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A calculation is made of the critical electric fuld strength at which the barrier disappears for an electron in 
the field of a Coulomb center with given parabolic quantum numbers. The lifetimes of highly excited atoms 
are found as functions of the difference between the field intensity and the critical value. A study is made of 
the decay dynamics of highly excited atoms when a beam of such atoms passes through an electric field 
region. Experimental data on the ionization of highly excited atoms in an electric field are analyzed. 
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1. Some years  ago, experimental methods were de- 
veloped that make i t  possible to produce and investigate 
highly excited atoms in given highly excited states. 
These methods, which a r e  based on a tunable laser ,  
yielded much information about processes involving 
highly excited atoms (see the review of Ref. 1). These 
methods a r e  currently being developed and perfected. 
The best method of detecting highly excited atoms with 
large values of the principal quantum number n of the 
excited electron (n> 20) i s  based on ionization of these 
atoms in an external electric field and detection of the 
resulting ions. The main advantage of the method i s  
i t s  selectivity, since the decay time of a highly excited 
atom in a field in the parameter range of practical in- 
terest depends strongly on both the electric field 
strength and the quantum numbers of the excited elec- 
tron. Therefore, for the diagnosis of highly excited 
states we require a rigorous theory that establishes the 
connection between the lifetime of a given highly excited 
state of an atom and the electric field strength. The 
present paper is devoted to these questions. 

The decay mechanism of an atom in an electric field 
associated with below-barrier tunneling of the electron 
from the field of the atomic core into the continuum was 

invalid a t  the field strengths corresponding to the ob- 
tained maximum of the width, i t  is not suitable for de- 
scribing the observed decays a t  large n. For  this rea- 
son the asymptotic theory of the decay of highly excited 
atoms is valid for  n which a r e  not large. 

The. large barr ier  width in the case of the decay of a 
highly excited atom in an  electric field has the conse- 
quence that the decay of the atom during measurable 
times occurs a t  an electric field strength close to Fo, 
the field strength a t  which the barr ier  disappears at  a 
point. Therefore, the f i r s t  task in the investigation of 
the process is the determination of the critical field. 

2. The simplest determination of the critical field 
can be done a s  follows. 69 The potential containing the 
highly excited electron is 

where Y is the distance from the electron to the atomic 
core, e is the coordinate along the field, and F is the 
field strength; the electron excitation energy is E =  -1/ 
2n2. Equating these quantities and their derivatives, 
we find that the barr ier  disappears at  the point z =4nZ 
on the axis at  the field strength 

already elucidated in the f i r s t  stage of the investigation 
Fo-i/i6n1. 

of this process. The asymptotic theory subsequently 
developed for the decay of atomic particles in a con- This method of finding the critical field cannot stand 
stant electric field (see, for example, Ref. 3) is not 

up to serious criticism. First ,  we have used the as- 
suitable for a highly excited atom. In such a case, the sumptions of perturbation theory, according to which 
basic assumption of the asymptotic theory is not satis- the electron binding energy in the excited atom is the 
fied, since the barr ier  width is comparable with the di- same as in the absence of the field. Second, in this 
ameter of the atom. method of finding the critical field we assume that i t  

The possibilities of the asymptotic theory can be esti- 
mated on the basis of the papers of Damburg and Kolo- 
sov:15 who found the f i r s t  two terms of the asymptotic 
ser ies  for the level width of a highly excited atom in an 
electric field. In particular, for ni = n  the expression 
has the form (here and in what follows we use the sys- 
tem of atomic units: f = m, = e = 1) 

4 r--erp 3n---;- (1-4n5F), n w i .  
Fn8 ( SFn ) 

We determine formally the maximal value of this ex- 
pression, which i s  

r,-6n-' exp (-8n'/3+3n- 1 ) .  

It can be seen that r,, decreases strongly with in- 
creasing n and a t  large n becomes less than the actually 
measured level widths. Since the asymptotic theory i s  

does not depend on the distribution of the electron in 
space, i. e . ,  does not depend on the other quantum num- 
b e r s  of the electron apart  from n. Despite the rough 
approximation used in obtaining the result, the expres- 
sion (1) has proved itself well in the evaluation of ex- 
perimental results  and has been widely used. 

Another approachlo uses a purely classical descrip- 
tion of the motion of an electron in the field of a Cou- 
lomb center in an external field. At the critical value 
of the electric field, the motion of the electron in the 
field of the ion ceases to be finite. In Ref. 10, expres- 
sions a r e  found for  the critical fields Fo and the ener- 
gies E of an excited electron in these fields for limiting 
cases  of the electron motion (the values f o r  % =n, m 
= n  here and in what follows a r e  to be understood in the 
limit nz, m - n, ni >> 1): 
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in the form 

a = n ,  n'Fo-0.3834, e-0; (2b) 
m-n, n'Fo-2"/3'-0.208, 1 e 1 na-2'/3'--0.527. 

(2c) 

where the parameter y i s  the solution of the transcen- 
dental equation 

Here, n, ni, nz, m are  the parabolic quantum numbers of 
the electron, and n =ni +n2 + m (n>> 1). 

Our first task i s  to find the critical field for an elec- 
tron in the field of a Coulomb center and the frequen- 
cies of decay of a highly excited atom in electric fields 
near the critical field. We shall analyze the Schro- 
dinger equation for the electron wave function in this 
case. Its variables separate in parabolic coordi- 
nates. "vi2 The electron wave function is 

We consider limiting cases. As % - 0, we have y - 0 
and %/nl = (3~ /8 \ iZ )~  = 0.8333 from Eq. (9c). Equa- 
tions (9a) and (9b) in this case give 

the zeroth term of the expansion agreeing completely 
with the expression (2a). In the other limiting case 
ni-0, y -- we obtain 

where 5, q ,  cp are  the parabolic coordinates, m i s  the 
projection of the electron's angular momentum onto the 
field direction, and the equations for the functions x i  
and x2 are"li2 

and on the basis of Eqs. (9a) and (9b) we find 

Here, c i s  the energy of the electron state, F i s  the 
electric field strength, and pi and f12 are separation 
constants connected by In the limiting case, these expressions agree with (2b). 

We now turn to the general case m # 0. Equations 
(5)-(7) a r e  transformed in the general case to the fol- 
lowing form, which makes it  possible to find the critical 
field Fo and the electron binding energy co at this value 
of the field strength: 

We shall use the circumstance that the state i s  quasi- 
classical. This leads to the Bohr quantization condi- 

m 

pndq=n (na+l/ l ) .  
8 

Here, 

The functions in these expressions a r e  given by 

i s  the electron momentum in the 5 space, andp, is de- 
fined similarly; and 5, a re  the zeros of p, [ P ~ ( [ ~ , ~ )  
=0];  q1 and qz are  the zeros of p,; and nl and % are  
parabolic quantum numbers. In accordance with the 
quasiclassical conditions (6) and (7), we introduce par- 
abolic quantum numbers, this being valid for ni >> I, % 
>> 1. 

The values of the parameters a and y in (12) and 
(13) a r e  related to the electron quantum numbers ni and 
n1 by We now determine the critical field at which the bar- 

r ier  disappears. The condition corresponding to entry 
of the considered level into the continuum takes the 
form that at  the right-hand turning point 5* the effective 
potential energy has a maximum, so that 

The four equations (4)- (8) establish a unique con- 
nection between pi, &, the electron energy c, and the 
field strength Fo at which the given level enters the con- 
tinuum. The solution of this system of equations in the 
simplest case m = 0 after introduction of the parameter 
y = 4Fo/ I c 1' - 1 = Pz/Pi can be conveniently represented 

the limits of integration (ti, t,) in the last integral being 
the zeros of the integrand. 

The relations (12)-(14) make i t  possible to find the 
critical field and binding energy of an electron in the 
field of a Coulomb center. The right-hand side of the 

M. 8. Kadomtsev and B. M. Smirnov 886 886 Sov. Phys. JETP 53(5), Mav 1981 



relations (12) does not depend on the principal quantum 
number, and is determined solely by nl/n, nz/n, m/n. 
This gives a scaling law for  the critical field and elec- 
tron binding energy for different values of the principal 
quantum number of the electron. Further, the parame- 
ter a! in (12)-(14) var ies  from 0 to 6 / 9 ,  and the pa- 
rameter y =&/& from y,,,(~) to infinity. The value 
Y,,,(o) corresponds to the condition that the maximum 
of the integrand in (14b) is zero, i. e., the integral 
(14b) vanishes, which corresponds to n2 = 0. For = 0, 
y,,, = 0, and for a! = d3/9, y,,, = 5/4. 

We consider limiting cases of the relations (12)-(14). 
In the case cu = 0, we obtain f1 =f2 = 1 from Eqs. (131, 
and on the basis of Eqs. (14) we obtain ni/m = n2/m 
= m , i. e . ,  m = 0. In this case, Eqs. (12a) and (12b) go 
over into (9a) and (9b), and the ratio of the expressions 
(14b) and (14a) into the expression (912). Another limit- 
ing case corresponds to ar =d3/9. In this case, the 
lower and upper limits in the expression (13b) coincide, 
i. e., fz = 0, and then in accordance with (13a) we have 
f1 = a / 2 .  In accordance with (14a), i t  follows that n1 
= 0. If a t  the same time y = y,,, = 5/4, then the integral 
(14b) vanishes, i. e., n2 = 0 and n = m. Substituting the 
value y = 5/4 and f2(ni/n)-' = 3n/2da? = ~ 3 ' ' ~ / 2  in accord- 
ance with the expression (14a) in Eqs. (12a) and (12b), 
we arrive a t  Eqs. (212). 

Figure 1 shows the values of the critical field and the 
corresponding electron energies found in accordance 
with the expressions (12) and the relations (13) and (14). 

3. We now determine the decay frequency of a highly 
excited hydrogen atom in a constant electric field. 
Since we a re  interested in problems associated with the 
detection of highly excited atoms in an electric field, 
we shall consider the case of a below-barrier electron 
transition, when the decay time is appreciably longer 
than the characteristic time of revolution of the electron 
in the atom. On the other hand, because of the strong 
exponential dependence of the decay time on the field 
strength, the case when the field strength does not dif- 
fer  appreciably from the critical value IFo - F I << Fo is 
the most interesting. 

We consider f i rs t  the decay of a highly excited atom 
with m = 0. The frequency of below- barrier tunneling 
of the electron is by definition 

"21" 

FIG. 1. Reduced values of the critical electric field strengths 
(a) and the energies corresponding to them (b) on the electric 
field strength. 

where I$ I' is the electron density in the classically al- 
lowed region of motion (see Fig. a), v, is the electron 
velocity, and ds is the element of area. Taking the 
plane of integration f a r  from the turning point, we ob- 
tain dS= n5dq. The electron wave function is deter- 
mined by Eq. (3), and far  from the turning point the 
quasiclassical wave function xi([) has the form 

where v,, a s  in Eq. (15), is the velocity component 
along the coordinate 5 of the quasiclassical electron. 
On the basis of the above relations, we obtain for the 
probability of the atom's decaying in unit time ( 5  >> q) 

subject to the following normalization condition of the 
wave function xZ: 

The quantity Ic l 2  is the probability of below-barrier 
tunneling of the electron in the one-dimensional case. 
In what follows, we shall be interested in the tunneling 
of an electron a t  a field strength near the critical val- 
ue. Then in the region of the well near the turning 
point, where the electron momentum vanishes, the de- 
rivative of the momentum with respect to the coordinate 
is also near zero. This ra ises  the probability of find- 
ing an electron in a well that makes the pre-exponential 
factor vanish in the expression for the probability of a 
below-barrier transition a t  the point where the barrier 
disappears. This conclusion is valid for a sufficient 
width of the barrier,  when the regions of the well and 
the regions of the classical motion of the electron a re  
separated. If this condition is not satisfied, the pre- 
exponential factor in the probability of below-barrier 
tunneling will contain a small quantity corresponding to 
the large value of the electron's quantum number. 

The solution of the considered problem by the usual 
method" involving matching of the solutions of the 
SchrBdinger equation in the different regions of Fig. 2 
with allowance for the quasiclassical motion of the , 

bound electron with respect to both coordinates leads to 
the following expression for the decay time T of an 
atom in an electric field (T=w"): 

Here, TO is in order of magnitude equal to the revolution 
time of the bound electron in i t s  orbit, and is 

so  that Fo is the field a t  which the given level disap- 
pears. In (17), D is the coefficient of below-barrier 
tunneling for a parabolic barrier and in accordance with 
Kemble's formulai2 is equal to 

Here, A c  i s  the energy difference between the top of the 
barr ier  and the electron energy level (A& is positive 
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From (6) we now readily obtain an equation for y: 

The lifetime of the highly excited state is 

FIG. 2. Coordinate dependence of the effective potential for 
an electron in the field of a Coulomb center and in a constant 
electric field. 

for a below-barrier transition; see Fig. 2); the remain- 
ing notation is the same a s  in Eqs. (13). The quantity 
under the logarithm in (17) characterizes the normal- 
ization of the wave function in the well. I ts  value is 

The obtained result is valid for a parabolic form of the 
barrier,  which requires fulfillment of the condition 

k!<(l-f IeI  )'. (19) 

The main difficulty in finding the lifetime of a highly 
excited atom in an electric field consists of determining 
the connection between the field strength F and the bar- 
r i e r  height A t .  In the neighborhood of the critical field 
strength, in the linear approximation in the difference 
between the field strength and the critical value, A E  

vanishes. To see this, we write the Schriidinger equa- 
tion (4) in the form 

In the first  order of perturbation theory, the change in 
the energy is 

where 6V is the change in the effective potential asso- 
ciated with the change in the field. In accordance with 
Eq. (4), i t  is 

where 6Bi and 6F are  the deviations of the parameters 
from their values at  the point where A & =  0. For these 
parameter values, the electron is concentrated mainly 
in the neighborhood of the turning point to, which is si- 
multaneously the top of the barrier, i. e. , Ixi I - 6(5 
- to). Therefore, in the f i rs t  order of perturbation 
theory A E / ~  = 6V(to), i. e. , AE = c/4 - V(to) = 0. 

We determine A E  near the critical field strength in 
the following approximation for Im I = O .  We introduce 
the notation ar = (F0 - F)/F~, y = 4A&/& = 1 - ( ~ P ~ F / E ~ ) ~ '  ', 
and, by virtue of what we have said above, y << a. We 
represent pi in the form Pi =@!(I + Car), where 8t = E!/ 
4Fo, and C is a coefficient that depends on 0: and is de- 
termined from Eq. (7): 

c= (l-bl")/ (3g,"+ug;"). 

We rewrite (21) in the case when nt =n and the barrier 
penetrability is low: 

r-3,27nS ln (3nn/4) exp (3nZyn/2). (22) 

Note that in the considered region of field strengths, 
which is outside the region of applicability of the 
asymptotic theory, this theory gives a different depend- 
ence of the lifetime on the principal quantum number. 
Thus, for nt = n  at  the critical field value (2a) the f i rs t  
term of the asymptotic seriest3 gives the value 7 

= 0. 0325n2 exp(2.128~~). 

In investigating the decay of a highly excited atom in 
an electric field, we have assumed that the relative 
width of the level is not large, which made i t  possible 
to determine the.position of the level ignoring i ts  width. 
The expressions we have obtained make it possible to 
estimate the accuracy of this procedure. In accordance 
with Eqs. (2a) and (21), the product of the level width 
r and the energy at  the point of entry of the level into 
the continuum for nt =n is 

Hence, for n = 50 the ratio of the uncertainty of the lev- 
e l  energy to the energy itself is 1.8 X lo4, while for n 
= 20 i t  is 5.5 x lo4. In the region of below-barrier de- 
cay of the atom, in which the processes in which we 
a r e  interested take place, this ratio is significantly 
smaller, which means that we can ignore the level 
width. 

We now demonstrate the selectivity of the method of 
detection of highly excited atoms a s  a result of their 
ionization in an electric field on the basis of (22). The 
ionization probability when a beam of highly excited 
atoms passes through an electric field region is 

where rmj is the time of sojourn of the atom between 
the capacitor plates, this being -10" sec under the ex- 
perimental conditions. We shall assume that highly ex- 
cited atoms with ni = n  a r e  created selectively. Figure 
3 shows the dependence of the measured signal, which 
is proportional to dP/dF, on the electric field strength, 
which can be varied smoothly under the experimental 
conditions. We have here used rSoj = 10' sec. It can 
be seen that the method of detecting highly excited 
atoms using their ionization in an electric field makes 
it possible to separate reliably highly excited atoms 
with different values n of the principal quantum number. 
This circumstance is used experimentally. 

In Table I, we give the field strengths a t  which decay 
of highly excited atoms has been observed. Under the 
experimental conditions, the time corresponding to the 
decay is 10"-10"~ sec. Note that the expression (1) 
gives the value F~TZ* = 3.2 x lo8 V/cm. 
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5 Vlcm 
F, for n=SZ 

FIG. 3. Dependence of dP/dF on the field strength (P is the 
probability of the atom's decaying when it passes through a 
field region at the given strength of the field). 

4. Hitherto, we have investigated adiabatic decay of 
an atom, when the state of the atom with the field 
switched on i s  characterized by the same quantum num- 
bers  a s  in the absence of the field. Two decay paths of 
atoms in an electric field a r e  observed-adiabatic and 
diabatic. 20*21 The latter is determined by transitions 
between the highly excited states while the field is be- 
ing switched on. 

Let us  now follow the dynamics of the decay of a high- 
ly excited atom a s  i t  enters an electric field. In real- 
ity, a beam of highly excited atoms is passed through 
the plates of a capacitor, so  that ionization of the high- 
ly excited atoms is used for their detection. In the ab- 
sence of the electric field, the highly excited atoms 
(except for hydrogen) a r e  described by spherical quan- 
tum numbers, the electron binding energy being 1/2(n 
- 6,)2, where 6, is the quantum defect of the state with 
the given angular momentum. It can be seen that the 
influence of the deviation of the field of the atomic core 
from the Coulomb field, which makes a contribution 
6,/n3 to the electron energy, is small  compared with 
the influence of the electric field at a near critical 
strength. In such a case, the contribution due to the 
influence of the electric field to the electron energy is 
-l/n2. Therefore, when we investigate the decay of a 
highly excited atom in an electric field, i t  would appear 
that we should re-expand the wave function of an elec- 
tron in the state nl with respect to parabolic quantum 
numbers and for each parabolic state consider the de- 
cay independently. 

This would be correct  if the electric field is switched 
on suddenly. We shall now write down a criterion for 
sudden switching on of the field. In the case of slow 

TABLE I. Electric Field strengths F,, at  
which decay of the highly excited state with 
the given n occurred in the corresponding 
experiment. 

variation of the field strength, the individual energy 
levels of an electron in  the field of the atomic core and 
in the electric field have pseudocrossings. If the field 
of the atomic core were a purely Coulomb field (as in 
the hydrogen atom), there would be str ict  crossing of 
the levels. The minimal distance between the levels, 
which is determined by the short-range part of the in- 
teraction, is 

~xcitod 
atom 

H Ref. 14 
HrRef. 14 
H Ref. 15 
Na Ref. 6 

Rb Ref. 7 
Na Ref. 8 

Rb Ref. 16 
Xa Ref. 17 
N a ~ e f .  18 
Na Ref. 19 

where $1 $ni9m, $2 d ~ , , ~ , , , ~ . ,  a r e  the unperturbed wave 
functions of the interacting levels; n =ni + n2 + I rz I + 1, 
n' = nl' + nzl + I m I + 1 a r e  the values of the principal 
quantum number corresponding to these levels; and 
C,(nl, n2, m) = (*,, l $ni,n,,,) a r e  the coefficients in the 
expansion of the parabolic functions qnln2,,, with respect 
to the basis of the spherical functions ,. 

The condition of sudden switching on of the electric 
field corresponds to a small value of the Massey pa- 
rameter, which in the Landau-Zener form becomes12 

Method Of re 
ducing the b y  
excited atoms 

Charge exch.ngc 
B 
a 

Laser excitltion 

m 
D 

I) 

+ 
I) 

D 

where AE is the energy difference of the corresponding 
states for  the terms unperturbed by the short-range in- 
teraction. Since A E - ~ n ' ,  i t  is convenient to rewrite 
condition (24) using the relation (23) in the form 

If the condition (25) is satisfied, the pseudocrossing of 
the energy levels of the excited atom during the varia- 
tion of the electric field is taken a s  crossing. 

Range of principd quur- 
,,umbers 

9-16 
9-17 

13-28 
26-37 

28-78 
16-21, l=m=O 
16-19, 1=i. m=O 
16-19. l=m-1 
15-20, 1-2, m=O 
15-20, 1-2, m=l 

15-20, l=m=2 
28-80 
24-40 
12-14 
22-31, 1-0 
26-30, 1-i 
20-30,1=2 

In the cases ImI=O, I m I = l ,  and Im1=2, the expan- 
sion coefficients in (23) a r e  

- 

~ ~ ( n ~ ,  n2, 2) = $[ (n-n2-i) (n-nZ-2) (n2+i) (nz+2) I'", (26a) 

F0n4, 
10' V /m 

5.8 
5.8 
6.9 
3.6 

3.2 
3.4 
3.0 
3.1 
3.6 
3.7 
4.0 
3.2 
4.0 
3 3  
3.5 

'3.8 
3.8 

Substitution of these expressions in (23) gives 
606 A*=O [ (n-n,-1) (n-n,-2) (n2+i) (n,+2) (n'-n,'-i) 

Inn')' 

(we also assume bo >> 6, >> 6*, 6, = 0, I 3 3), where n and 
n' a r e  the principal quantum numbers of the pseudo- 
crossing levels. In the case of the f i rs t  crossing of the 
nearest levels n' = n  + 1 and under the assumption that 
al l  the quantum energy defects except the zeroth a r e  
small, this formula gives the expression 260/n2(n + I)', 
which i s  close to the one obtained in Refs. 22 and 23. 
As an example, let us  consider sodium, for which 60 
= 1.35, 6i =O. 86, b2=0. 015, 61,3=0. 

Analysis shows that a t  a typical ra te  of switching on 
of the electric field, dF/dt- l ~ ~ - l ~ ~ ~  V . cm" . sec", 
and for n- 20-50 the transition between the states with 
Im 1 = 2 take place in the diabatic manner, whereas in 
the cases  Im I = 0 and 1 (see Refs. 20 and 21) the tran- 
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sitions take place adiabatically. At the same time, the 
self-splitting between the levels is comparable to the 
distance between them, i. e. ,  in these cases the two- 
level approximation is invalid. This nature of the de- 
velopment of the system (diabatic and adiabatic) when 
the electric field is switched on was observed in Ref. 
20. 

Note that the nature of the transitions when the elec- 
tric field is switched on is also reflected in the ioniza- 
tion of the atoms in the electric field. When the field 
switching on is diabatic, the critical field a t  which de- 
cay of the state is observed is determined by (12a). If 
the system develops in accordance with the adiabatic 
law, the field energy changes little with the variation of 
the field because of the large pseudocrossing. Then 
the decay of the level takes place because of admixture 
of the level (n' - 1,0,0), and in accordance with (2a) the 
value of n' must be found from the relation 0. 5nq 
= 0.72n'2'. This gives [in accordance with (2a)] the 
critical field strength Fo = 0. 13/nr4 = 1/16n4, which is 
close to the value obtained from the expression (1). 
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