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The various processes of interaction of nuclear spin waves with each other and with magnons, phonons, and 
impurities are considered..The corresponding lifetimes and scattering probabilities are computed. The system 
of kinetic equations is solved, and the characteristic relaxation parameters of the nuclear-spin-wave system 
are found. 

PACS numbers: 75.30.D~ 

1. INTRODUCTION unity, i.e., one of the spin-excitation branches almost 

Investigations of the high-frequency properties of 
ferromagnets and antiferromagnets at extremely low 
temperatures1" have shown that the magnetization 
Mn (a of the nuclear spins cannot be described by a 
Brillouin function for the crystal temperature. At- 
tempts to explain the increase of the deviation of M,(T)  
from pnB, (B,(x) is the Brillouin function for a spin I 
and pn is the nuclear magneton] with decreasing tem- 
perature in terms of the role of spin waves3 and the 
contribution of the zero-point vibrations4 have not been 
successful. It may be inferred that the cause of the 
discrepancy between the theoretical predictions and 
the experimental data2 lies in the fact that there is 
not enough time for equilibrium to be established be- 
tween the nuclear spins and the electron-phonon sub- 
system in the course of an experiment. This conjec- 
ture compels us to analyze the relaxation processes in 
magnets whose nuclear spins a re  magnetized by the 
electrons. 

As seems to us, this analysis is of interest, since 
it allows us, in the first  place, to investigate the 
relaxation in that temperature region in which it has 
previously not been studied and, in the second place, 
to explain the characteristics of the nuclear relaxation 
in magnetically ordered media. As far as  we know, 
only the relaxation processes in magnets at tempera- 
tures significantly higher than Rw,, where on is the 
precession frequency of the nuclear spins, have thus 
far  been investigated (see Ref. 5, Chap. 5, as  well as  
Refs. 6 and 7). 

At low temperatures, not only the electron-shell spins 
of the atoms, but also the nuclear spins a r e  practically 
ordered, and the thermal motion is executed by the 
spin waves (magnons). There a re  two types of magnons 
in a single-sublattice ferromagnet with nuclei possessing 
magnetic moments. Because of the coupling between the 
electrons and the nuclei, the two types of magnons des- 
cribe the collective motion of the electronic and nuclear 
spins. The weakness of the hyperfine interaction between 

does not differ from theelectronic spin wave. We shall 
call this branch the magnon branch and the electronic 
excitations, magnons. The other branch describes the 
motion of the nuclear-spin system, which is magnetized 
by the ordered electron spins. We shall call these ex- 
citations nuclear spin waves (NSW). We denote the 
magnon- and NSW-creation operators by a:,, and a;k 
respectively. 

The magnon dispersion law is practically insensitive 
to the nuclear subsystem5: 

here k is the wave vector and Ewe is the energy of a 
magnon with k = 0: 

H is the magnetic field, Ha is the anisotropy field (H is 
parallel to the axis of easiest magnetization), p, is the 
Bohr magneton, M, = p e / d  is  the electron magnetic 
moment at T=O, Aw, is a quantity of the order of the 
Curie temperature, and a is the interatomic distance. 

The NSW-dispersion law is determined by the inter- 
action between the nuclear spins and the magnons (the 
Suhl-Nakamura interaction: see  Refs. 8 and 9) 

o, ( k )  -on-A'IS/fi2w, ( k )  , (3) 

where S is the electron spin, A is  the hyperfine interac- 
tion constant and, 

The smallness of the nuclear magneton allows us to 
neglect the direct effect of the magnetic field on the 
NSW. The NSW dispersion [the second term in (3)] is 
s o  weak that we can neglect it at T-iiw,, setting 
w,(k)= on. But this dispersion is, as  a rule, impor- 
tant in considering the kinetics of the NSW. Let us nc 
that the neglect of the NSW dispersion naturally does 
not transform the nuclear spins into a system of non- 
interacting paramagnetic atoms. 

- - 
the nuclear and electronic spins is manifested in the fact The quantities with the dimensions of energy (or 
that one of the amplitudes of the Bogolyubov U-v trans- frequency) that enter into the formulas (1)-(4) satisfy 
formation in the relations connecting the creation, the strong inequalities - 
a,+,nl, and annihilation, aeenk, operators for the elec- A*IS/fi200.(k) - A W , ( ~ )  <omcod, o.<os. 
tronic (e) and nuclear ( n) spin deviations with the creation 

(5) 

operators for the two types of spin waves is close to  The dispersion law (3) is used to compute the prob- 
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abilities of the various processes and the collision inte- As we shall see, the obtained expression (10) exceeds 
grals by the perturbation-theory method. For such an by many orders  of magnitude the relaxation times de- 
analysis to be valid, it is necessary that the rather scribing the interaction with the phonons and magnons. 
rigid inequality A W ~ ( ~ ) T ~  >> 1, where ?i1 is the corres- This gives us grounds for believing that the "boson- 
ponding NSW attenuation factor, be satisfied. As the ization" of the NSW gas is the fastest of the investigated 
formulas obtained below show, it is always satisfied. relaxation processes. 

The NSW relax a s  a result of their interaction with 
each other, with the magnons, and with the phonons. 
In crystals containing impurities, the NSW a r e  also 
scattered by the impurities. The present paper is 
devoted to  the investigation of these processes at T 
S tiw,. In choosing the dominant scattering mechanisms, 
we shall retain only those which do not lead to an ex- 
ponential temperature dependence of the mean scatter-  
ing probability with an activation energy significantly 
higher than tiw, This principle significantly restricts 
the se t  of relaxation mechanisms (see below). 

2. THE NSW-NSW SCAlTERlNG 

Allowance for the anharmonicities in the Suhl-Naka- 
mura interaction energy leads to a Hamiltonian that 
describes the scattering of the NSW by each other1)': 

The relaxation time in a system of nuclear spins is 
determined by the slow processes. The estimate, made 
here, of the relaxation time for a NSW system allows us 
t o  choose a method for solving the kinetic equation (see 
Sec. 6). To compute the relaxation times, we do not need 
t o  know the Hnn -governed lifetime of the NSW as  a func- 
tion of k. Richards6 has computed the lifetime of the 
NSW in the high-temperature limit (i.e., for T>>tiwn). 
The expression obtained by him [see Ref. 6, the formula 
(20)] shows that at T>>Aw, 

-=- -  ' A ak. 
r.,t 4nf ioE f r  

Comparing the last expression with our formula (10) 
we see  that 7,;: should tend to  zero appreciably faster 
a s  the temperature is lowered (i.e., a s  T- 0) than the 
Richards formula predicts. 

H::'= A($) ' z (~+u,+u~+LJ,) a,,,+am,+a.,a,,,A (1+2-3-4) + c.c., 
2 ' I  

1.2.5,r 3. THE NSW LIFETIME DUE TO COLLISIONS WITH 

where 31 is the number of atoms in the crystal, v, The NSW-magnon interaction Hamiltonian containing 

= v ( 4 )  is the small  amplitude of the u-v transformation: the least number of creation and annihilation opera- 
tors  describes the production (absorption) of NSW by a 

u (k) =A ( I S )  '"/hoe ( k )  . (7) magnon: 

Using the standard procedure for computing the relax- 1 ~.'.'"=,z cD..(1,2,3)a,ia.zf a.aA(1-2+3)+ c.c., 
ation times ~ ( k )  (see, for example, Ref. 10, Chap. 7), R (11) 

1.2.3 

we find the NSW relaxation time: 
here 

-=--- IT A'S ( U ~ + V ~ + U , + V L ) ~ A  (ki-1-2-3) 
.I..,. n2 2.1 a ' z  k k -  

c D . , ( 1 , 2 , 3 ) = - 8 n ( 2 S ) " ~ . M , u , ~  
1J.J k.' . (12) --. 

X ~ ( ~ . L + W - I - ~ ~ - ~ . S )  [ N I ( I + N Z )  ( 1 + N s ) - ( l + N t ) N z N s l ~  (8) we using the fact that p,  is small, retained only 

where N, = ~ ( t i w , ~ )  is the equilibrium distribution func- the term proportional to dk).  - - 
tion for the NSW: In the temperature region of interest 
to  us, we can neglect the wave-vector dependence of the The NSW lifetime due to the process in question is 

equilibrium distribution functions of the NSW, and take given by the following formula: 

them out from under the summation s i g n  But even this 1 
-=- 

k.k- 
2 8 n ~ s 2 ( r , M o ) z z  uhz 1,. 1 A ( 2 - 1 - k ) 8 ( ~ 2 - o . l - ~ . )  [ N . - N 2 ] .  

simplification does not allow an exact computation of the 7 .  6 3 1 2  

We give only the band-averaged value: Since on<< o,(k), the difference between the equilibrium 

1 i as dk distribution functions of the magnons should be written 

- = C - ) = & $ / P = ~ I ; ; ; ; .  Ton Tnnt (9) as: 

Analysis of the energy and quasimomentum conserva- N,-N2=N,%xp {Ao., lT) { e x p  [ A o , / T ] - 1 ) .  (14) 

tion laws, a s  well a s  of the form of v(k) [see (7)], Integrating with allowance for the 15 function, we find 
shows that the major role in NSW relaxation due to the the lifetime of the NSW a s  a function of the wave vector 
process under investigation is played by the collisions k. 
of the quasiparticles with large quasimomenta [a& If we neglect the dipole term in (I), then there is no 
>> (w,/($)'la]. This allows us to neglect we in the ex- restriction on k, and 
pression for we(k), and take out all the dimensional 
factors from under the &function sign. Since a s  a 1 exp  (- f fro ) sin' Okp., 
result the corresponding integral (over nine-dimen- 
sional space) does not depend on any parameter, we I { 7 [ ( a k ) ' - ~ ~ / o ~ ] )  

(15) 

cPk=,kexP -- can obtain the value of ( 7 2 3  up to a numerical factor: 2ak 

A'S N ( 1 + N )  For ak= (w,/w,)'/~ the function cp, has in the tempera- 
( lo) ture  region (T<<liwe) of interest to us a sharp  peak with 
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a temperature-independent height approximately equal to  
(~,/o,)"~. But the mean probability for the inverse 
lifetime of the NSW is exponentially small: 

The probability r ;ik for a magnon to emit or absorb 
a NSW is significantly higher than r;&. Indeed, accord- 
ing to (11) 

Allowance for the dipole interaction in the magnon- 
dispersion law (in the case in which w, - w,) can ap- 
parently affect the dependence of the relaxation time on 
k. But because of the complexity of the resulting inte- 
grals the computation of the probability is not possible 
when allowance is made for the dipole-dipole interac- 
tion. Therefore, below we restrict  outselves to  the con- 
sideration of the case in which w4<< we. It follows from 
the conservation laws that NSW can be emitted by 
magnons with wave vectors greater than ~-'(w,/w,)"~ 
and be absorbed by magnons with any wave vector. 

According to (17), the NSW-emission probability is 
equal to 

a k a  (o./ox)'". 

The probability for absorption of NSW is 

The mean magnon lifetime, re,, due to the emission 
and absorption of NSW is computed by summing and 
averaging the expressions (18) and (19): 

4. SCATTERING OF NSW BY PHOTONS 

Formally, there a re  two types of single-phonon pro- 
cesses: a)  the emission (absorption) of a phonon by a 
nuclear spin wave and b) the annihilation (creation) of 
two NSW with the emission (absorption) of a phonon. It 
can be shown that, owing to the weakness of the NSW 
dispersion, the probability for the processes of the first  
type is equal to zero. Therefore, we shall discuss the 
processes of the second type. The corresponding inter- 
action Hamiltonian is derived from the magnetostriction 
energy with allowance for the NSW-excitation impurity 
in the electronic spin deviations: 

e*+k + 

~ - ~ a , , + a , ~ + b , A  (1+2-3) +c.c., 
k," 

where c, is the speed of sound, y is the magnetostric- 
tion constant, p is the density of the magnet, and the 
index j (= 1,2,3) numbers the phonon polarizations. 
Naturally, only the acoustic phonons a r e  taken into 
account: the role of the optical phonons at s o  low tem- 
peratures is quite unimportant. 

Proceeding in much the same way as  described above, 
we have 

Assuming for simplicity that the phonon dispersion law 
is isotropic, we find after integration that 

The process considered occurs at any value of the 
wave vector, k, of the NSW, the dependence on k being 
such that we can, in averaging T;:,,, extend the integra- 
tion over k to infinity: 

Estimates of the NSW lifetimes due to the two-phonon 
processes, as  well a s  the magnon-phonon interaction 
processes involving the emission (absorption) of NSW, 
show that these processes a re  less probable than the 
single-phonon processes. But from the point of view of 
the magnons (see Sec. 6), there is among the processes 
in which the magnons, phonons, and NSW participate 
one that plays an important role in the relaxation, This 
is the decay of a magnon into a phonon and a NSW. The 
corresponding interaction Hamiltonian has the form 

From this we compute in the limiting cases, using the 
fact that the NSW energy is small, the magnon lifetime 
with respect to the decay processes (?-I- 1 +N) and the 
coalescence process (7 -' -IS): 

For T SAW,<< Ew,, the mean value of the probability 
for the process in question is naturally given by the 
value of r;ihk for a k e  (W,/W,)'~~, i.e., by 

1 (yp.Mo)2 A'IS ho, (1+2N)---. (28) 
Tmph 8, 8, 

5. SCATTERING OF THE NSW BY THE IMPURITIES 

Naturally, any local defect in the crystal serves as a 
scattering center for the NSW (as for any quasiparticle). 
Evidently, the largest cross sections should be pos- 
sessed by foreign atoms having magnetic moments (para- 
magnetic impurities). For definiteness we shall assume 
that all the impurity atoms a r e  of the same type, their 
concentration is equal to c = 32,,/32 << 1, the electronic 
spin is equal to S' (s' is, generally speaking, not equal 
to S), the nuclear spin is equal to f ,  and the constant 
characterizing the hyperfine interaction in the defect 
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atom is A' #A. The NSW-impurity atom interaction 
Hamiltonian has the form standard for problems of 
this type 

the summation being performed over the impurity si tes 
(this is indicated by the prime on the summation sign). 

Computing the scattering probability, and averaging 
it over the impurity distribution, we obtain 

A'S1-AS 
= 2nch ( A  ( I S )  '" ) 2 w ; ( k )  z b ( u . ( k ' ) -  ~ . ( k ) ) .  

k' 

Going over from summation to integration, and using 
the 6 function, we have 

1 ca3 A 'S-AS  
-=- 

dSk 
T a i k  (2n)' ( A(zs )a la  ) ' o - ( k )  mt (31) 

r.It)-c.n.t 

where vek =awe(k)/ak is the magnon velocity. 

According to (31) 

As we can see, the inverse relaxation time increases 
rapidly with increasing wave vector. Therefore, the 
mean (over the NSW band) probability for scattering by 
the impurities can be estimated only in order of mag- 
nitude: 

A comparison of (28) with Awnk shows that the condition 
A W , ~ ~ , ~ ~ > >  1 is always valid when k< ~ - ' ( w , / ( J , ) ~ ~ ~ c - " ~  
for concentrations c lower than which a re  the con- 
centrations that usually obtain in experiments. Although 
at reasonable impurity concentrations the mean prob- 
ability for NSW scattering by the impurities exceeds the 
probability for the other processes, the role of impurity 
scattering is limited by the isotropization of the dis- 
tribution function. This process cannot lead t o  a change 
in  the mean NSW energy, and is therefore not of much 
importance in the relaxation process (see below). 

6. RELAXATION IN A NSW SYSTEM 

We shall, in investigating the relaxation process in a 
NSW system, proceed from the assumption (usually 
justified in practice) that the phonon-relaxation time T,, 

is significantly shorter than the other characteristic 
relaxation times. In other words, the phonons will be 
regarded a s  a thermostat the interaction withwhich leads 
t o  the establishment of the equilibrium states of the 
magnon and NSW systems (T is the phonon temperature). 
A comparison of the above-computed relaxation times 
shows that 

Let us emphasize that al l  the computed probabilities in 
(34) (they pertain to  the NSW and the magnons) do not 
contain exponential factors with a large (-Ewe) activation 
energy. Let us, using this fact, write down the kinetic 
equations describing the nonactivation relaxation: 

ih=LnPh(Nr, f k ) ,  (35') 
nr=L,,(nr, N t )  +L.,,h(nr, Nr, f r ) .  (35") 

The expressions for the collision operators L,,, Len, 
and L,,, can be written out on the basis of the Hamilton- 
ians ( l l ) ,  (21), and (25) respectively (see, for compari- 
son, Ref. 10, 8625 and 26). We have dropped the opera- 
tor  L,,, since we a r e  interested in the phase of the 
relaxation following the bosonization of the NSW dis- 
tribution function The relaxation rate is given by the 
slowest process; it is given by the Eq. (35') in which 
Tk is the equilibrium phonon distribution function. 
Equation (35") shows that the magnon distribution 
function nk( t )  follows the NSW distribution function 
N&). According to  (35M), the magnon temperature 
T, coincides with the NSW temperature T,: 

the lagging of T, behind T, being determined by the 
time re,, the shortest of the long t imes (re,<< re,, 
-KT,,). The dependence of the nonequilibrium chemi- 
cal potential, [,, of the magnons on time is determined 
by the second term in Eq. (35"): 

Ao 3 T  E. ( t )  = A(T-T,(t) ) + - T .  ( t )  111 - 
T 2  T " ( t )  ' (37) 

For T -Ewn we can neglect the NSW dispersion. Then 
the kinetic equation (35') for N d t )  allows us to derive 
the equation describing the evolution of the NSW num- 
be?)--the function N = N ( ~ ) :  

N = h { ( l + N ) Y ( 2 h o n ) - N Z ( l + f  ( ~ A w . ) ) ) ,  (38) 

where 

Equation (38) was derived through integration over the 
band, and since the quantity vk entering into the NSW- 
phonon interaction probability is proportional to [we 
+w,(aky]-', the integration over k can be extended to  
infinity. It is convenient to rewrite Eq. (38) in the form 
of an equation for the inverse NSW temperature intro- 
duced by the equality 

Setting 

we obtain 

d y l d ~ = - s h  ( y - y , ) ,  y,=fio,/T, 

from which we find that 

h (F) =tl, (!+) .-=. 

It can be seen from this that the relaxation time of the 
system in question is +A, i.e., 
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Thus, the analysis carried out here shows that, at 
~ s i i w , ,  the relaxation in a system of NSW and magnons 
occurs in the following manner: 

1. The collisions with the impurities isotropizes the 
NSW and magnon distribution functions (apparently, 
under real  conditions this is the fastest process). 

2. The next stage is the bosonization of the NSW and 
magnon gases. 

3. Owing to the interaction with the phonons, the num- 
ber of NSW tends to  its equilibrium value [this phase of 
the relaxation is described by Eqs. (38)-(42)]. The tem- 
perature and chemical potential of the magnons follow 
the instantaneous value of the nuclear temperature 
~,,{t) [see the formulas (20) and (28)]. 

The cause of such a relaxation picture is the nonac- 
tivation character of the phonon spectrum, the weak 
activation in the NSW spectrum, and the negligibility of 
the dispersion in the NSW spectrum. 

Although the relaxation time obtained is very long 
[-28 h if we use the following values for the parameters 
entering into the formula (42): T=tiw,=3. 1 0 * ~ ,  8, 
=102K, Eo,=lOK, liw,=O.lK, p ,M,=lK,  ~ = 1 0 ] ,  it 
is many orders of magnitude shorter than the activation 
times. The shortest of them is proportional to  
exp(2Ewe/T), and in the case under consideration 
exp(2Ew,/~) = esO. In conclusion, we wish to emphasize 
the great role played by the NSW in the relaxation of 
magnons at temperatures low compared to  Ewe. 

The auth?rs ta$e the opportunity to thank A. F. Andre- 
ev and B. E. Meierovich for useful discussions. 

 he terms containing three ol.k operators and arising as a 
result of the dipole interaction have been discarded, since the 
corresponding processes do not occur because of the weak- 
ness of the dispersion, 
In the case in which the dispersion is neglected the equation 
using the energy conservation law i s  identical to Eq. (35'). 
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