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We investigate theoretically the effective density of localized states in a metal-insulator-semiconductor 
structure, as determined by capacitance and electric-conductivity measurments. We consider a two- 
dimensional impurity band made up of donors and acceptors located on the surface. Account is taken also of 
the scatter of energies of non-Coulomb origin. It is shown that the Coulomb interaction can cause the effective 
state density to differ substantially from the single-electron state density. In the limit of almost complete 
occupation of the impurity band by electrons, when the density of the charged donors is low, these donors 
form a spatially ordered structure (a Wigner crystal), thereby strongly affecting the properties of the system. 
In particular, the Fermi level in the Wigner-crystal level is lowered with increasing electron density; this 
corresponds to a negative effective density of states. The percolation threshold and the activation energy of 
the band conductivity in the Wigner-crystal region are analytically calculated. 

PACS numbers: 73.40.Qv, 71.20. + c, 71.55. - i 

1. INTRODUCTION Go,,=-dnlde,. (2) 

Metal-insulator-semiconductor (MIS) structures 
have become the subject of intensive study in the last 
decade. By varying the potential V, applied between 
the metal and the semiconductor (Fig. l a )  it is possible 
to vary the electron density on the surface of the semi- 
conductor in such a structure. At low temperature, in 
a wide range of V,, the Fermi level Elr is in the region 
of localized states, a s  is attested by the activation 
character of the temperature dependence of the inver- 
sion-layer surface conductivity. The electrons a r e  
localized either on traps imbedded in the insulator, or 
on sodium ions that can be specially introduced into the 

With change of the potential V,, changes occur in the 
activation energy and in the surface electron density n: 
An = AV,C,~-', where Cd is the capacitance of the insu- 
lator and e is the absolute value of the electron charge. 
Substituting the changes of both quantities in (21, we ob- 
tain G , , .  

The energy E, is equal to the energy distance from the 
Fermi level to the mobility threshold c, of the conduc- 
tion band (Fig. lb). Measuring c, from the unperturbed 
bottom of the conduction band, we obtain 

structure'; these ions a r e  distributed over the semi- Thus, the SD G ,  and G,, represent different quantities. 
conductor surface and form a two-dimensional impurity Moreover, to determine G,, we must know not only the 
band (Fig. lb). By varying V, one can move the im- function y(n) but also ~,(n) .  If we disregard the elec- 
purity levels relative to the Fermi level, thereby de- tron-arrangement correlations connected with their 
pleting o r  filling the impurity band. This offers ample Coulomb interaction and describe this interaction only 
opportunities to study the structure of the impurity with the aid of an average self-consistent potential, 
band, and primarily the state density (SD) in it. then G, coincides with the single-electron SD g(&) on 

Two methods a re  used in the main to determine the 
SD in experiment. According to the first, the SD on the 
Fermi level is given by the relation 

where n is the surface density of the electrons and y 
is the Fermi energy reckoned from some energy that 
characterizes the band structure on the semiconductor 
surface. In the present paper we reckon y from the 
energy of an isolated impurity, located a t  a level Eo 
below the edge of the unperturbed conduction band. 
The n ( p )  dependence is determined by analysing the 
volt-farad characteristics of the MIS s t r ~ c t u r e . ~  The 
SD determined in this manner will be called capacitive. 

The other method is used a s  a rule in the region 
where the states a r e  loca l i~ed .~  With increasing elec- 
tron density in the impurity band, a change takes place 
in the activation energy E, of the surface conductivity 
due to the spilling of the electrons into the conduction 
band (Fig. lb). The state density G,, is defined a s  

the Fermi level (details follow). However, a s  indi- 
cated the single-electron SD g(c) vanishes 
on the Fermi level because of the correlations. It is 
clear therefore that the SD G ,  and G,, defined above 
do not coincide with g(y) and do not have a s  simple an 
interpretation a s  in the absence of interaction between 
the electrons. The purpose of the present paper is to 
calculate the SD G ,  and G,,  with this interaction taken 
into account. 

We consider below an inversion-layer model that de- 
scribes best the situation that ar ises  in experiments 
such a s  those of Fowler and ~ a r s t e i n , '  when the local- 
ized states of the electrons a r e  produced on sodium 
ions that serve a s  donors in the two-dimensional im- 
purity band produced in an n-inversion layer on a p-Si 
substrate. We propose a two-dimensional Poisson dis- 
tribution of the donors and acceptors, with an arbitrary 
degree of compensation K = N,/N, (N, and ND a r e  two- 
dimensional densities). Certain donors a r e  occupied by 
electrons having a density n, and a r e  neutral; the ion- 
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ized donors a r e  positively charged and a l l  the accep- 
tors  a r e  negative. The distances between donors a r e  
assumed large compared with the localization radius, 
so that the overlap of the electron wave functions on 
the neighboring donors can be neglected and the system 
can be assumed to be strictly classical. We a r e  actual- 
ly dealing here with a two-dimensional classical im- 
purity band. The distinguishing feature of the problem 
is, however, that the considered plane is generally 
speaking not neutral but has an average surface charge 
density u = e(N, - NA - n). In addition, since a metallic 
electrode is located on the left, a t  a distance a from 
the plane in question (see Fig. I), the interaction of 
the charges must be investigated with account taken of 
the image forces. 

Our model constitutes therefore a parallel-plate capa- 
citor with a charge density u. The capacitor is made 
up of a plane with randomly distributed donors and ac- 
ceptors, and of a metallic plate. An emf applied to  this 
capacitor maintains an electrochemical-potential dif- 
ference Ep between its  plates and regulates i ts  charge 
(Fig. 2). (It is assumed in Fig. 2 that the level Eo of 
the isolated donor coincides in the absence of an exter- 
nal voltage with the Fermi  level in the metal. It can be 
shown that this assumption is not essential.) 

To generalize the model we introduce a random scat- 
t e r  of the donor levels 9, of non-Coulomb origin. The 
energies 9, a r e  assumed to be uniformly distributed in 
the interval from -A to A. The total energy of the sys- 
tem takes thus the form 

(4) 
Here e,, is the energy of interaction between two 
charges with allowance for the image forces: 

FIG. 2. Energy diagram and state density in the considered 
model. 

where r,, is the distance between the charges and the 
plane in question, and x is the lattice permittivity, 
which can be assumed for real  structures to be equal, 
with good accuracy, to  the arithmetic mean of the 
permittivities of the insulator and the semiconductor? 
The donor occupation numbers n, a r e  equal to unity if 
the donor is filled, and to zero if its ionized. The let- 
t e r s  D and A over the summation sign indicate that the 
summation is over a l l  the donors o r  all  the acceptors. 

To find the electron density n corresponding to a giv- 
en electrochemical potential EF, we must find a set 
{n,} that minimizes the quantity 

IP=H-E,C n,. 

The density is 

where S is the area  of the system. 

The electrochemical potential EF is reckoned from 
the energy of the electron on the donor in the absence 
of other charges. If the capacitor is not charged, this 
potential coincides with the Fermi energy p of interest 
to us. In a charged capacitor, however, the value of , 

EF, just a s  the electron energy on an isolated donor, 
is raised or  lowered (on top of the change due to the 
filling of new levels) by an amount -eq where rp 
= 4nuax-I is the potential of the parallel-plate capacitor. 
Therefore the electrochemical potential EF is connected 
with the Fermi energy p by the relation (see Fig. 2) 

The function EF (n) should be obtained by minimizing 
expression (6). It is more convenient instead to mini- 
mize the energy Ho, which differs from (4) by the 
amount of energy of a parallel-plate capacitor with 
charge a: 

Ho-H-2nao2Sx-'. (8) 

The minimization, given the electron density n, yields 
a function ~ ~ ( n )  such that 

Minimization of Ho makes it also possible to obtain a 
se t  of single-electron energies ci that constitute the 
potential energies of the electrons on the donors in the 
ground state (reckoned from the average potential en- 
ergy 4soax-'): 

D A 

er=8Ho/8ni=cD1 -z eu(l-n,)+E ei,-eic/2+4nocx-1. (10) 
J+i k 

[We have left out a term (2ni - 1)2nae2/xs, assuming 
that S N ~ ~  >> a since the entire system is macroscopic.] 

The donor i is empty if E, > p and occupied by an elec- 
tron if E, < p.  According to the earlier s t u d i e ~ " ~  the 
single-electron state density g(c) has a Coulomb gap. 
In the case of pure Coulomb interaction, g(&) vanishes 
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in the vicinity of the Fermi level like 

g ( ~ ) = ~ ( e - p l  x2/ne'. (11) 

In the case considered here the metal plate causes 
screening and transforms the Coulomb interaction into 
dipole interaction a t  r,, >> a. Therefore g(p) differs 
from zero and is of the order of n/ae2. We shall show 
in this paper that the SD G, defined by (1) has nothing 
in common with g ( d .  

The Coulomb gap stems in essence from the fact that 
the discrete character of the electron charge and the 
localization of the electron states bring about a corre- 
lation in the electron arrangement due to the electron 
interaction. If it is assumed that al l  the charges in 
the system a r e  smeared, then the interaction energy in 
(4) is equal to the energy of a parallel-plate capacitor 
with charge a. The energy Ho [see (8)l therefore in- 
cludes only energy of non-Coulomb origin, i. e., 

D C 

H ,  = C Dtnt=S go(@)  D d o ,  
t -- 

where go(@) is the given SD, and the chemical potential 
1-1 is defined by the condition 

It follows then from (1) that 
G.=go(l*). 

In this simplest case G, coincides with the single- 
electron state density go(@) on the Fermi level. How- 
ever, when account is taken of the correlations in the 
arrangement of the electrons connected with the elec- 
tron-electron interaction, this no longer is so. In the 
general case one can only prove the inequality 

It  follows from the fact that the energy H defined in (4) 
has at a given value of EF a minimum at a certain den- 
sity n. At this density we have 

Equation (7) leads then to (13). We shall show below 
that the observed SD can indeed be negative. 

Analytic calculation of &, and p is possible only in 
certain limiting cases, which will be indicated below. 
To construct the complete picture, we have undertaken 
to simulate the system indicated above with a computer, 
modifying somewhat the program used in the preceding 
paper7 to calculate a three-dimensional impurity band. 
In the next section we describe the program and then 
report and explain the results for different degrees of 
compensation. 

2. DESCRIPTION OF SIMULATION PROGRAM 

Since the computer used by us  was incapable of simu- 
lating a sufficiently large system, an important factor 
in the simulation was the choice of the boundary condi- 
tions. We have assumed the investigated system to be 
square in form, and that the remainder of the plane 
containing this square has a uniform charge of density 
a. This enables us to avoid the large electric-field 

distortions that inevitably ar ise  on the edges of the 
system if a capacitor with finite dimensions is con- 
sidered. To calculate the total energy H, it is conven- 
ient to represent the obtained system a s  a uniformly 
charged plane with charge u, on which is superim- 
posed a s  a whole a neutral square consisting of a uni- 
form background with charge density -o on which donors 
and acceptors a re  randomly distributed. Then 

H=H.,+Znac?Sx-'. (14) 

The first  term is the inner electrostatic energy of a 
neutral square, the second is the self-energy of the 
"large" capacitor (of area  S) containing the square. 
The energy of the charges of the neutral square in the 
uniform field of the large capacitor is zero. On the 
other hand it is easily seen that by analogy with the 
statements made in the Introduction [see (811 it is 
necessary to minimize the energy Ho = H - 2na2sn-'. 
According to (14), Ho=H,, so that the problem re- 
duces to minimization of the electrostatic energy of a 
neutral square a t  a given electron density. 

Let 

be the potential produced by a square having a uniform 
charge equal to e. The integration is over the square, 
i ts  area  is So. Then the potential produced by the uni- 
form charge -a inside the square (by the background) 
is -soaqo(r)/e. The energy Ho = H, can be represented 
in the form 

The first two terms in (16) describe the interaction of 
the charged donors and acceptors, the third and fourth 
describe the interaction of the charged donors and ac- 
ceptors with the background, and the fifth, the self 
energy of the background. We have left out of (16) 
terms that describe the interaction of the charged ac- 
ceptors, inasmuch a s  these terms do not contain the 
occupation numbers and a r e  therefore inessential for 
the minimization. Algebraic transformations reduce 
(16) to the form 

where 

On going from (16) to (18) we have left out a number of 
terms that do not depend on n,. The electron energy on 
the donor i is of the form 

D 

e,=GH,lGni=Ei +x q,,n,. (21) 
; t i  
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The algorithm of the minimization program contains 
much that has been borrowed from an earlier paper,' 
and will not be described here in detail. In the square 
considered, the random-number generator produced 
the coordinates of N donors and KN acceptors. The 
donor and acceptor charges were assigned values +1 
and -1 respectively. Each donor could also be assign- 
ed a random value @, uniformly distributed in the in- 
terval from -A to A. The integral (15) can be calcu- 
lated analytically, and (17) numerically. With the aid 
of (21) we calculated the energies E ,  a t  all donors a t  
n,= 0. These energies included the minimal energy 
g,,. A group of p electrons was then added to the sys- 
tem. The first  electron occupied a donor with minimum 
energy c,,,. All the donor energies were then recalcu- 
lated with account taken of the potential of this electron 
and of the change of the background charge, and a new 
energy hi, was found. The second electron occupied 
a donor with this energy, etc. The change of the total 
energy Ho following the landing of each electron was 
calculated. The system of p electrons obtained through 
this procedure, generally speaking, is not in the ground 
state, and a subprogram was used to  search for the 
pseudo-ground state and to obtain an energywise more 
favorable rearrangement of the electrons. This sub- 
program was described in detail in Ref. 8. All the 
decreases produced in the total energy Ho by these 
permutations were taken into account. The result were 
sets of energies E ,  and of occupation numbers ni cor- 
responding to  the pseudo-ground state." They could 
be used to determine the SD g(~) and the Fermi  level y. 
The Fermi level was obtained by two different methods. 
The first  corresponded directly to the definition (9). 
It consisted of dividing by p the change of the total en- 
ergy Ho following the landing of p electrons, followed by 
minimization. In the second method the Fermi  level 
was defined a s  the arithmetic mean of the maximum 
energy c- of the occupied donor and the minimum en- 
ergy &,, of the empty donor, i. e., as the energy bor- 
derline between the empty and occupied states. The 
next p electrons were then added and the process re- 
peated. As a rule, p = ~ / 1 0 0  and one realization of the 
coordinates of the donors and acceptors yielded a rela- 
tively smooth p(n) curve. This function was next aver- 
aged over several realizations. 

3. SIMULATION RESULTS AND THEIR DISCUSSION 

The most important results a r e  shown in Fig. 3 in the 
form of a plot of the Fermi  level y vs the electron den- 
sity n. We have assumed here that the level spread is 
only of Coulomb origin and we have put +, = 0. The 
Fermi level was obtained with the aid of (9). The pre- 
sented data make i t  possible to determine G, with the 
aid of relation (1 ) .  

We begin the discussion with compensation Kz- 0.35. 
As seen from Fig. 3, the corresponding curves have 
two steep sections a t  large and small electron densi- 
ties. This can be easily explained. The electrons 
strive to  occupy those donor states whose energies a r e  
lowered the most by the potential of the other charged 
donors and acceptors. If the electron density is low 
and almost all  the donors a re  empty, these states a re  

FIG. 3. Fermi level p (in units of e 2 ~ y 2 / n )  vs. n/ND at K= 0 
(1). 0.1 (2). 0.2 (3), 0.35 (41, 0.5 (5) and 1 (6). Aggregates 
of 400 donors were used. Each curve is the result of averag- 
ing over 20 realizations. 

produced on the donor pairs, each comprtsing two do- 
nors anomalously close to each other. The electron 
occupies only one of the donors of each pair, while the 
second charged donor lowers the energy of this elec- 
tron. In the three-dimensional case, a t  a higher de- 
gree of compensation, an important role is played also 
by the large-scale potential (see Ref. 6), but it is easy 
to  verify that in the two-dimensional case it is insigni- 
ficant, since the mean squared potential of a planar 
system of randomly arranged Coulomb center h a s  a t  
large distances only a logarithmic divergence, which is 
eliminated by electron screening o r  by screening by 
image charges induced by the metallic surface (see 
Ref. 9). It is easy to calculate the number of donor 
pairs that lower the electron energy below the Fermi  
energy, and thus express p in terms of n. The proba- 
bility that another donor is present in a circle of radi- 
u s  r, = e v n  1 y I around a given donor is equal to TN,<, 
where ND is the surface donor density. The surface 
pair density is obtained from this by multipkying by ND 
and dividing by 2. We obtain red /2 = n o r  

This calculation is valid if n << ND. 

It is easy also to calculate the p(n) dependence as n - ND. In this case almost all the donors a r e  filled, and 
the r a r e  empty donors a r e  anomalously close to  the 
acceptors. The density of acceptors with a donor at a 
distance shorter than r, is a ~ , ~ , d .  Therefore 

This relation is valid if ND - n << NA. The simulation 
results agree well with (22) and (23). The reasoning 
that leads to the asymptotic expressions (22) and (23) 
offer in fact an exhaustive explanation of the behavior 
of the p(n) curves a t  K >  0.35. 

The most important feature of the curves of Fig. 3 is 
that a t  KG 0.35 the p(n) dependence has a maximum. 
According to (1) this means that the SD G, becomes in- 
finite, and then becomes negative. Let u s  examine this 
phenomenon at K = 0. As seen from Fig. 3, a t  small n 
the p(n) plot is adequately described by Eq. (231, but. 
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then the plot reaches a maximum and subsequently p 
-0 from positive values a s  ND - n-0. We shall show 
below that this phenomenon is due to Wigner crystal- 
lization of the h ~ l e s . ~ '  

AS n4ND, the spatial positions of the empty donors 
(holes) a r e  determined not by the acceptors, of which 
there a r e  none in the considered case K=O, but only by 
the mutual repulsion of the holes. If the donor arrange- 
ment were ordered, then the holes should form in the 
ground state a Wigner crystal. We a r e  considering 
randomly disposed donors, but a s  n4ND the hole den- 
sity tends to zero, becoming much smaller than the 
donor density. In this situation the disorder of the 
donors is not very important, since the discreteness 
of the possible hole positions is much less than the 
average distance between holes. I t  is clear therefore 
that in the ground state the hole arrangement should 
have a short-range order of the same type a s  in an or- 
dinary classical Wigner crystal. The only problem is 
that the deviations from an ideal periodic structure, 
which a r e  due to fluctuations of the donor positions, can 
accumulate over distances that a r e  large compared with 
the period of the Wigner crystal, and can lead to phase 
randomization. This question is discussed in Appendix 
1. The arguments advanced there indicate that an 
arbitrarily weak disorder of this kind does indeed lead 
to  phase randomization if the dimensionality of space 
is less than four. In the two-dimensional case of in- 
terest to us the phase randomization takes place over 
a length (see 1 .l) R -1(~,1~)  >> 1, where 1 = (ND - n)-'" 
is the period of the Wigner crystal. 

value of a, since the computer facilities were inade- 
quate to satisfy simultaneously the conditions (so)ln 
>> a >> 1 >> N;'" necessary for the existence of a "good" 
crystal. At N= 1000, a = 10, 1 - 10, and ND = 1 we ob- 
tained a = 3.86. 

In the considered impurity-band model the electron is 
regarded a s  localized on a donor and its zero-point 
oscillations have low amplitude. It is this which al- 
lows the existence of the dipole crystal, which is im- 
possible in the case of free electrons in the limit when 
their density is low. For  the same reason the melting 
temperature of such a crystal should be higher than that 
of an ordinary two-dimensional Wigner crystal. We 
note that we have used above the definition (9) for p .  
The definition of p a s  the energy corresponding to half 
the distance between the empty minimum-energy level 
and the filled maximum-energy level yields results that 
agree with the first  definition everywhere except in the 
region of the Wigner crystal. In the latter region these 
definitions lead to substantially different results. The 
reason is that in the Wigner-crystal region the filled 
and empty states a r e  separated by a rigid gap. 

We consider now the case of nonzero but small de- 
grees of compensation, K =N,/N, < 0.35. In the region 
N ,  - n << N,, all  the holes a r e  near acceptors and for- 
mula (23) is valid. In the region NA << ND - n << ND the 
holes for which there were not enough acceptors form a 
Wigner crystal and formula (25) is valid. Finally, a t  n 
comparable with ND the Wigner crystal vanishes (just 
a s  a t  K=O). The result is a minimum on the p(n) 
curve a t  a density n close to ND - NA (see curves 2 and 

Phase randomization over a large distance has very 3 in Fig. 3). 
little effect On the binding energy of the Wigner crysta1 We have discussed so far results of computer experi- 
and can be calculated in the same manner as in the ments with a zero non-Coulomb energy scatter (@, = 0). 
ideal case. Assume that the distance a to the metal It i s  clear that a t  a large scatter A >> e 2 n - ' ~ y 2  one can 
surface is much larger than the crystal period. We neglect in (4) all  terms but the first. Then, just a s  in 
have then the Wigner problem of electron crystalliza- the derivation of (12), G,  =go(p). Thus, with increas- 
tion on a homogeneous positive compensating back- ing A the section with negative G,  should vanish, just 
ground. The binding energy is of the form 

a s  when the degree of compensation is increased. 
Figure 4 shows the results for K = 0 and cp, # 0, which 

(24) illustrate this situation. 

It is known that the minimum energy is possessed by a To conclude this section we present a plot of the sin- 
triangular lattice (see Ref. 13) for which the coefficient gle-electron DS g(&) obtained with the aid of our compu- 
ff=3.92. For  a square lattice cy ~ 3 . 9 0  and for a hexa- t e r  experiments (Fig. 5), and emphasize once more that 
gonal, ff = 3.78. Using (91, we obtain 

3a e" p = ---(ND-n)%. 
4 x 

As n4ND the chemical potential tends thus to zero from 
the positive direction, and this explains the result 
sho& in Fig. 3. 

Z - 

At I >> a the result should be a "dipole" Wigner crys- 
tal  with a binding energy smaller by a factor (a/1l2 
than obtained from (24). We need retain in (4) only the D - 

terms that describe the interaction of the charges with 
their own images. We then obtain from (4) and (8) 

-Z  

(26) 
l 0.2 0.4 Lii l . 8  I 

p=4neZx-'a(ND-n) + e z /  4xa. /1/b 

The computer experiment yields values of p(n) that FIG. 4. Dependence of p (in units of e ' ~ b ( ~ / x )  on n/ND at K 
agree with (25) and (26) in the corresponding regions. = O  and at values of A respectively 5. 2, 1, and 0 (curves 
We were unable, however, to obtain an exact numerical 1, 2, 3, and 4). 
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FIG. 5. Single-electron state density g (in units of ~ b / ~ x e ' ~ )  
vs. the energy & (in units of eZ~A/2/x)  at n = 0.7 ND, c= 1 0 e  12, 
and K= 0. 

the DC G, has nothing in common with g(c).  An excep- 
tion is the case of a large non-Coulomb scatter of the 
levels, A >> e2%N;". In this case G, coincides with 
go(p), and g(&) differs from &, only in a small vicinity of 
the Fermi level8 while allowance for the Coulomb inter- 
action a t  go < ~ a - ' e - ~  leads to no change whatever in 
gtc) .  

4. CONCLUSION 

The curves in Fig. 3 yield the dependence of the capa- 
citive DS G, = (dp/dn)-' on the electron density in the 
inversion layer. A detailed experimental study of these 
dependences can yield the impurity-band compensation 
(which serves here a s  a parameter) o r  an estimate of 
the width A of the donor-energy scatter of non-Coulomb 
origin; this scatter can be due to the different distances 
between the donors and the semiconductor surface. The 
most interesting property of these curves is the nega- 
tive DS in the region of the Wigner crystal. 

The state density G,,, strictly speaking, cannot be 
obtained with the aid of the performed calculations. 
According to  (2) and (3), besides the relation p(n) 
determined above, we must find also the mobility 
threshold c,(n). It is easy to verify that the potential 
relief produced in the conduction band is classical a t  
low density of the impurity states. Indeed, the proba- 
bility of tunneling through a typical relief hump of 
height y = e2~ ,x- '  and of width N;"' is equal to W =  e9, 
where Q =2h- '~1n(2~m) '12 = (ND&)-lN and a~ is the 
radius of the impurity state. At sufficiently low ND, 
the probability W is much less than unity. Therefore 
the potential relief of the bottom of the conduction band 
can be regarded a s  classical. The mobility threshold 
then coincides with the classical percolation level (see 
Chap. 5 of Ref. 6). To find it we must calculate the 
potential energy of the electron produced a t  the bottom 
of the conduction band by the charged impurities, and 
solve the continual percolation problem (see Ref. 6). 
We present here only the calculations of the percolation 
level in the Wigner-crystal region, which can be per- 
formed analytically. 

It must be borne in mind that when the charged do- 
nors a r e  ordered, narrow allowed bands a r e  produced 
below the percolation level. These bands, generally 
speaking, lead to a spreading of the wave packet, and 
hence contribute to the conductivity. If, however, the 

TABLE I. Values of the coefficients a ,  t), y ,  
and p for three lattices. 

Lattice 1 a n v ] B  

Hexagonal 3,78 

* ~ a t a  of Ref. 13. 

Wigner-cry stal period is large enough, the mobility 
in these bands is low and it can be assumed that the 
conduction is effected only by the electrons of energy 
higher than the percolation level. 

In the calculation of the percolation level, the poten- 
tial can be regarded as static, inasmuch as over times 
typical of band conductivity there a r e  not transitions 
of electrons between donors. The calculation of the 
percolation level is described in Appendix 2. We have 
obtained 

where the constant Y is expressed in terms of the con- 
stant a of (24). Accordingly 

e2 
e.,=E.+ep-e=Eo-P -(N,-n) ", 

X 

where f l =  30/4 - Y.  According to (2) 

The calculation results for the percolation level a re  
listed in Table I. It is seen from it  that B > 0, s o  that 
the SD determined by measuring the change of the acti- 
vation energy of the band conductivity with change of 
electron density is also negative in the Wigner-crystal 
region. This means that a t  low degree of compensation 
the activation energy f i rs t  decreases with electron den- 
sity, and then increases if the hole density t s  low. It 
seems to us  that the impurity band produced on the 
silicon surface by sodium ions (see Ref. 1) is a suitable 
object for the observation of this effect. Unfortunately, 
E, was measured in Ref. 1 a t  only one value of V, cor- 
responding to  the maximum current. 

An interesting question from the theoretical viewpoint 
is the low-temperature electric conductivity that is not 
due to spilling into the conduction band. At intermedi- 
ate degrees of compensation it should have a hopping 
character without any special features; in the Wigner- 
crystal region, however, the hole motion should more 
readily be correlated. We shall not deal here with this 
question. 

The authors take the opportunity to thank M. Fer- 
gel'man and D. E. ~hmel 'nitskir  for a discussion of 
the stability of a Wigner crystal. 

APPENDIX 1: INSTABILITY OF A LOCALIZED-HOLE 
WIGNER CRYSTAL TO WEAK DISORDER OF THE 
LOCALIZATION CENTERS 

We consider the case when the total donor density 
ND is very high compared with the density p = ND - n of 
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the ionized donors (holes), but such that the average 
distance rD = N;" between donors is much larger than 
the radius of the localization of the electron on the 
donor. The problem remains classical in the sense 
indicated in the Introduction. The potential produced 
by the polarization of the neutral donors will be ne- 
glected, since the total energy includes only the inter- 
action between holes that can be located on any of the 
donors, a s  well a s  the interaction of the holes with the 
homogeneous negative background. It is required to 
find the hole configuration corresponding to the ground 
state of the system. If the holes could occupy arbi- 
trary points in space, then the ground state would cor- 
respond to the ordered structure called a Wigner o r  
Coulomb crystal. The hole can be located only on do- 
nors, but the donor density is very high, so  that the dis- 
order due to the random distribution of the donor is 
very small. Undoubtedly, therefore, a t  distances large 
compared with the average distance between holes, an 
ordered structure should exist. The question is wheth- 
e r  this structure has an infinite correlation radius, 
o r  does the disorder lead a t  large distances to phase 
randomization, so that strictly speaking there is no 
crystal. 

We consider now an ideal lattice with a number of lat- 
tice site per unit volume corresponding to the given 
hole density p,  and assume that it penetrates through a 
space (of arbitrary dimensionality d) in which donors 
a r e  randomly distributed. We examine the donor con- 
figuration that results from placing holes on donors that 
a r e  closest to the sites of the ideal lattice. This con- 
figuration corresponds to an infinite correlation radius. 
Owing to the disorder, the peaks of the correlation 
function have finite width, but this width is small com- 
pared with the distances between the peaks and, most 
importantly, does not increase with the number of the 
peak. We now must determine whether this structure 
corresponds to the ground state. 

For this purpose, we reason a s  follows. Assume that 
the considered ideal lattice is not infinite, but forms a 
hypercube with linear dimension R >> 1 =pl". We cal- 
culate the electrostatic energy of the interaction of the 
holes located near a lattice site. We then displace 
our lattice relative to the donor distribution specified 
in the space, move the holes to the donors closest to 
the lattice sites, and calculate the energy anew. The 
ideal crystal corresponds to the minimum energy. 
Therefore a displacement of the holes by a distance on 
the order of r ,  from the sites of the ideal lattice leads 
to an energy increase of second order in the parameter 
rD/l. The characteristic energy increase per cell 
should be of the order of 

and the average increase of the hypercube energy of the 
order of 

Since the donor configuration in the vicinity of each 
lattice site can be regarded a s  statistically indepen- 
dent, the dispersion of the hypercube energy is of the 

order 
d / Z  ;(:)=(;) . 

This is the amount by which the hypercube energy can 
change (on the average) following the indicated shift. 
It follows therefore that if a hole crystal is placed in a 
region of space with linear dimension R not in the man- 
ner imposed by the neighboring regions, but by subject- 
ing it to a translation of order I such that i t s  position 
is most favorable a t  the given donor configuration, then 
the resultant energy gain is of the order of 

d/2  f (T)'(f) . 
This, however, corresponds to a complete phase ran- 
domization that takes place over a length R. 

If this randomization is effected jumpwise in the hy- 
perplane that separates regions of size R, then this 
obviously leads to a strain-energy loss on the order of 

The loss can be much smaller if the phase randomiza- 
tion proceeds via a smooth deformation of the Wigner 
crystal. In this case the deformation should not change 
the volume, for otherwise the negative background will 
not compensate for the charge of the crystal and the 
electrostatic energy will increase greatly. To ensure 
phase randomization over the distance R, the shear 
components of the strain tensor must be of the order 
Z / R .  The strain energy per crystal cell is of the or- 
der of 

and the total energy loss is of the order of 

Comparing the energy gain and loss, we find that at  d 
< 4 there should be no ideal Wigner crystal, and the 
correlation radius R, (obtained by equating the gain 
and the loss) is of the form 

The correlation function should vanish at R >> R, if d 
< 4. 

APPENDIX 2: PERCOLATION LEVEL I N  CONDUCTION 
BAND FOR ORDERED CHARGED DONORS 

We consider a case when the holes forma Wigner 
crystal (assumed to be ideal), and calculate the per- 
colation level in the conduction band in the potential 
produced by the charged lattice sites. We propose 
below to calculate the percolation levels for a quadra- 
tic, triangular, and hexagonal lattice. 

1. Quadratic lattice. The equipotential lines for an 
electron in the conduction band a r e  shown in Fig. 6a. 
The points 1 a r e  lattice sites (holes) and correspond 
to a minimum of the electron potential energy in the 
conduction band, while points 2 a r e  the maxima of the 
potential energy. The only nonclosed equipotential 
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PIG. 6. Illustrating the calculation of tbe percolation level in 
a quadratic lattice. 

line corresponds to the percolatien level. To deter- 
mine this level it suffices therefore to find the energy 
at the point 3. According to (24) the potential energy 
at the point 1 is cpl(p) = ae2x-lpv2, where p is the hole 
density. We represent the energies a t  the points 2 and 
3 in the form 

cp2 (p) =-qe2x-1p'". ip,(p) -yeax-'p". (2 .I) 

The problem is to express q and Y in terms of the co- 
efficient o! of Eq. (24). 

We regard the quadratic lattice with density 2p (Fig. 
6b) a s  a superposition of two quadratic lattices with 
densities p (their sites a r e  shown by dark and light cir- 
cles respectively). Consider a black site on Fig. 6b. 
It is a point of type 1 with respect to the black sublat- 
tice, of type 2 with respect to the white, and of type 1 
with respect to the combined one. The energy at  this 
site is equal, on the one hand, to  ~ ( 2 ~ 1  and on the 
other to the sum of the potential energies produced by 
the individual sublattice, i. e. , cpi(p) + v~(P). Using 
(2.1), we get 

from which it follows that 

We consider now the energy marked by the cross in 
Fig. 6b. For both sublattices it is a point of type 2, 
but for their sum it is of type 2. Thus, 

2. Triangular and hexagonal lattices. Figure 7a 
shows the unit cell of a triangular lattice, and the char- 
acteristic points a r e  designated in the same manner a s  
for the quadratic lattice. Figure 7b shows the subdivi- 
sion of a triangular lattice with density 30 into two sub- 
lattices. The energy per site is 

We can write analogously with the aid of Fig. 7c 

The result for a hexagonal lattice can be obtained in 
similar fashicn. Moreover, since the hexagonal lattice 
can be represented a s  a superposition of two triangu- 
lar ones, the coefficient cr for it (as) can be expressed 
in terms of the coefficient cu for the triangular lattice 
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FIG. 7. Illustrating the calculation of the percolation level in 
a triangular lattice. 

(as). We present here only the f i n a l  results: 

Using the results of Ref. 13, in which the coefficients 
a were calculated for a triangular and quadric lattice, 
we can calculate a l l  the coefficients of interest to us. 
They a r e  listed in Table I. 
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those of the ground state. 
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