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In the semiclassical impact parameter approximation calculations are made of the cross sections of stimulated 
multiphoton bremsstrahlung when a particle is scattered by a force center. The case of electron scattering in a 
Coulomb field is considered in detail. At low electron energies, a strong difference from the Born 
approximation is found, this being due to the allowance made for the adiabaticity of the radiation process. In 
the case of a weak radiation field in the adiabatic limit simple expressions are obtained for the cross sections of 
stimulated bremsstrahlung, these being analogous to the Kramers expression for spontaneous emission. 

PACS numbers: 03.65.Sq, 13.10. + q 

Calculation of the c ross  sections of stimulated brems- 
strahlung (and i t s  inverse) in a strong monochromatic 
field a r e  of interest in connection with the study of 
plasma heating by l a se r  radiation, and also the possi- 
bility of obtaining negative absorption in transitions be- 
tween continuum states. '#' ~ e c e n t l y , ~  the f i rs t  mea- 
surements were made of the c ross  sections of stimulat- 
ed bremsstrahlung in the case of electron scattering on 
Ar and Hz. The emission and absorption of up to five 
photons in one scattering was observed. The c ross  
sections of stimulated bremsstrahlung in strong fields 
were calculated for  the f i rs t  time by Bunkin and Fedor- 
ov4 in the Born approximation in the field of the scat- 
terer and with Volkov wave functions for  the electron in 
the field of the wave. In following studies, this approx- 
imation was widely used by other authors. Unfortunate- 
ly, no calculations have yet been made of the c ross  sec- 
tions of stimulated bremsstrahlung in the approximation 
that takes into account the interaction of the electron 
with the field of the scatterer exactly and with the radi- 
ation field perturbatively. Corresponding calculations 
for multiphoton ionization of atoms have been made to 
very high orders  of perturbation theory. 5 v 6  So far,  i t  
has been possible to take into account the effect of both 
the fields on the electron only in the case of scattering 
on a model bfunction potential. ' But the case  of 
greatest interest is the Coulomb field, when the condi- 
tion of applicability of the Born approximationE reduces 
to the requirement that the parameter 

where Ze is the charge of the scatterer and v is the 
relative velocity, be small. 

In the present paper, on the basis of the semiclassi- 
cal impact parameter theory, we attempt to go beyond 
the Born approximation. In the case of the Coulomb po- 
tential, this theory is valid for  large n, precisely 
where the Born approximation breaks down. In Sec. 3, 
we consider the case of a weak radiation field, and in 
the adiabatic limit we obtain simple expressions for  the 
cross  sections of stimulated bremsstrahlung, these be- 
ing analogous to the Kramers  formula in the case  of 
spontaneous bremsstrahlung. 

1. IMPACT PARAMETER APPROXIMATION FOR 
STIMULATED BREMSSTRAHLUNG (EMISSION AND 
ABSORPTION) 

Our point of departure is the Hamiltonian of Ref. 9, 
which describes scattering of a particle on a potential 
V(r) and simultaneously i t s  interaction with the field of 
an  electromagnetic wave in the dipole approximation: 

where w i s  the frequency of the wave, e is the unit vec- 
tor in the direction of i t s  polarization, bt and b a r e  the 
creation and annihilation operators, and V is the quan- 
tization volume. 

We now assume that the scattering of the particle on 
the potential can be described classically. In the gen- 
e ra l  case, this assumption is justified for fast  particles 
and smooth potentials; in the case of the Coulomb field, 
i t  is justified f o r  large values of the parameter q ,  i. e. , 
for  slow particles. I t  is shown in the Appendix that if, 
f irst ,  the motion of the particle in the potential V(Y) 
can be described classically and, second, in the region 
important for the process of stimulated bremsstrahlung 
the kinetic energy of the particle is greater than both 
the energy of i t s  interaction with the radiation field and 
the photon energy, then instead of the Schrijdinger equa- 
tion with the Hamiltonian (2) one can use the simpler 
equation 

ax 2nh ih at = -e (x) "aev ( t )  (be-Lml+b+e'wl) x, 

where v(t) is the time-dependent classical velocity of 
the particle a s  i t  moves in the field V(Y). If the second 
condition is satisfied, we can in the region important 
for the bremsstrahlung ignore the perturbation of the 
particle's trajectory caused by i t s  interaction with the 
radiation field. The region that makes an important 
contribution to the bremsstrahlung is a region of atomic 
order. Since the kinetic energy of the particle in an 
attractive field is equal to the sum of i t s  total energy 
and the potential energy I V(Y) I ,  in this region i t  is not 
l e s s  than the atomic energy. Therefore, the second 
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condition in the case of attractive fields will be satis- 
fied even for slow particles provided the frequency and 
strength of the radiation field a re  less  than the atomic 
frequencies and strengths. In the case of the attractive 
Coulomb field, besides this restriction on the frequency 
and field strength of the radiation, i t  is necessary that 
the absolute magnitude of the particle's energy be less  
than i t s  energy in the f i rs t  Bohr orbit in order to en- 
sure  that the motion is classical.' The solution of Eq. 
(4) is the problem of calculating the probabilities of ex- 
citation of the states of the wave field, i. e. , the states 
of an oscillator when the particle moves along a classi- 
cal trajectory in the field of the scatterer. The solu- 
tion of Eq. (4) is well knowni0 and is 

X-exp { ibv ( t )  +ib+v+ ( t )  + i g ( t ) ) ,  (5 

( t )  = A(=) lh dtev (t)e-im', 
h V o  

b 

where the function g(t) does not contain the variables b 
and b' and is unimportant for what follows. 

Knowing X, we can find the probability amplitude A,, 
for excitation of the field state 11) a t  the time t if the 
field a t  to is in the state Is). This amplitude can be 
expressed in terms of Laguerre polynomialsi0: 

For  s <1, the positions of s and 1 in the expression (7) 
should be interchanged. We shall be interested in a ra- 
diation field for which many photons a re  present in the 
initial and final states. We introduce the number n = s 
-1, which is equal to the number of absorbed bz > 0) and 
emitted (n < 0) photons, and we use the asymptotic be- 
havior" for the Laguerre polynomials when s, 1 >> 1. 
  hen' 

A,=J. (m exp (ig+inp+L/2inn), v/v+=eXP. (8) 

Here, J, is a Bessel function of integral index. 

The differential cross section of scattering with the 
absorption of n photons is equal to the product of the 
classical differential cross  section for scattering of the 
particle in the field of the scatterer and the probability 
of excitation IA, l 2  of the state n: 

do,=J,"(IBl)da.; - 
B-"J d t ~ ~ v ( t )  e-'.I, 

h o  -- 
and 

E0=(8nhoslV)" 

in the limit s, V - 00 but a t  constant ratio of these quan- 
tities goes over into the classical intensity amplitude of 
an electromagnetic wave. I t  can be seen that the inte- 
gral  (10) is none other than the classical integral which 
determines the Fourier component with frequency o for 
dipole radiation in collisions. 

It should be noted that our treatment is not completely 
classical, although the motion of the particle in the po- 
tential V ( r )  is described classically and the electromag- 
netic field in the final expression (10) is also treated in 
the classical limit. Equation (4) describes excitation of 
the states of the field of the electromagnetic wave and 

is quantum mechanical. Considering large population 
numbers, we arrive a t  the classical limit for the radia- 
tion field, though the change in the states of this field, 
i. e. ,  the emission and absorption of photons, is still 
described quantum mechanically. 

If the particle before and after the scattering, which 
occurs a t  the time t =0, is free  and moves with the ve- 
locities v, and vf, respectively, i t  is readily seen that 

Expressing vf by means of the quantum-mechanical law 
of energy conservation, 

mu,'/2=mui'lZ+nho, (13) 

which does not follow from our classical treatment, we 
arrive a t  the same argument of the Bessel function a s  
in the case of the Born approximation. 'e4 

2. THE CASE OF A COULOMB FIELD 

We now consider in more detail the case of electron 
scattering in an attractive Coulomb field. The motion 
of the electron in the focal coordinate system is given 
by the expressions ( ~ e f .  13) 

x=a(e-ch u), y=a(e2-I)" sh u, z=0, 

Ze' I 
t- a ( e  sh U-u), a== - 

u muz ' e-sin(6/2). 

Here, 9 is the scattering angle. The calculation of the 
integral (10) is completely analogous to the calculation 
of the integrals in the case of spontaneous bremsstrah- 
lung in the case of scattering in a Coulomb fieldf2 o r  in 
the case of dipole Coulomb excitation of nuclei. l4 As a 
result, we obtain 

where K, is a MacDonald function of imaginary index, 
and the prime denotes the derivative with respect to the 
argument; e, and ey are  the projection of the vector e 
onto the focal coordinate axes. For  what follows, i t  is 
convenient to express e, and e, in terms of the projec- 
tions of e onto the directions of the incident and the 
scattered electron. For  this, we introduce a coordi- 
nate system in which e and the unit vectors n, and 9 in 
the direction of the incident and scattered electron have 
the coordinates 

e= (sin a, 0 ,  cos a), ni=(0,5,  i ) ,  

n,= (sin 6 cos rp, sin 6 sin cp, cos 6 ) .  
(18) 

Then n@=cos a, n,e=cos a cos 6+sin a sin 6 cos cp, 

Using (9) and (15)-(19) and the fact that in the Coulomb 
case du, is the Rutherford cross  section, we obtain fi- 
nally the expression for the differential cross  section 
of n-photon emission (absorption): 

do, aae4 
-=- dQ J n 2 ( ~ S ) .  (20) 

S=~e"~'z[eZ(nie-nte) 'K,(a  (Ee) + (n,e+n,e)'K,; ( f e ) ]  '. (21) 
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In the case of scattering in a repulsive field, we have 
the same expressions (20) and (211, but the sign of the 
argument of the exponential in (21) is negative. 

The cross  sections (20) contain two dimensionless 
parameters, y and 5. The parameter y is related to 
the intensity of the alternating field, and 5 determines 
the degree of adiabaticity of the process, since 5.s is 
the ratio of the collision time to the oscillation period 
of the field. The parameter 5 is specific for the Cou- 
lomb field, and in the Born approximation vanishes. 
Indeed, a t  small 5 and c- 1, s o  that 5c << 1, the function 
K; in the expression (21) can be replaced approximate- 
ly by (5&)-', and the function Kg equated to zero." As 
a result, for S we obtain the Born value, equal to n, 

e - n, . e. At small  scattering angles, when c >> 1, 
such a transition is impossible because of the long- 
range nature of the Coulomb field. Note that for large 
5 the cross  sections for attractive and repulsive fields 
will be very different (in the Born approximation, they 
a r e  equal). If C; is large, then for a repulsive field S 
will be exponentially small, and virtually no emission 
o r  absorption will occur. 

I t  follows from the expression (20) that in the impact 
parameter approximation the c ross  sections a r e  sym- 
metric with respect to the sign of n, i. e . ,  the c ross  
sections for the absorption and emission of n photons 
a r e  equal. This is a reflection of the fact that in the 
classical treatment we ignore the influence of the ener- 
gy loss on the motion of the incident particle. In a f i rs t  
approximation, these losses  can be taken into account 
in the following phenomenological manner. In the ex- 
pression (21) i t  is natural to introduce in front of the 
vector n, the factor vf/v,, where vf is determined from 
the energy conservation law (13), and then symmetrize 
the parameters a and 5 by the method described in Ref. 
14. Calculations showed that in the case of Coulomb 
excitation of nuclei the symmetrized c ross  sections a r e  
significantly better than the unsymmetrized ones. How- 
ever, in our case there a r e  many inelastic channels, 
and the symmetrization procedure is not s o  unambigu- 
ous. To verify i t s  effectiveness, quantum-mechanical 
calculations a r e  needed. Since such calculations a r e  
not currently available, we shall in what follows simply 
use the expressions (20) and (21) without phenomeno- 
logical corrections. 

3. THE CASE OF A WEAK RADIATION FIELD 

In a weak radiation field y << 1, and we can res t r ic t  
ourselves to the f i rs t  few terms of the ser ies  expan- 
sions of the Bessel functions. Since the emission and 
absorption cross  sections a r e  equal, we shall in what 
follows for brevity speak of emission alone. Restrict- 
ing ourselves to just the f i rs t  term in the se r i e s  expan- 
sion of the Bessel function and integrating over the 
angular variables of the scattered electron, we can rep- 
resent the c ross  section of n-photon emission in the 
form 

I an m nnc ' as 

on ( a )  = a ' ' j d e e - ~ ~ + ' ~  dq{ [cos  a-(8'-1)' s i n a m s  r ( lZ~t ." (&e)  
(nl)' , 

0 + (l-8-') [ (8'-1) 'hcos a+sin a cos q]'KI< (ge))".  (22) 

We consider f i rs t  in more detail single-photon emis- 
sion. In this case, the integral over E can be calculat- 
ed explicitly on the basis of the expressions for the in- 
definite integrals of a product of two modified Bessel 
functions. As a result, 

a, ( a )  =na2yag'eue[R, sinz a+R,(3 cosz a - i ) ]  ; (23 

Note that there is a direct correspondence between 
the c ross  section (23) and the classical bremsstrahlung 
c ross  section for  scattering of a particle in a Coulomb 
field. If the classical quantity Eo in the .expression (23) 
is replaced by (11) with s = 1, which corresponds to 
spontaneous emission, and it is multiplied by the num- 
ber  of states Vdk(2n)-=of the electromagnetic field and 
integrated over the angular variables of the emitted 
photon, we arrive at  the classical bremsstrahlung 
c ross  section. "-14 

In the case of low frequencies w,  it follows from the 
behavior of the MacDonald functioni1 for  5 << 1 that the 
c ross  section ul contains the classical logarithm: 

a, ( a )  =na2yz [sin' a ln (2 /y1 t )  +3 cos' a - i ]  , (26) 

where y1=1. 781.. . . 
At high frequencies (5 >> I) ,  i t  is necessary to use the 

asymptotic expansions1'* l5 for the MacDonald functions. 
As  a result, 

and the cross  section uI(a) also takes on the simple 
form 

a, ( a )  =3-Knza2y2(3 cos' a + i ) .  (28) 

We now consider the c ross  section u, for  emission of 
n photons (n> 1)  in the limiting cases  of low and high 
frequencies. At low frequencies, the MacDonald func- 
tions K;(~E) and KE([&) can be replaced by Ki([&) and 
KO(g&). Further, in the integral over c we make the 
change of variables z = 5c and split the integral over z 
from 5 to into two integrals: from 5 to 1 and from 1 
to m. The second integral is a polynomial in 5'. In the 
f i r s t  integral, the functions Ki(z) and Ko(z) can be rep- 
resented in the form of a series.  " I t  is readily seen 
that the main contribution to this integral is given by 
the z-' term of the se r i e s  for the function Ki(z). Re- 
taining only this term, we find that (22) becomes 

a2ylnfZn-Z 'I 

a. (a) = 7J dz z -4"+1  I dq [ f cos a -  (2'-EZ) 'h sin a cos q]".  (29) 
(n!) @ 

The integrals over z and cp can be readily calculated 
if the binomial in the integrand is represented in the 
form of a sum. Retaining only the principal term in 5, 
we finally find that a t  low frequencies 
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where P,(cu) is a polynomial and can be expressed in 
terms of the hypergeometric function a s  follows: 

wsZ"a 
P. (a) = =F(-n,  -n+'/%, -2n+2, -tgz a), 

It can be seen that the adiabaticity parameter .( is itself 
completely absent in (30), and the cross  section is pro- 
portional to w'*'". 

To find the cross  sections a, in the limit of high fre- 
quencies, we note that in the integral representation of 
the MacDonald function" 

e-"f/a - 
Kit (Ee) - - j du exp (ice sh u-itu) 

2 -- 
the region of small u is important a t  large 5 .  There- 
fore, replacing sinhu by u +u3/6 and using the integral 
representationt5 for the Airy function AiG), we find that 

KiL ( t e )  =ne-nf'z (i) " ~ i  [(f) "'(e-1) 1, 

If we substitute (33) and (34) in (22), replace the vari- 
able c by the variable x = 2 t ' 3 ~ 2 ' 3 ( ~  - I ) ,  and every- 
where in (22) retain only the principal term of the 
asymptotic expansion in inverse powers of 5 ,  we obtain 
the following expression for u,(~Y) in the limit of high 
freauencies: 

The values of this polynomical for 0 = 0 and n/2 a r e  
given in Table I. In the expression (35), a. i s  the Bohr 
radius, and the amplitude Eo and frequency w of the 
field a re  expresssed in atomic units. 

Note the weak (proportional to E-') and identical for 
al l  n dependence of the cross  sections (35) on the elec- 
tron energy. The frequency dependence of the cross  
sections is very strong, although somewhat weaker 
than in the case of low frequencies. It can be seen 
from Table I that the cross  sections o,(cy) in the case of 
field polarization along the incident beam a r e  appreci- 
ably larger, especially a t  large n, than the correspond- 
ing cross  sections for field polarization perpendicular 
to the incident beam. This is due to the circumstance 
that the emission is maximal in the case of backward 
scattering, when the particle approaches closest to the 
scattering center. If the vector Eo is directed along the 
incident beam, then in the case of backward scattering 
the particle's trajectory is parallel to the vector Eo the 
whole time. However, a s  can be seen from (101, it is 
the product Eo .v(t) that determines the c ross  section a,. 

TABLE I. 

n 1 n o  n I Gn(0) I Gn(n,2)  

The expression (35) is similar to the classical Kra- 
mers  formula for spontaneous emission. l6 To verify 
the accuracy of (35), a s  well as that of the more gener- 
a l  expression (22), the corresponding quantum-mechan- 
ical calculations must be made. In the case of spon- 
taneous emission, the classical theory, and, in partic- 
ular, the simple Kramers  formula, gave good results  
in a very wide range of frequencies. l6 

APPENDIX 

DERIVATION OF EQUATION (4) 

We note f i rs t  that in the Hamiltonian (2) we can elim- 
inate the las t  term if we go over to new creation and 
annihilation operators and reduce the two last  terms in 
(2) to diagonal form. This changes the constants of the 
third and fourth terms of the Hamiltonian (21, but in the 
classical limit, in which we a r e  now interested, these 
constants go over into their previous values when the 
population numbers n and the quantization volume V 
tend to infinity but with a constant ratio. The Hamil- 
tonian then acquires a constant that is unimportant for 
what follows and i s  equal to the oscillation energy of the 
particle in the field of the wave. Thus, in the classical 
limit we can ignore the last  term in the Hamiltonian (2) 
(see also Ref. 9). 

The Hamiltonian (2) conserves the projection of the 
angular momentum of the motion onto the direction of 
the wave polarization. We choose this direction along 
the z axis. We shall seek the wave function correspond- 
ing to the Hamiltonian (2) in the form of an expansion in 
the wave functions In) of the field of the wave and 
spherical functions" : 

0 0 

Y ( r , b , b + ) = x z = ~ l ~ ( f i , q ) ~ n ) .  (A. 1) 
"-0 1-0 

Substituting (A. 1) in the Schriidinger equation with the 
Hamiltonian (2) and using the orthogonality of not only 
the spherical functions but also the functions In), we 
obtain the following system of coupled equations for 
F:, (?-I: 

8 2e 2nh I t - M 1  [- + k n l z ( r ) ]  Fmt"=i - (-)'" {[ - d 1 
dl= ti vo 

Y 
X [n'hF~+l.l-l+ ( n + 1 ) ' " ~ , - ~ , ~ - ,  

d 1+1 
x (%+--) [ n ' h ~ ~ i , l + * +  ( n + i ) ' h ~ . 2 , ~ + ~ 1 }  , (A. 2) 

(A. 3) 

Denoting for simplicity of the further calculations the 
se t  of quantum numbers n and I by n, we can write the 
system (A. 2) in the form 

(A. 4) 

We now apply 
system (A. 4). 
the formt8 

the quasiclassical approximation to the 
For  this, we seek the function F,(Y) in 

(A. 6) 
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where r, is the turning point, and a: and a, a r e  arbi- 
trary functions that vary slowly with r. For  constant 
a: and a;, the functions (A. 5) a r e  the quasiclassical so- 
lutions of the system (A.4) in the absence of the right- 
hand sides. 

We impose on the functions a: and a,' the conditioni9 

exp [ (  i s,+- ;)I7 -- [ - ( + ) o  (A.I) 

We now substitute (A. 5) in Eq. (A. 4) and use the condi- 
tion (A. 7) and the ordinary conditions of applicability of 
the quasiclassical treatment1': 

(A. 8) 

s.-s,.<s,+s,,. (A. 9) 

As a result, the system (A. 4) in the quasiclassical ap- 
proximation reduces to the system of first-order equa- 
tions'* 

(A. 10) 

and the complex-conjugate system for the functions a,. 
The physical meaning of the functions a: and a, and the 
boundary conditions for them have already been dis- 
cussed in Ref. 18. 

Although the transition from Eqs. (A. 4) to (A. 10) has 
been made subject to the conditions (A. 8) and (A. 91, in 
reality the choice of the functions ~,(r) in the form 
(A. 5) presupposes implicitly that the nondiagonal ma- 
trix elements q' have little influence on the relative 
motion in all  the channels, i. e. , we also assume that 

hZkmZ(r) /2m>] V,"' I. (A. 11) 

Physically, this condition means that in the region im- 
portant for the bremsstrahlung the kinetic energy of the 
particle must be greater than the energy of i t s  interac- 
tion with the external field. If we also assume that in 
this region the kinetic energy of the particle is also 
greater than the photon energy, 

h'k,' (r)/2m>ho, (A. 12) 

then the quantities k,(r) will differ only slightly, and 
from the expressions (A. 3) and (A. 6) i t  follows approx- 
imatelyi4 that 

S,,-S..,.= (nl-n) o t  (r) + (1'-2) cp(r), (A. 13) 

where t(r) and g(r) a re  the time and angle related to r 
by the well-known classical integrals. i3 

If we go over from the variable r to the variable t, 
use (A. 131, and the fact that large angular momenta 1 
correspond to the quasiclassical approximation, we fi- 
nally find that the system of strong-coupling equations 
(A. 12) goes over into the following system of impact 
parameter equations: 

Here, the subscript 1 for the functions a,, has been 
omitted, since Eqs. (A. 14) do not contain this parame- 
ter a t  all. 

Note also that for variation of t from -a to 0 the sys- 

tem (A. 14) is a system for the functions a;, and for 
variation of t from 0 to i t  is a system for the func- 
tions a:. It can now be seen that Eqs. (A. 14) follow di- 
rectly from Eq. (4) if the wave function x is sought in 
the form of an expansion in the states In) of the radia- 
tion field. 
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