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The response of a spectrally inhomogeneous system of two-level atoms to the modulation of the energy gaps 
of the atoms in the presence of a strong saturating near-resonance field is theoretically investigated. The case 
in which the inhomogeneous broadening is much greater than the homogeneous broadening is analyzed. It is 
found that the response of the system to the modulation has a component that is shifted in phase by l7/2 
relative to the phase of the external influence, and that the amplitude of this component has a resonance 
maximum at a frequency determined by the amplitude of the strong field. This leads to resonant absorption of 
the field modulating the energy gaps. The width of the resonance is characterized by only the homogeneous 
broadening. 

PACS numbers: 32.70.J~ 

INTRODUCTION description of a TS in a strong field in the nonresonant 

A two-level system (TS) acquires completely new 
properties in the field of a strong electromagnetic 
wave. The appearance of these properties is due to the 
fact that, besides the oscillations a t  the frequency of the 
influence, there ar ise  oscillations in the TS parameters 
a t  the Rabi frequency determined by the amplitude of 
the strong field. The changes in the properties of the 
TS a re  detected with the aid of an auxiliary "test" field 
that induces transitions between the levels of the sys- 
tem. They manifest themselves in the appearance of 
new resonance anomalies in the spectrum of the re-  
sponse to the 'testv field as the amplitude of the strong 
field is increased."" 

In our previous  paper^,'^^'^ we proposed to investigate 
the changes in the properties of the TS by modulating i ts  
energy gap with a weak field. We found that resonance 
anomalies appear a t  the Rabi frequency in the response 
of the system to the modulation. The appearance of 
resonance anomalies in the response to a weak modulat- 
ing field in the case of the action of a strong resonance 
field can be described only when the modification of the 
kinetic equations (KE) for a TS in a strong field is taken 
into account. Allowance for the modification of the KE 
becomes unnecessary if the strong field is not in exact 
resonance with the TS, since this effect then is due to 
the unmodified KE, and is larger. These results a re  
valid for spectrally homogeneous systems. In the case 
of a strong spectral inhomogeneity, the description of 
the resonance under conditions when the TS energy gap 
is modulated (we shall henceforth call i t  modulation 
resonance) should take account of both the contribution 
due to the modification of the KE and the contribution 
due to the nonresonant nature of the influence. The 
purpose of the present paper is to consider the modula- 
tion resonance in a medium consisting of two-level 
atoms in the presence of strong inhomogeneous broad- 
ening. 

8 1. THE KINETIC EQUATIONS FOR A TS SUBJECTED 
TO THE ACTION OF A STRONG NONRESONANT FIELD 

Before considering the modulation resonance, let us 
derive the modification of the KE necessary for the 

case. For this purpose, let us consider a system con- 
sisting of two coupled subsystems: a) A TS subjected 
to the action of a strong circularly polarized field g0(t) 
(the dynamical subsystem) and b) a thermal reservoir 
(the dissipative subsystem). The Hamiltonian of the 
system has the form 

where E is the Hamiltonian of the dynamical subsystem; 
8 the Hamiltonian of the dissipative subsystem; V, the 
Hamiltonian for the interaction _between the subsystems; 
H,, the Hamiltonian of the TS; D, the Hamiltonian for 
the interaction between the TS and the strong field_; 
B = 1 ;  w, is the energy gap of the TS; 
the x,,, are  the eigenfunctions of the Hamiltonian H,; d 
is the electric o r  magnetic dipole moment operator for 
the TS (the analysis i s  valid for both spin 3 a con- 
stant magnetic field and a two-level atom); $, and w a re  
the amplitude and frequency, respectively, of the strong 
alternating field; the j,, and the projection operators of 
the fi, representation, which a re  defined by the folloy- 
ing law of action on the X, basis: P,,x,= 6 , , ~ ;  the U,, 
are  the operators of the dissipative subsystem. 

A 

L , t  us-go over with the aid of the operator u = exp[(iw/ 
2)(P2, -pl1)t] to the generalized i_nteraction representa- 
tion (GIR) in which the operator D does not depend on 
the time: - A a 

E' a - ( B ~ - P ~ ~ ) +  ~ ( P , ~ + B ~ ~ ) ,  A=uo-w, 
2 2 - f i , , , , , ~ , ~ ' m ( ~ - n ) '  (m, n=i, 2). 

By using the standard procedure for deriving the 
KE,14'18 we can obtain in the GIR the relaxation part of the 
kinetic equctions for the following combinations of the 
averages (P,, ) : 

- e 
R(z)  --4Kl:' (a )  {r- [ms4 th (u+z%) 
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where 
~=(p , ,+p , , ) ;  y-i(B,,--B,,); z-(Pli-B~~); 

(2kT)-I; tg e=oi/A; ax= (Ot'+Aa)'; K;: (a) .. 
= j cos o r  ~e A : ~ ( T ) ~ T ;  Ko*(ol)-Kilii (01)+KzP(ot)-2K~r(i(col); 

0 - 

A:: (T) -Z-'Z {exp(-2P1.)exp(ifar) (a1 fim,l~) exp (-ifp~) (k~fi..-~a)); 
S.P 

Z = za exp(-2pfa); (a 1 is the eigenfunction of the dis- 
sipative-subsystem Hamiltonian and corresponds to the 
eigenvalue fa (here the Greek indices pertain to the dis- 
sipative subsystem; the Latin indices, to the dynamical 
subsystem). 

In deriving the expression (21, we made the following 
assumptions: 

1) The amplitude of the strong field, go@), is bounded 
from above: y, << w, T;', where T, i s  the correlation 
time for the Urn, operators and i s  determined by the 
spectral width of the thermal reservoir: w* = r;'. The 
spectral functions of the reservoir vary little over fre- 
quencies of the order of w,: 

2) The relaxation matrix is real, which corresponds 
to the neglect of the shift of the resonance frequency w, 
and to the exclusion from consideration of the general 
shift of the energy levels under the action of the reser-  
voir. 

3) KE(w) << w* (the kinetic limit). 

4) Either the condition w > w* o r  the condition 4 ' , (7)  
=47(7)6,,6,, is satisfied. The latter condition fol- 
lows from the assumption that the system is isotropic, 
and that the stochastic fields induced by the reservoir 
on the TS a re  not correlated. Furthermore, we assume 
the validity of the relation [4",(~)]*=&",(-T), which 
follows from the allowance for the fact that the stoch- 
astic fields a re  linearly polarized and isotropic. 

In practice we a re  most often faced with the investiga- 
tion of two opposite cases: 1) the case in which the 
high-temperature approximation (pw << l), which is 
normally realized in the RF and microwave bands, is 
valid and 2) the case in which the low-temperature ap- 
proximation (pw>> 1), which is applicable in the optical 
frequency range, is valid. In either case the condition 
P2x << 1 is fulfilled. The relaxation matrix (2) can be 
written in both approximations a s  follows: 

where 

r,=4K,,li(o), r2=2KiPi ( 0 )  +KO0(0,). 

In the high-temperature approximation z,=pw, and x, 

= -pol, whereas in the low-temperature approximation 
z = 1  and xo= -Cgw,, where 

The obtained modified relaxation matrix (3) differs 
f rom the previously known matrix in the presence of 
the nonzero quantity x,. 

The adopted description of the interaction ?with the 
dissipative subsystem i s  the most general for an en- 
semble of noninteracting two-level systems. For  mag- 
netic systems this form of ? is possessed by, for ex- 
ample, the spin-lattice interaction in a solid (the 
thermostat is the phonon gas), by atomic collisions in a 
gas without resonant exchange of excitations (the ther- 
mostat i s  the thermal motion of the atoms), and by in- 
teraction with the thermal-radiation field. For optical 
systems (electric-dipole transitions), such a form is 
possessed by the ion-phonon interaction, by collisions 
in gases, etc. For such relaxation mechanisms the 
structure of the dissipative part of the KE depends only 
on the general relations among the Fourier transforms 
of the correlation functions of the operators fim, of the 
reservoir. The Fourier transforms a re  themselves 
determined in the model by the relaxation parameters 
of the KE (the relaxation times), and should be com- 
puted separately for each relaxation mechanism. 
Since, in deriving the equations, we used the most gen- 
era l  relations among the Fourier transforms of the cor- 
relation functions, the modification obtained has a gen- 
era l  character, and is valid for many systems. It 
should be noted that, in the optical frequency range, 
the major role in the modification i s  played by the spec- 
t ra l  functions ~ : ( w , )  of the ?perator (fill - 02,), which, 
in the interaction operator V, describes the elastic 
collisions of the system with the particles or  quasipar- 
ticles of the reservoir. 

52. PROPERTIES OF THE TS IN  A STRONG 
VARIABLE FIELD 

In the GIR the modified kinetic equations for a TS 
subjected to the action of a field $,(t) have the form 

Here we have, for simplicity of analysis, set  the relax- 
ation rates I?, and r, equal: I?,= r,= I?. Equality of 
the relaxation rates i s  possible under the condition that 
K:(w,)= 2 K~,:(w), a situation which is realized in the 
short -correlation -time limit (wr, << 1) for relaxation 
mechanisms satisfying the condition 

< I  Ui,-U111t).=4( (Re U,2)'),=4( (Im U,z)2),, 

where ( ), denotes averaging over the states of the 
reservoir with the distribution I=Z"exp(-2pP). The 
steady-state solution to Eq. (4) has the form 

z,= [-olAzo+ (rZ+Aa) zo]S, 

z.t3 [ (~2+w12)xo-o,Azo]S, (5) 
yst=r(Azo+oizo)S, S-i=r'+ol'+A'. 
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The only difference between i t  and the solution to the 
unmodified KE is that all i t s  three components, x,, , 
y ,, , and z ,, , contain additional additive terms pro- 
portional to x,. Because of this, the component x,, 
for A =  0 is nonzero. Since it is responsible for the X' 
dispersion, i t  may be said that allowance for the mod- 
ification leads to nonzero dispersion a t  exact resonance. 
It is shown in Ref. 19 that, in the description of a la- 
s e r ,  this fact yields a shift in the generation frequency. 
The appearance of the additional term in z,, leads to 
a situation in which the quantity z,, becomes, when the 
condition ~ w ~ ( ~ , / z , ) ~  > r2 is fulfilled, negative for A 
satisfying the inequality 

where T = [~w~(xo/zo)a - F]lJ2, i.e., the atoms with 
such detuning A will have inverted populations. The 
atoms for which the inequality A > z,/@ is satisfied 
will intensify the field, since for them y ,, < 0 (y,, is 
responsible for the absorption, and i s  proportional to 
x").  The enumerated anomalies in the behavior of the 
variables x,, , y,, , and 2,: indicate the allowance for the 
modification of the KE reveals completely new proper - 
ties of a TS in a strong field. 

$3. SOLUTION OF THE MODIFIED KE FOR A TS WITH 
AN ENERGY GAP UNDERGOING A SLIGHT 
MODULATION 

Let the TS be acted upon by, besides the field 2,(t), a 
field Z,(t) that causes modulation of i t s  energy gap. 
The Hamiltonian for the interaction with this field has 
the form 

- 0% H,= -(pa, -P,,)w at, 
2 

where w, and C2 are  the modulation amplitude and f re-  
quency, respectively. The action of the field $s,(t) 
leads to the appearance in the KE of the additional 
terms: 

Since w, is assumed to be small in comparison with w, 
and r (weak modulation), the solution to the K E ( ~ )  with 
the additional terms (7) can be sought in the linear ap- 
proximation in w,. We a re  interested in the behavior 
of the component z =z,, +Z, where the quantity Z i s  
determined up to the first  power of w,. The solution to 
the equation yields for i t  the following expression: 

F(t) --o%(xf cos S2t+x1' sin Qt), (8) 
x'-(AC*-BCz) (A-B') -'; x"= (ACa+BC1) (Az+BB') -1; 

~ = r ( r ~ + ~ r ' - 3 ~ ~ + ~ ~ )  ; B=Q(B~V~:-QZ+A~) ; 

C ~ = ~ I S ~ [ ~ A ~ , Z O -  (r+o~'-A"~so] ; Cz=olSQ[-Ao,zo+ (rz+ol')zo] . 

It is necessary to average i t  over the frequency spread 
A = w, - w. The averaging amounts to integration over 
the frequency w, with the distribution function g(w, - w,), 
where w, is the central frequency. We shall consider a 
system with a strong spectral inhomogeneity: 6>> I?, w, 

(6 is the width of the distribution function), g(* r )  
=g(* w,) ~ g ( 0 ) .  The function z (A) varies significantly in 
the interval (-e, e), where the quantity e i s  of the order 
of r and w,. The variation of the function g(A + w - we) 
in this interval can be neglected. Therefore, under the 
condition that - w, << 6, the integration can be per - 
formed as follows: 

Here A, is that value of the argument of the function 
;(A) a t  which the function makes the dominant contribu- 
tion to the integral. The quantity g ( ~ , )  can be esti-  
mated from the normalization condition: g(A ,)6 s 1, 
i.e., g(~,)=6- ' .  

Thus, the averaging operation reduces to a simple 
integration with respect to A from -m to +w. As can 
be seen from the expression (8), the functions A and B 
a re  even functions of A. In the functions C, and C,, the 
terms with the factor x, a re  even functions of A in both 
the low - and high-temperature approximations. There - 
fore, their contribution to  the averaged response of the 
system is nonzero (the functions C, and C, enter only 
into the numerator of the averaged function). In the 
low-temperature approximation the terms with the fac- 
tor z, a re  odd functions of A, and, consequently, their 
contribution vanishes in the averaging. In the high- 
temperature approximation, since z,=pw,, these terms 
make a nonzero contribution. Let us consider the two 
approximations separately. 

A. The low-temperature approximation 

In this case only the terms with the factor x, make a 
nonzero contribution. Therefore, we should obtain 
zero response to the modulation (6) if we do not allow 
for the modification of the KE. Performing the integra- 
t ion 

we obtain 

The quantities b and c in the expression (9) assume 
minimum values when d = 0, i .e ., when S2 = (w; + r ' ) l t Z .  

We - can, on the basis of this fact, conclude that 2' and 
X" have extrema in the vicinity of d = 0. Figure l a  
shows the plots of X'S and in[ as functions of S2/r for 
w,= l o r ,  where ~"=p@w1(106)". As can be seen 
from the figure, 2 and 2" have resonance anomalies in 
the vicinity of the frequency w,. The resonance anoma- 
l ies ar ise  under the condition that w, > r, since (%I, 2") - (wl/l?)lJawl. The resonance -line widths a re  deter - 
mined by the homogeneous width r. Therefore, the 
modulation resonance in a medium with a spectral in- 
homogeneity can be used to investigate the system's 
spectrum masked by a strong inhomogeneous broaden- 

898 Sov. Phys. JETP 53(5), May 1981 A. R. Kessel'and R.  N. Shakhrnuratov 898 



FIG. 1. Dependence of the response components Sin (continu- 
ous curve) and?' (dashed curve) on the external-field fre-  
quency in (a) the low-temperature approximation and (b) the 
high-temperature approximation (in the latter case the quan- 
tities j i r a n d ~ ' r  have been plottedalong the axis of ordinates). 

ing. Since there ar ises  in the system a response, i" , 
shifted in phase by a/2 with respect to the phase of the 
influence, the system absorbs the field 31(t), and the 
absorption is proportional to the quantity 002fli", 
where N i s  the number of two-level atoms in the 
medium. 

The appearance of the resonance can be qualitatively 
explained a s  follows. The strong field go(t)  requantizes 
the states of the system in such a way that new states 
[the so-called quasi-energy (QE) states] arise in the 
alternating-field representation (i .e ., in the representa- 
tion in which the Hamiltonian k' is d i a g ~ n a l ) . ' ~ ~ ~ ~  The 
Hamiltonian for a TS interacting with a strong field - 
go(t) and with a weak modulating field Z,(t) has in the 
alternating-field representation (AFR) the form 

- 
where = exp[-+ B(P,, -P,,)] i s  the transition operator 
in the AFR and the @,, are  the projection operators of 
the AFR. Under conditions of exact resonance with 
respect to the strong_fiel_d, cos t?= 0 (A= 01, and the 
system Hamiltonian +R, corresponds to the Hamil- 
tonian of a TS acted upon by a field inducing only tran- 
sitions between its  states (the quasi-energy states): 
the strong field 3,(t) creates new states, and the field -. 
gl(t) induces transitions between them. It is clear that 
the weak field in this case should be resonantly ab- 
sorbed. 

But without allowance for the modification of the KE 
the difference between thf populations of the QE-states 
is equal to zero, since (gl1 - Y2',, ):'R = -(F12 + P2,)%IR 
= O  [see the expression (5)], where the symbols ( ):? 
and ( )flR denote averaging with the steady-state densi- 
ty matrix in the AFR and GIR respectively. Therefore, 
the field @,(t) is not, in the first  approximation, ab- 
sorbed. Only the consideration of the modification of 
the KE can lead in the present case to a nonzero dif - 
ference between the populations of the QE states. But 
in many cases the appearance of this difference does 
not lead to the establishment of a canonical distribution 
over the QE states,la since, a s  a rule, the inequality 

I 1 >>(Gu - gzz will be satisfied [this inequality 
can be derived from the expression (5), using the rela- 
tion between the averages ( t:R and ( which 
relation is determined by the operator w]. Thus, this 
qualitative explanation res t s  on the knowledge of the 
steady-state solution to the modified equations. There- 
fore, i t  is more natural to use only the change in the 
structure of the equations in explaining the effect. 

A difference between the populations of the QE states 
can also ar ise  as a result of the nonresonance charac- 
ter  of the influence, since 

But since only the contribution from the terms with the 
factor x, (which ar ise  as a result of the modification) 
remains when the response is averaged in the low- 
temperature approximation, the interaction via the 
Unonresonance" population difference does not play any 
role. 

6. The high-temperature approximation 

In the high-temperature approximation the terms 
with the factor Az, = p ( ~ '  +A w )  yield nonzero contribu- 
tions in the averaging. Averaging the expression (8) 
with allowance for this fact, we obtain: 

Figure l b  shows the plots of jT'2 and pe as functions of 
0/r for o, = lor, where 2 = p t .  The resonance curves 
in this figure have roughly the same widths and peak 
heights as in the low-temperature approximation. The 
main difference i s  that ?(O) af xf(S1,,), where a,, is 
the frequency a t  which jT' assumes i ts  maximum value. 

CONCLUSION 

For the modulation resonance to be realized, the fol- 
lowing conditions must be fulfilled. Firstly, the ampli- 
tude of the strong field acting on the TS should satisfy 
the inequality I, > l?d;$, i.e., all the Rabi frequencies 
of the system should be greater than the homogeneous 
line width. Secondly, i t  must be feasible to slightly 
modulate the energy gap of the TS by some field. For 
magnetic systems (the operator D describes the rnag- 
netic dipole transition) the second condition is realized 
by modulating the magnetic field producing the w, 
splitting. For optical systems (the operator b de- 
scribes the electric dipole transition) i t  can be realized 
with the aid of a modulated electric field on account of 
the Stark effect. In solids alternating electric field can 
be produced on the atoms with the aid of sound. And 
these fields can be significantly stronger than those 
produced by apparatus. The modulation of w, for opti- 
cal systems can also be achieved by modulating the 
splitting of the magnetic sublevels of the atom in a 
magnetic field. 

The modulation resonance can be used to measure 
the amplitude of the coherent light field and the matrix 
elements of the dipole transition. Since i t s  width is 
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determined by the homogeneous line width, the modula- 
tion resonance can be  used to investigate the s y s t e m  
spec t rum masked by a s t rong  inhomogeneous broaden-  
ing, e.g., the Doppler broadening, which is charac te r -  
istic of gases .  
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