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The possible existence of two superfluid phases (a and b) in He3 films is predicted. All branches of the Bose 
spectrum of the phases (12 in each phase) are calculated. The stability of phonon (Goldstone) modes is proved 
and the dispersion of nonphonon modes is calculated. The effect of a magnetic field on the number of 
Goldstone modes in the a- and b-phases is investigated. The behavior of the field correlators that describe the 
collective excitations is discussed at temperatures 0 < T < T, . It is shown that the correlators decrease 
according to a power law in the case of a system located in a magnetic field. 
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1. MODEL OF A He3 FILM 

The experimental investigation of thin He3 films, and 
also of monolayers of He3 adsorbed on a substrate,' 
shows that the behavior of the film becomes "three- 
dimensional" in the case of thicknesses of three and 
more layers, and remains "two-dimensional" for one- 
atom and two-atom layers. Such a conclusion follows, 
in particular, from the measurement of the specific 
heat? In addition to the investigation of the thermo- 
physical properties and experiments on NMR, an im- 
portant method of study of the films is the study of the 
spectrum of collective excitations, a s  occurs in three- 
dimensional He3. 

tum), p is the magnetic moment of the quasiparticle, 
n, = ki/k is a unit vector, p =T-', w =(2n + 1)nT is the 
Fermi frequency, f i  = ( k ,  w )  is the 4-momentum, o, 
( a = l ,  2,3) a r e  the Pauli matrices, V = S  is the surface 
of the system, Z is a normalization constant, g is a 
negative constant. The momenta k a r e  located in the 
layer Ik-k,  1 < ko<< k,. 

It is known that in two-dimensional systems at room 
temperature there can be no Bose condensate. How- 
ever, superfluidity is possible even without the Bose 
~ o n d e n s a t e . ~ ~ '  This is connected with long-range 
correlations, which a r e  damped a t  T< T, , not expo- 
nentially but more slowly. Furthermore, a number 
of results obtained under the naive assumption of the 

In the present work, we consider a model of He3 film- existence of a condensate remain in force even in the 
the two-dimensional analog of the three dimensional more e x a d  analysis, which takes into account the fact 
He3 model proposed earlier.3 As is shown in Sec. 2, that the Bose condensate is actually "smeared out" by 
several superfluid phases turn out to  be possible in the the long-wave fluctuations. This applies, in particular, 
model. Two of them, denoted below by a  and b, a r e  to the temperature of the phase transition T,, which can 
energetically advantageous and stable relative to small  

be found for the model (1) from the condition of the 
perturbations. The Bose spectrum is studied in Secs. appearance of nontrivial solutions of the equation 6Sh = 0. 
3 and 4 by the method developed earlier  in Refs. 4 and 
5 for the three-dimensional case. The spectrum con- 
tains both phonon (Goldstone) branches, the number of 
which is different for different phases, and also non- 
phonon branches, which have an energy gap. 

The He3 film model is described by the functional of 
hydrodynamic action 

sh-gi 2 ci.+ ( p )  c,(p) +'/, In det @ (c, c+)  / B  (0,O) , (1.1) 
9 . f . O  

where 6 is the following operator: 

0-  ( 2 - I  (io-E+p (OH) )6,,,, (pV) -"(nii-nzO ct.(pi+p2)o. 
- (Bv)  -"'(nii-n2,) c&+ (p,+p,) o., Z-I (-io+E+p (OH) ) 69%- 

). (1.2) 

Here the index i takes on two values, i = 1 and 2, and it 
is this which distinguishes the two-dimensional and the 
three-dimensional system models. In all  other respects, 
the notation used here is identical with that used in 
Refs. 3-5. In particular, cia (p) is the Fourier trans- 
form of the tensor field c,, (x , T) with the vector index 
i and isotopic index a =  l ,2 ,3 .  This field describes the 
collective Bose excitations of the two-dimensional sys- 
tem. H is the magnetic field, 5 = c,(k - k,) ( c p  is the 
velocity on the Fermi surface, k, is the Fermi momen- 

In Sec. 2, we calculate T, and consider the different 
nontrivial solutions of the equation 6Sh =0, which cor- 
respond to the various superfluid phases. The calcula- 
tion of the second variation b2sh allows us to investigate 
the stability of the phases relative to small  perturbations. 
These phases differ in the form of the order parameter, 
which, in the two-dimensional model, is a 2 x3 matrix. 

The considerations developed in Sec. 2 on the form of 
the order parameter in the different superfluid phases 
a r e  certainly valid at T =0, when the Bose condensate 
is actually present. In Secs. 3 and 4, the Bose spec- 
trum of the a and b phases of the two-dimensional 
system a r e  calculated. We make inS,,(l.l) the following 
shift 

ci.(p) + c:" ( P )  +ci.(p) (1.3) 

of the condensate function cit)(p) (which is different for 
the different phases) and then separate in S, a quadratic 
form of the type 
~ ~ ~ . + ( p ) c ~ ( p ) ~ i ~ ~ ( p ) + ' / ~  ( c * ( p ) c j ~ ( - p ) + c i a + ( p ) ~ j ~ + ( - ~ ) ) B i ~ * ( ~ ) .  

9 P 

(1.4) 
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It is  this form which determines in the f i rs t  approxima- 
tion the Bose spectrum found from the equation 

we get 

det Q=0, (1.5) 
where where Q is a matrix of quadratic form. Calculating the 

tensor coefficients Allas($) and BfIab($) (the integrals of 
products of the Green's functions of the fermions) accord- 
ing to the method developed in Refs. 4 and 5, we obtain 
all the branches of the Bose spectrum in the a and b 
phases (12 branches in each phase). In Sec. 5 we dis- 
cuss the behavior of the correlation functions 
(c,,(x, r)cIb(y, 7')) a t  finite temperatures T <  T,. 

Equation (2.10) is identical in form with that arising in 
the three-dimensional system. The difference is that 
the matrix A with elements a,, for the two-dimensional 
system is a 2 x  3 matrix. The matrix P in (2.16) is the 
projector on the third axis: 2. SUPERFLUID PHASES OF A TWO-DIMENSIONAL 

SYSTEM FOR He3 

We consider a system described by the functional S, 
(1.11, f irst  at I T - T, I << Tc (in the Ginzburg-Landau 
region). In this region, expanding S, in powers of 
cia and c;, and limiting ourselves to  terms of second 
and fourth orders, we get 

Minimizing n, we obtain the following equation for the 
condensate matrix A: 

-A+vAP+2 (Sp A+A) A+2AA+A+2A'ATA 
-2AATA'-A' Sp AAT=O. (2.12) 

This equation has several solutions, corresponding to 
the different superfluid phases. We consider the pas- 
s ibilities : 

where 

The corresponding solutions of II are  equal to 
Here we take it into account that the magnetic field H 
i s  directedperpendicular to the film-along the 3rd axis. 

We find the phase transition temperature T, by equat- 
ing A,,(O) to zero [the value of the coefficient function 
A,]($) at P =O]. We okkain the equation 

For the first  five phases, the quantity II does not depend 
on H. The minimum value of ll =-i is reached for 
phases with matrices A, and A. 

We call the phase with the matrix 

1 1 0 0  
A' - - (  2 L O O  ) 

Calculating the sum over the frequencies, we rewrite 
the equation in the form the a phase, and the phase with the matrix 

the b phase. 

where the integral depends logarithmically on k,. There- 
fore g" should also depend logarithmically on k,: 

We note that the a phase is identical with the super- 
fluid phase considered by Stein and Cross.' 

We calculate the second variation dn. If it is non- 
negative, then the corresponding phase is stable rela- 
tive to small perturbations. Knowledge of the quadratic 
form dan allows u s  to determine the phonon variables 
and determine the change in the number of phonon vari- 
ables upon switching-on the magnetic field. 

where go no longer depends on ko. This leads to a 
formula for T,: 

We now consider the possibilities for a condensate 
function at T < T,. Substituting 

For the a phase, dan has the form 

in (2.4) and then making the substitution where u,, and v,,  are  the real  and imaginary parts of 
a(, . It follows from (2.17) that the phonon variables in 
the a phase a re  
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1(1~-v,,. u12+va2, u,.+u,. for H=O(v=O); a r e  connected by the "universal formula" 
u,,-VI,, u l I + ~ 2 2  for H+O ( v ~ o ) .  (2.18) 

A=nT,ly, (3.5) 
This means that in the a phase at H=O there exist three 

in the same way as in the BCS model (y  = e C ,  is Eu- 
phonon (Goldstone) modes, while the remaining nine ler ' s  constant). 
branches of the Bose spectrum a r e  non-phonon (they 
have a gap a s  k- 0). Upon switching on the field, the We now construct the quadratic form (1.4) for the a 
phonon branch u, +v,, acquires a gap. phase, similar to what was done for the three-dimen- 

Calculation of ball for the b phase yields 

6'II=v (u,,L+%,') + (v+2) (vil'+v;s2) +'/;[3uttB+3~al'+2uii1(n 
+ ( u , , + ~ ~ ) ~ +  (v,,-u,) a+3vil'+3v;,'-2vi,~;I]. (2.19) 

This expression shows that in the b phase the phonon 
variables will be 

u , , - ~ I ,  vIi+v,¶, uir, 1(1, for H=O (v=O); 

u~z-uai, vt'+~a2 for H+O (v>O). 

In the b phase a t  H = 0 there exist four phonon (Goldstone) 
and eight non-phonon modes. Upon switching on of the 
magnetic field, the branches u13 and h, acquire gaps 
and become non-phonon. 

Formulas (2.17) and (2.10) also demonstrate the sta- 
bility of the phases a and b relative to small  perturba- 
tions. 

In the considered model, both phases a and b have 
equal free energies, which does not permit us to give 
preference to  one of them over the other. As is seen 
from formulas (2.18) and (2.20), the phonon variables in 
the two phases a re  essentially different. Calculation 
of the Bose spectrum in Secs. 3 and 4 also gives results 
that a r e  significantly different for the a and b phases. 

3. THE BOSE SPECTRUM OF THE a PHASE 

At T = 0  a Bose condensate can exist in two-dimension- 
a l  superfluid systems. Separating it out with the help 
of the shift (1.3), we consider the quadratic part of the 
functional S, in the new variables, cia and cf, - the 
deviations of the old variables from their condensate 
values tit) and c(,:)+. This quadratic form (1.4) allows 
us to  find the Bose spectrum in f i rs t  approximation if 
we se t  the determinant of the quadratic form equal to 
zero [ ~ q .  (1.5)]. 

For the a phase, the condensate function cit)(p) has 
the form 

Here c is a constant, determined from the condition of a 
maximum ~,[c::)(p), c@)+(p)]. Substituting (3.1) in (1.1), 
we obtain 

2 $ v l c l 2 g - ' + z  In[ (o,'+%,2+41cl'F)/ (o,'+El" I .  (3.2) 
P( 

The condition for a maximum (3.2) is the equation 

It allows u s  to express the energy gap at T = 0 

A=21cIZ (3.4) 

in terms of the transition temperature T,. It is easy 
toverify the result [for example, by taking the difference 
of Eqs. (2.4) at T = T c  and (3.3) at T =0] that A and T, 

sional model in Refs. 4 and 5. Detailed calculations 
for the two-dimensional system can be found in Ref. 9. 

This form describes both the phonon and the non- 
phonon Bose excitations in the a phase at H = 0 and is 
the sum of three forms, of which the f i rs t  depends on c,, 
the second on c,,, and the third on c,,. The second and 
third forms go over into the f i rs t  following the sub- 
stitutions c,, - ic,, and cis- ic,,. Therefore, the Bose 
spectrum of the a phase is triply degenerate, a s  in the 
A-phase model of three-dimensional He. We consider 
one of the three independent forms, for example, the 
form with a = 1. It has the form 

Here (n,i  in,)' means that (n, +in,)' is multiplied by 
cf,(-P) c;,(-PI, and (n,- in,)' by c,,(P)c,,(-PI. The pho- 
non variable in the form (3.6) is q, - v,,. This result, 
which was already obtained in Sec. 2 for the Ginzburg- 
Landau region, is true for all  T <  Tc. Actually, if we 
separate out the terms in (3.6) with fixed p and then 
se t  c,, = -i and c,, = 1 in them, we obtain 

Equating this expression to  zero, we obtain 

At p =0, this equation goes over into (3.3). Therefore, 
(3.7) has the root p =0, while the corresponding branch 
of the spectrum begins from zero. I ts  calculation is 
similar to the calculation for  the three-dimensional 
case'*5 with the replacement of an integral over the 
Fermi  sphere by an integral over neighborhood of the 
"Fermi circle," and gives the result 

The complete phonon spectrum in the a phase at H = O  
consists of three branches of (3.8), corresponding t o  the 
variables - v,,, u, + v,, , u,, + v,,. 

We proceed to  the nonphonon branches of the spectrum. 
We first  find a l l  the branches of the spectrum at k=O. 
For this purpose, we consider the t e rms  in (3.6) with 
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k = O  and fixed a* 0, which can be written down in the 
form 

( ~ ~ ~ ~ + ~ ~ l l + ~ ~ l l + ~ ~ l t )  f ( a )  - ( u ~ I ~ - u ~ ~ ~ - v ~ ~ ~ + v ~ ~ ~  

where 

The quadratic form (3 .9)  of the variables u,,, u,,, v,,, 
v,, is the sum of two independent forms: 

Setting the determinants of these forms equal to zero, 
we obtain the equation 

Thus, the quantities E(0) [thevalues of the Bose spectrum 
E ( k )  at k = 0 ]  a re  determined from the equation 

The equation f +2g = 0 has the root w = 0, since 

by virtue of (3.1).  The phonon branch of the spectrum 
(3 .8)  corresponds to this equation, and the non-phonon 
branches to  the remaining two. 

The equation f = O  can be reduced to the form 

where 

Substituting i w -  E, we find the root 

E=AJZ, (3 .15)  

corresponding to the variables u,, - v,, and u,, +v,,. 

The equation f - 2g=0  reduces t o  the form 

(o'+4A2) F ( o )  =O (3 .16)  

and has the root 

after the substitution i w -  E. The branch (3 .17)  corres- 
ponds to the variable u,, +v,,. 

Taking it into account that in the a phase each of the 
branches of the Bose spectrum is triply degenerate, 
we can rewrite the results obtained thus far  for the 
Bose spectrum in the form 

E=cpk/V3; u ~ , - v , ~ ,  uIP+vZI, U ~ S + V Z J  (3 modes), 
E - A f i ;  u21+v1,, u12-~1', UIS--~21 (6 modes), (3 .18)  

u,l-Vz~, UZP+VIZ,  U ~ I + U I I  
E=2A; ull+vZ,, uzz-vlz, Y ~ - V , J  (3 modes). 

Here the branches of the spectrum a r e  written down 

along with the variables to which they correspond. 

The next s tep  is to obtain the corrections of relative 
order to  the modes (3.18).  We first consider 
the non-phonon modes. We begin with the mode u,,- 
v,,. It is not difficult to s e e  that account of correc- 
tions -P gives the following equation in place of (3.13): 

cr2k2 d 
(o '+2Az)F(o)+- -  

2 do' 
[ (o'+2A1)F ( o )  1-0, 

where F ( w )  is the function (3.14).  We then get the 
formula 

The same result is obtained for the variable %, +v,,. 

We now consider the branch E =2A, which corresponds 
to the variable u,, +v,,. The equation for it can be 
reduced to  the form 

This equation cannot be solved by expansion in G(n. k)' 
under the integral. The situation is analogous to that 
encountered for the branch E = 2 A  in the B phase of a 
three-dimensional system of the ~e~ type.' Equation 
(3.21) itself differs from the corresponding equation 
of three-dimensional theory by the f a d  that in place of 
the integral l d n  over the solid angle, we have in 
(3 .21)  the integral Jdrp over the planar angle cp. This 
leads to the result that the dispersion law for the branch 
u,, +%, with E =  2A, in place of the equation 

j (-,,I %-=o 
0 

is determined in the three dimensional caseS by the 
equation 

where 

The root of this equation turns out to be complex and 
its value, 

was obtained on a computer. Knowing z, we can find 
E from the formula 

which follows from (3 .23) .  The complex root means 
that the corresponding Bose excitation is unstable and 
decays into the fermions of which it i s  composed. We 
recall that the branches E = 2A had complex increments 
-# also in the three-dimensional theory.' 

For completion of the study of the Bose spectrum of 
the a phase at small  k, it remains to find the dispersion 
of the phonon branch of the spectrum, which can be 
done similar to Ref. 4.  

The result has the form 
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It shows the stability of the phonon branch of the Bose 
spectrum relative to decay. 

where 

We write out once again the results obtained in this 
section for the Bose spectrum in a phase: 

; I -  I I (3 modes), 2 

It follows from (4.5) and (4.6) that the phonon variables 
will be u, - y, and v,, +?I,,, the same a s  obtained in Sec. 
2 for the Ginzburg-Landau region. T o  them correspond 
the branches E,-26z+cpzk2,2; ~ ~ i + ~ f i ,  ua-vt,, ula-vza 

(6 modes), (3.27) 
U~I-V~I, &r+vlr, U ~ + V I J  

C=4A2+(0.500-i0,433)cp1k'; u,I+vzt, U Z Z - U I ~ .  UIJ-VIS (3 modes). 
We now consider the  form of the variables c,,, cf, 

( a =  1,2) in the case k =0, in order to find the energies 
E(0) of the non-phonon modes. We can write the form 
of the variables u,, a s  

These formulas represent a refinement of the formulas 
(3.18). 

4. BOSE SPECTRUM OF THE b PHASE 

We now carry out the investigation of the Bose spec- 
trum of the b phase, confining ourselves t o  the scheme 
developed for the a phase in Sec. 3. 

where f (o) and g(w) a r e  determined by the formulas 
(3.10). The expression (4.8) is the sum of two indepen- 
dent forms : The condensate function of the b phase has the form 

c,:' (p) = (PV) "8p~c6*., (4.1) 

where c is a constant, determined from the condition of 
a maximum S~C~;)(P) ,  ct)+(P)]. Substituting (4.1) in (1.1) 
we obtain the same equation (3.2) which we had for the 
a phase, while the condition for its maximum is identi- 
cal with Eq. (3.3). The energy gap A =2 ( c ( Z at T = O  is 
given by the same formula A = n ~ , / ~ ,  a s  for the a phase. 
The calculations, which a r e  similar to those carried out 
for thea phase, give the following quadratic form fo r  the 
b phase: 

The matrices of the form (4.9) a r e  the same as for the 
forms (3. l l ) ,  obtained in a phase. Using the results 
of Sec. 3, we can immediately write down the result: 

The form of the variables via differs from (4.8) by the 
substitution u,,- u,, , g(w) - -g(w) and has the form 

This is the sum of two independent forms: 

It then follows that 

The tensor coefficients A,, and B,,,, in (4.2) a r e  real, 
since the complex expressions ( iw ,  + (,)(iw, + 5,) in A,, 
become real  after summation. Therefore the form (4.2) 
divides into a sum of two independent forms, of which 
the first  depends on u,, =Re c,,, and the second on u,, 
=Im c,,. Furthermore, it is seen that the form of the 
variables u,,(u,,) is independent of the form of the 
variables u,,(z~,,) with a =  l ,2.  

The corrections of relative order d to the branches of 
the spectrum that have been found can be obtained in a 
fashion similar to what was done in Sec. 3 for the a 
phase. 

In conclusion, we write down all  the branches of the 
Bose spectrum for the b phase, together with the cor- 
responding variables : 

We first  investigate the Bose spectrum corresponding 
to the variables ui3,  v,,. Removing from (4.2) the form 
corresponding to these variables, and carrying out the 
necessary calculations, we obtain two phonon branches 
of the spectrum: 

Here 
and two non-phonon branches: 

We proceed to the spectrum for the variables c,,, cf,, 
a = 1,2. The terms with p = 0 for these variables in (4.4) 
can be written in the form 

a r e  the roots of the equations 

which ar ise  in consideration of the branches with E 
=2A. 
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5. THE ASYMPTOTE OF THE CORRELATORS IN THE 
CASE O< T< T, 

The correlation functions 

of the Bose fields introduced above tend in the case T = 0 and 
in the limit r = Ix - yl-a, t o a  constant (ci,)(cjd. At T, > T 
> 0, the situation should be similar to that existing in the 
theory of a two-dimensional superfluid, where the correla- 
tor of the Bosefield ($(x, T ) $ ( ~ ,  7')) falls off a s  the power r-q 
where a = mp/2rps, = T-', m is the mass of the Bose part- 
icle, p, i s  the density of the superfluid component .7 This 
result for the two-dimensional Bose system is most 
simply obtained by going over to polar coordinates 
$(x, 7) =(p(x, ~))~/~expicp(x,  T).' In this case it turns out 
that the decrease = Y ' ~  is determined by the b phase cor- 
relator (expi(p (x, r )  - p(y, r))), while the correlator 
( [~ (x ,  ~ ) p ( y ,  T)]'/~) tends to some constant value. 

For our system of tensor Bose fields c,,(x, r ) ,  it is 
also natural to introduce the analog of polar coordinates, 
which turn out to be different for the different phases. 
Here the number of "angular" variables is equal to the 
number of phonon modes of the system. 

In order to explain the transition to the new coordin- 
ates, we note that the expression (2.10) (at H = 0) is 
invariant relative to the transformations 

where u, and u, a r e  orthogonal matrices of second and 
third orders,  eiq is the phase factor. For A=A, (the 
a phase), multiplication of A, on the left by u2 = exp(iu2$) 
is equivalent to  multiplication by the phase factor ei', 
which can be combined with e". Multiplication of A, 
on the right by u, =u  gives the matrix 

It is expressed in terms of the elements of the first  
row (u,,, ulz, u,,) of the orthogonal matrix u, which can 
be regarded as the components of the unit vector n 
(n2 = 1). Thus the role of the angular variables in a 
phase is played by the phase cp and by the unit vector 
n (the element of the sphere 9). 

The action functional can depend only on the gradients 
of the angular variables, but not on the variables them- 
selves. For slowly changing fields, the part of the 
action that is dependent on the angular variables has 
the form 

We shall assume that cp and n depend only on x (but not 
on r), assuming that we have integrated over the non- 
zero Fourier components. We note that the coefficients 
a and b in (5.4) increase without bound at T- 0. 

The considerations that have been given show that the 
significant parts of the correlators (5.1) a r e  the 
averages 

The first  of these is characteristic for two-dimensional 

superfluid systems and decays as r'a, a = (4ra)-'. For 
the second of the averages (5.5) (the correlator of the 
n-f ield of two-dimensional Euclidean theory), Polya- 
kov1° has obtained a formula (in the notation used here) 

where a, is some constant with the dimensionality of 
length. The formula (5.6) loses meaning for large 
distances, since its right side increases without limit 
a s  r -  .o. The reason for the limited applicability of 
(5.6) is that in its derivation by the method of the re-  
normalization group, the "instantons" existing in the 
theory, which would correct the behavior of the 
correlator a t  large distances, were not taken into 
account. Up to the present time, the question of the 
asymptote of the correlator (5.6) as r -  .o remains 
open. It is possible that the correlator decays in 
power-law fashion a s  r - =. 

The question of the asymptote of the correlators 
becomes simplified for a system in a magnetic field. 
Tuning on the magnetic field reduces the symmetry 
group which, at H # 0, can be rewritten in the form 

where u2 and ii, a re  two orthogonal matrices of second 
order. In particular, for the a phase, the replacement 
of u, by il, leads an n-field with two components: n, 
=cos $, n2 =sin+, while the action (5.4) takes the form 

The correlator of the n-field (cos $, s in  $) decays in 
power-law fashion: 

((n(x),  n(y)) )=<cos $(x) cos $(y) +sin $(x) sin $(y))  
=(expi($(x)-$(y)))-r-*, 6-(4nb)-l. (5.9) 

A similar consideration can also be carried out for 
the b phase. Here the multiplication of A =A, on the 
left by an orthogonal matrix of second order u, is 
equivalent to  multiplication on the right by the third- 
order  matrix 

which we combine with u,. Multiplication of 4 on the 
right with u, =u gives the result 

which is expressed in terms of the f i rs t  two rows of 
the matrix u ,  which we represent a s  the components 
of two mutually orthogonal n-fields n,, q[(n,, n2)=O]. 
The angular coordinates in the b phase a r e  p ,  n,, n, 
[n: =% = 1, (n,, n,) =0], and the part of the action cor- 
responding to them can be written in the form 

The nontrivial part of the correlators (5.1) is deter- 
mined by the averages 

The question of the asym@ote of these averages re- 
mains open thus far. However, i t  i s  easily resolved for 
a system in a magnetic field, when, only the first  two- 
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components of the fields n, and n, a r e  different from 
zero, so  that n,, = h, = cos 4, n, = -n,,= sin #J. The action 
(5.11) takes the form 

- j (=a ,~a ,~+zba ,$a ,$ )c~z ,  (5.13) 

while the correlator (5.12) decays as r-7, y =(8nb)-'. 

Summing up, we can say that the theory of two-dimen- 
sional superfluid systems of the He3 type a t  T#O is 
connected with the difficult and interesting problem of 
the asymptote of the correlators of the n-fields of two- 
dimensional Euclidean theory. The situation is com- 
pletely clear only for systems in a magnetic field, 
where the correlators decay in power-law fashion. 
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