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The specific energy losses of a proton moving with arbitrary velocity are calculated within the framework of 
the quantum permittivity of the electron gas of a metal. It is shown that good agreement with experiment is 
obtained at low velocities, and that in the region of the maximum the polarization losses make a contribution 
of the order of unity. 
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1. An electric charge moving in a medium produces 
an electromagnetic field that influences in turn the elec- 
tron motion. The force produced in this interaction is 
applied to the moving charge and is antiparallel to i ts  
velocity v. This deceleration force (sometimes called 
the radiative friction force) is determined by the elec- 
tromagnetic properties of the medium, which can be de- 
scribed by the dielectric tensor ct,(k, w), which is a 
function of the frequency w and of the wave vector k of 
the oscillations produced when the charged particle 
moves. 

The deceleration force of a singly charged heavy par- 
ticle (say a proton) can be expressed i n  the form (see, 
e.g., Ref. 1) 

where e is the proton charge, '(k, w) and ctr(k, w) a re  
respectively the longitudinal and transverse permittivi- 
ties of the isotropic medium. The moving charge ex- 
cites waves of frequency w =kv.  The first  term in the 
square brackets of the integrand of (1) is determined by 
the longitudinal permittivity c'(k, w) and corresponds t o  
emission of longitudinal potential waves-the polariza- 
tion energy loss. The second term of this integrand de- 
scribes the emission of transverse waves. Since the 
condition for excitation of transverse waves is (v/c) 
(G")"~ cos 0 = 1 ( 9  is the angle between the particle-mo- 
tion and wave-propagation directions), and in a plasma 
ctr < 1, no Cerenkov effect takes place under these con- 
ditions, and the second term of (1) must be left out. 

As the charged particle moves, the quasifree elec- 
trons of the decelerating medium a r e  displaced not only 
by the action of the polarization forces, but also by the 
action of the friction force that determines the finite 
electric conductivity of the medium. ~ r a r n e r s '  has 
shown that the deceleration force of a charged particle, 
due to the conductivity of the medium, is negligibly 
small. The specific loss in this case should be calcu- 
lated using the formula 

dE es 
--=- v - ' ~ e i  Jdk kv 

dz n' k2e1 (k, kv) ' 
2. The longitudinal permittivity of a degenerate 

Fermi gas of a metal can be calculated using the quan- 
tum kinetic equation with an equilibrium function, 
namely the Fermi-Dirac function (see Ref. 3) 

The notation in (3) is the following: C2 = w/kvp, 5 =Bk/ 
2mvF, o! =e2/lfv,, vp is the electron velocity on the 
boundary of the Fermi surface. The parabolic law cp 
=mv$/2 is assumed here and elsewhere. 

To calculate the integral (2) we must separate the 
real  and imaginary parts of the permittivity. Recog- 
nizing that after integrating with respect to  w in (1) the 
frequency vanishes and kavappears in the argument &' , 
we shall therefore replace C2 in (3) by kSv/kvp =uy, 
where u =v/v, is the particle velocity referred to the 
Fermi velocity, and y =cos 0 varies generally speaking 
in the range -1 < y -< 1. The real part of the permittiv- 
ity is then 

a uy+&+l uy-&+I 
~ e e ' ( i . u ~ ) - 1 + - ( 4 & + q h I ~  8nt" I-$lnI-- uy-E-l I ) .  (4) 

The imaginary part Im c1 (5, uy) is defined in two bands 
(see Fig. 1): 

Recognizing that Im &I([, uy) is an odd function of y 
while Re c1(5,uy) is even, we can write the expression 

FIG. 1. Region of existence of Im E' (2, u y )  on the ( y,  5 )  
plane a t  g > 0 .  In region I we have Im ~ ' ( 2 ,  uy) = (ruy/22 ', 
and in region 11, Im ~ ' ( k ,  uy) = . ( a / 8 t S )  11 - (uy -5)'l. The 
integration schemes are shown for u < 1 (a) and u > 1 (b). 
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for the specific energy loss (2) in the form 

where Ry= 13.6 eV, a, i s  the Bohr radius, m, i s  the 
electron effective mass, and g(u, a)  is a dimensionless 
friction coefficient given, in accord with Fig. 1, by dif- 
ferent analytic expressions at u < 1 and u > 1: 

with 

lel(E,uy) ('=[Re er(E.uy) l'+[Imel(t, UY) 1'. 

In the first and second integrals of (7) and in the first 
integral of (8) we used the value of lmcl([,uy) in the 
region I (see Fig. I) ,  while in the third integral of (7) 
and in the second and third of (8) the imaginary part 
corresponds to Im c'(t, uy) in region II. 

3. Expressions (7) and (8) were determined by nu- 
merical. integration. The values of g(u, a )  at 0.5 s a! s 3 
and 0.01 s u s 20 a re  listed in Table I. Figure 2 shows 
a plot of the friction coefficient g(u, a)  at two values of 
a,  namely, 1.0 and 2.0. 

At small u, the function g(u, a)  has same linear spe- 
cific energy loss velocity dependence a s  obtained in Ref. 
4. Indeed, if we put u=O in (7), then the second and 
third integrals vanish, and the first integral yields the 
same value of g(0, a )  a s  in (32) of Ref. 4. Further 
transition to the '8quasiclassical" formula (26) of the 
cited paper and expansion in terms of a << 1 yields the 
known expression obtained by Fermi and ~e l l e r . '  Un- 
fortunately, this expression i s  not suitable for the cal- 
culation of the specific energy loss, since o! in metals 
is always larger than unity.6 At high velocities, u >> 1, 
the dimensionless friction coefficient can be calculated 

FIG. 2 .  Dependence of the dimensionless friction coeffient 
g(u, a) on the velocity u at a equal to 1.0 and 2.0. 

by expanding (8) in powers of l/u: 

which corresponds to the Pines formula obtained by the 
method of collective variables.' Thus, expressions (7) 
and (8) give correct values of g(u, a )  in the limiting 
cases. 

We consider now the behavior of g(u, a)  at u= 1. As 
seen from Fig. 2, the dimensionless friction coefficient 
reaches a clearly pronounced maximum in the region u 
= 1. This leads to deviation from linearity of the spec- 
ific energy loss, which increases somewhat faster with 
increasing u. This fact i s  apparently due to the fact that 
Re cl([,uy) has a minimum at u=  I ,  meaning a more in- 
tense plasmon emission. 

4. We compare now the obtained specific energy loss 
curves with the experimental data.'-l3 By way of ex- 
ample we compare the theoretical results obtained in 
accord with (6), (7), and (8) with experiment for alum- 
inum (Fig. 3), copper (Fig. 41, and silver (Fig. 5). 

We note first the good qualitative agreement between 
the calculated values of the friction force and the ex- 
perimental points at low velocities u 5 1, where a linear 
dependence is observed, with the slope - d ~ / d x  in a- 
greement with the experimental data for the three met- 
als. At u=  2 the calculated specific loss curve reaches 
a maximum that is shifted towards lower u; the maxi- 
mum agrees with the experiment for A1 and i s  some- 
what smaller in the cases of Ag and Cu. 

In the velocity region 0.5 s u  -( 10 the energy losses 
TABLE I. are  determined by two processes with overlapping u: 

FIG. 3. Specific proton-energy loss vs. proton velocity in 
aluminum. Curves 1 and 2 correspond to m, /m = 1 and 1.6, 
respectively. The points mark the experimental data.&13 

" 
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FIG. 4. Specific proton energy loss vs. proton velocity in 
copper. Curyes 1 and 2 correspond to m * / m  = 1 and 1.5, 
respectively. The points mark the experimental &ta.8-is 

polarization of the electron gas of the metal, with char- 
acteristic velocity v,, and ionization of the outer elec- 
trons of the lattice ion core of the metal; the velocity of 
these electrons v 2 vo =e2/tf is close to the Bohr veloci- 
ty. 

In real metals (see Ref. 6) we have a = va/v, 2 1, so 
that the maximum of the total energy loss should indeed 
be shifted towards velocities u 2 a ,  for when the veloci- 
ty of the incident proton increases, deeper electrons of 
the ion core, with large orbital velocities, participate 
in the ionization process. A quantitative analysis of this 
fact, however, i s  quite difficult, since the Bethe-Bloch 
formula gives a correct result only i f  u >> a. 

Thus, the disparity between the energy-loss maximum 
calculated with account taken of only the polarization of 
the electron gas of the metal, on the one hand, and the 
experimentally obtained value, on the other, i s  under- 
standable. It can nevertheless be stated that the polar- 
ization energy losses a re  decisive in the low-velocity 
region up to u S 1, and near the maximum they contrib- 
ute a noticeable fraction. At high velocities u>> a,  the 
polarization loss i s  low, but under channelingconditions 
(motion in an axial channel, when the loss to ionization 
becomes much smaller than in an "amorphous" metal, 
owing to large impact parameters), it may become nec- 
essary to take them into account, too. 

Extension of the results presented here to include 
multiply charged ions calls apparently for a special 
treatment, since motion of such ions in the metal can 

FIG. 5. Specific proton energy loss vs. its velocity in silver 
a t  m*/m = 1. The points mark the experimental ~ l t a . ~ ' ~ ~  

change their effective charge. 

In conclusion, the author thanks A.E. Lenev for the 
numerical calculations. 
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