
(19) and (22) for the field components E, and El. In 
the case of a degenerate transition we can obtain inde- 
pendent solutions of Eqs. (19) and (22) by specifying a 
given polarization of the electric field in the medium, 
but there is no need to restrict  the direction of the wave 
vector k. In view of the noncollinearity of the vectors 
P, and E, for an arbitrary direction of the vector k, 
this condition i s  necessary but not sufficient. For 
example, if the electric field is polarized along the q 
axis (polarization of an ordinary wave), the polariza- 

FIG. 4. Dependences of the relative duration of a soliton on 
the angle 0 for different values of the parameters u ( ~ ( ! ) ) ~ / ~ / c .  
and q,/e>' in the case of a resonance of X, ( 4. 
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tion vector P of a unit volume of the medium has other 
nonzero components. Clearly, this rule i s  not obeyed 
in those cases when the wave vector is directed along 
the principal symmetry axes of a crystal and, a s  shown 
below, along the directions with the azimuthal angle 
(p = n/4. 

It is convenient to continue our analysis in the coor- 
dinate system xyz.  In all the cases under discussion 
the system of equations for the field components Ex 
and E, splits and it  i s  quite easy to analyze their solu- 
tions. 

As before, the linear polarization P, can be elimi- 
nated and then a plane wave in the case when the slow- 
ness condition is satisfied i s  described by the following 
system of equations: 

where a,, i s  a matrix with the components 

c e -1 
a,, -- - n A s i n '  0 sinq cos cp, 

U ( E ~ ' ) ' ~  e, 

sin' 0 sin' cp 
&a= n sin' 0 cos' cp + 

a (el" en 

n' 
sin' 0 sin cp cos cp 

n' n2 
sin' 0 sin cp cos cp 1 - -sins 8 sin2 cp 

eu e l  

The expression for the refractive index n of ordinary 
and extraordinary waves i s  identical with the corre- 
sponding expression for the case of a degenerate tran- 
sition and we also have 

It is clear from Eq. (26) that only when a wave pro- 
pagates along the xyz axes or  along the direction with 
the azimuthal angle cp = n/4 do the equations (26) split 
and a further analysis is similar to the case of a de - 
generate transition in the xy plane. In the case of an 
arbitrary direction of propagation of a plane wave we 
have been unable to find an analytic solution of the sys- 
tem (26) and a numerical analysis is clearly needed. It 
should be noted that throughout this paper we have 
eliminated the linear part of the polarization from the 
wave equation in the case of a plane wave; this restric- 
tion i s  not essential and it  can be introduced by apply- 
ing the condition divD= 0 for an arbitrary field. 

We shall end here with an analysis of the influence of 
the anisotropy of an optically uniaxial matrix on the 
characteristics of self-induced transparency in the re-  

gion of impurity resonances and we shall stress that it 
is also desirable to analyze the characteristics of 
self-induced transparency in matrices with other sym- 
metries and structures. 

When an allowance i s  made for nonlinear optical ef- 
fects (i.e., in other words, when an allowance i s  made 
for nonlinear polarizabilities) the symmetry of the 
medium becomes lower than the symmetry of the ten- 
sor ci, of linear crystal optics. However, under SIT 
conditions this lowering of the symmetry i s  manifested 
extremally. In fact, in the case of crystals with sev- 
eral  molecules per unit cell-as is clear ,  for example, 
from the system (26)-the shape of an SIT pulse for an 
arbitrary direction of propagation is governed by the 
values of the functions 9, , where a = 1,2, . . . , v and 
where v i s  the number of molecules per unit cell; each 
of the functions 9, is governed by the orientation and 
spectral properties of the molecule a. This means 
that an investigation of SIT in complex crystals may be 
of interest not only from the point of view of applica- 
tions (generation of pulses of different durations and 
shapes) but also in the form of a characteristic site- 
selection spectroscopy which supplements linear spec- 
troscopy methods (see, for example, Ref. 10). 

Use of anisotropic crystals extends greatly the range 
of investigations and further analysis of SIT in aniso- 
tropic media i s  undoubtedly urgent. Its importance 
will increase further when suitable experiments are 
carried out. 

"characterist ics of SIT a r e  discussed in Ref. 5 in the 
ca se  when the impurity and matrix resonances a r e  close. 
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