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The degree of ordering in small regions of a dense system is described with the aid of a macroscopic short- 
range order-parameter field A ( x ) .  This parameter turns out to be a fourth-rank tensor. Crystallization is 
described in terms of the appearance of long-range order in the A ( x )  field. The simplest model Hamiltonian is 
considered, and the properties of the system are computed in the mean-field approximation. It is shown that 
the relative width T of the metastability region of the crystal is small: T = 0.02. The thermodynamic 
properties in the vicinity of the melting point (the premelting anomalies) are found. The results are in 
qualitative agreement with experiment. 

PACS numbers: 61.50.G 

5 1. MACROSCOPIC CRYSTAL-ORDER PARAMETER 

During the phase transition from the liquid into the 
crystalline state the symmetry of the system decreases 
from the Galilean to crystal-lattice symmetry. To des- 
cribe the system, we consider, following Landau,' 
the particle number density field n(x). At the crystal- 
lization point Tc there ar ises  abruptly in the space of 
the wave vectors k at points k, a "condensate" cor- 
responding to  the periodic-on the average-disposition 
of the atoms in a lattice. For a dense medium such a 
description is in fact microscopic: it is necessary to 
describe the interaction over atomic distances a-l/k,, 
and the density field n(x) to within the localization of 
the atoms in the unit cells of the lattice. In other 
words, it is necessary to  take into consideration right 
from the s tar t  al l  the system's degrees of freedom that 
correspond to  the atomic scales. At the same time, the 
experimental data on the crystallization of dense liquids 
indicate that the volume of the system changes during 
crystallization by an amount ~ V / V  - lo-'- 10" and that 
in order of magnitude the melting heat per atom con- 
stitutes the same fraction of the characteristic energy 
E, - kTc, which indicates relatively slight changes in 
the correlations in small  volumes of the system. The 
x-ray scattering data indicate that in dense liquids the 
order over short distances reflects the order in the 
crystal. The concept of a locally-crystalline struc- 
ture of a liquid can be traced back to ~renkel'. '  

For all the differences among the properties of 
materials, common properties a r e  present for the 
transition into the crystalline state. Among them a re ,  
besides the above-indicated smallness of the changes 
that occur in the local characteristics during crystal- 
lization, the smallness of the existence domain for 
the metastable crystal and the characteristic anomalies 
occurring in the thermal and elastic properties in the 
vicinity of the melting point. The purpose of our paper 
is to describe the general properties of crystals in the 
vicinity of the melting point within the framework of a 
model that takes account of only the important change 
that occurs during crystallization in the character of 
the correlations in the system. A fundamental feature 
of the description is the introduction of a macroscopic 
field A(%) describing the local ordering of the particle 
disposition in the system. 

We assume that at the densities and temperatures 
in question the atoms in small  volumes of the system 
a re  ordered in a way characteristic of a crystal. The 
disposition of the atoms in a finite volume can be char- 
acterized by a se t  of density mul t ip le  moments, to 
which correspond tensors of appropriate ranks (a 
scalar corresponds to the density; a vector, to the 
displacement of the center of gravity; etc.). Treating 
a small  volume as  a "physical point," we obtain for 
the characterization of the disposition of the parts of 
the system a se t  of macroscopic field tensors ~ ( " ' ( x ) .  
The x-ray structural  analysis and other data allow us to 
hope that the size of the physical point, i.e., the distance 
over which the ~ ( x )  fields a r e  smoothed out, covers 
several  interatomic distances, and that n, - 10'- lo3 
atoms. The high multipole moments describe the 
rapidly varying details of the disposition of the atoms 
during the thermal motion. T o  describe the crystal 
ordering it is sufficient t o  restrict  ourselves to the 
fourth- and lower-rank tensors. Tensors of rank lower 
than the fourth describe not the crystal ordering proper, 
but only the liquid-crystal type of ordering. It is suf- 
ficient to  note that for a lattice of cubic symmetry the 
irreducible tensors of rank n < 4 a r e  isotropic, and do 
not describe the anisotropy in the properties of the 
crystal. At the same time the appearance of a non- 
vanishing irreducible tensor of the fourth rank indicates 
the appearance in the properties of an anisotropy typical 
of a crystal. 

In the theory of liquid crystals, the local order is 
specified by a second-rank field tensor QcrB(x) (Ref. 3). 
The quantity QaB(x) is interpreted either as the quadru- 
pole moment of the physical point x (the geometrical 
interpretation), o r  as  the irreducible part of the sus- 
ceptibility (the material interpretation). It is assumed 
that the susceptibility manifests a contribution reflect- 
ing the anisotropy in the disposition of the particles. 
For a crystal the role of the material characteristic dis- 
tinguishing it from a liquid is played by the elasticity 
tensor XaBy6.  The irreducible part xaBy6 of this tensor 
can, if it does not vanish, serve a s  the crystal-order 
parameter. Through some accidental causes X a B y 6  can 
vanish at some temperature T, (for example, at T = T, - 690 K in NaC1; see  Ref. 4). Therefore, we shall con- 
sider below the parameterA(x) to be the geometric char- 
acteristic of the direction of the axes and the degree of 
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perfection of the local "lattice." In the general case 
the character of the ordering in the system is described 
by the se t  of irreducible ~ ( " ' ( x )  field tensors of rank 
n s 4. The irreducible fourth-rank A(x) tensors describe 
the crystal order proper, while the tensors of rank 
n < 4 describe the magnetic, electric, and liquid-crystal 
ordering. 

52. THE EFFECTIVE HAMlLTONlAN OF THE 
SPATIAL ORDERING 

The statistical mechanics of crystal ordering is 
determined by the expression for the probability 
~w{A(x)} of a given configuration of the crystal-order 
parameter field A(x): 

d W { A ( x ) ) a  exp { - H { A ( x ) ) / T ) D A ( x ) .  (2.1) 

Here DA(x) is an element in the configuration space 
{A}, and H{A(x)} is the effective Hamiltonian (the non- 
equilibrium thermodynamic potential). The parameter 
A(x) has a macroscopic character, and H{A} depends 
on the thermodynamic variables (temperature T, pres- 
sure  p, etc.) a s  parameters. 

For the case in which the liquid-to-crystal phase tran- 
sition is nearly of second order (He3, two-dimensional 
systems), we can expand H{A} in the vicinity of the 
transition point T ,  in powers of the small  A(x), and 
construct a theory in the spiri t  of the Landau theory o r  
the fluctuation theory of phase t r a n s i t i ~ n s . ~  The condi- 
tion for the applicability of such an approach is that the 
correlation length be long compared to the lattice con- 
stant. 

Reversing this case for another paper, we shall con- 
sider here the situation in which the jump occurring in 
the mean value (A) during crystallization is not small, 
and the correlation length has the order of magnitude 
of several lattice constants. For such a system we can 
investigate only model Hamiltonians H{A}. Let us point 
out the analogy with the theory of magnetism, in which 
a s  models we use, for example, the Ising, Heisenberg, 
etc., models. 

The general restrictions imposed on H{A(x)} amount to 
the requirement that it be invariant under a general ro- 
tation of the reference system and that the radius of the 
interaction between the local orders be finite. The lat- 
ter  condition ar ises  from physical considerations : in 
deriving (2.1) from the exact Gibbs distribution, we 
should average the degrees of freedom of the atomic 
scales . 

For sufficiently dense systems, it can be expected 
that the fluctuations in the form of A(x) will be rela- 
tively small. In other words, we assume that the local 
A(x) order in sufficiently small  parts of the system 
is due to interactions whose energy is high compared 
to  the energy (-T,) of the thermal motion. Let us re- 
call that we a re  dealing with that moment of the local 
density of the material which corresponds to the ~ ' " ' (x )  
tensors of ranks n 4, and not with the rigid fixing of 
all the interatomic distances. Let us,  to begin with, 
neglect the fluctuations in the form, and consider only 
the fluctuations in the direction of the axes of the local 

order : 

where a x )  denotes the rotation of the axes at the point 
x and & is a fixed se t  of tensors. In this approximation 
D A (x) = D~(x) .  

The general form of H{A(x)} with allowance for only 
the pair interaction of the local ordering is a s  follows: 

where f is a scalar. Let us take into account the in- 
variance of H under the rotation g-'(x) in the approxi- 
mation (2.2): 

where A+(x) =A&"(x). The simplest model, which 
generalizes the Heisenberg model, is given by the 
Ham iltonian 

We shall call this the model of continuous rotations, 
o r  the C-model. 

Another model that we shall consider below is the 
model of discrete rotations (the D model). In this 
model we assume that there is a very strong depen- 
dence of the energy on the relative rotation at the points 
x and y, s o  that only the local orders' preferred rela- 
tive orientations, which form a discrete set, have 
appreciable probabilities. In this case the integration 
over D a x )  is equivalent to  summation over these 
discrete orientations, gk(x), a t  each point r 

Let us now turn to the consideration of the fluctua- 
tions in the form of the local order. These (small) 
fluctuations can be described with the aid of the local- 
s t ra in  tensor uaB(x). Allowing for the local-strain 
energy only in the harmonic approximation, we write 
for the contribution He, of the form fluctuations the 
effective Hamiltonian 

which generalizes a well-known formula of the theory 
of e l a ~ t i c i t y . ~  The expression for in terms of the 
"geometric" parameter A(x) will be given below. 

The Gibbs thermodynamic potential for our model 
is given by the well-known formula 

where uag is the s t r e s s  tensor. The really analytical 
calculations with the formula (2.7) meet with as  yet 
unsurmounted difficulties. As in the case of other 
three-dimensional problems, we can hope for a num- 
erical  investigation of the problem with the use of a 
computer. Here it is sufficient to  consider a lattice 
model consisting of quite a small number of cells, since 
the correlation length at the transition point T, is of the 
order of unity. The qualitative characteristics of the 
system can be obtained by studying the problem in the 
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self-consistent field approximation. We shall consider 
the system for which the local parameter A, is an ir-  
reducible tensor with cubic symmetry. Thus, we 
restrict  ourselves in this paper to the study of crystal- 
lization proper, leaving out the electric, magnetic, 
and liquid-crystal components of the crystal order. 

53. THE CUBIC SYSTEM IN THE SELF-CONSISTENT 
FIELD APPROXIMATION 

The order parameter for a system with cubic sym- 
metry in the approximation (2.2) of unchanged local 
structure can be constructed in the following manner. 
Let us consider the three mutually orthogonal unit 
vectors (directors) n(')(x) (i = 1,2,3) specifying the 
directions of the axes of the local cubic order at the 
point x. Let us construct the reducible tensor 

The tensor TaBy6(x) (more exactly, i t s  irreducible part) 
is the order parameter for a system with cubic sym- 
metry. The interaction energy (2.4) can be written with 
the aid of (3.1) in the form 

H = J  dxdyf ( x - y ; C  (n")(x)n')' (y))'). (3.2) 
f*J 

T o  carry out a qualitative investigation of the system, 
we use the self-consistent field approximation. A gen- 
e ra l  feature of this approximation is the replacement 
of the effect of al l  the parts of the system on the order- 
ing at a given point by a mean field hUBy6. The interac- 
tion with the mean field has the form 

The mean value found with the aid of (3.3) satisfies the 
self-consistency condition 

where v is the effective number of neighbors. In the 
Ax) = x  model considered below, the quantity v deter- 
mines only the numerical quantity T, ,  and, on going 
over to the temperature T = T/T,, the dependence on v 
disappears to  within the normalization. For definite- 
ness, we set  v =6  (the number of nearest neighbors in a 
three-dimensional cubic lattice). In the case of cubic 
symmetry the quantities holey& and a r e  irreducible 
tensors with a single independent invariant amplitude. 

The computations turn out t o  be tedious even in the 
self-consistent field approximation The self-consistent 
field vs temperature curves for the various interaction 
models turn out to  be close. We shall give the results 
of the computation for the model with discrete rotations. 
The model is specified as  follows. From the center of 
the cube we draw lines to its vertices, producing the 
four principal diagonals. Let us rotate the system of 
three mutually orthogonal directors describing the local 
cubic structure from the initial state, in which it coin- 
cides with the axes of the coordinate system, through 
an angle of n/3 about each of the principal diagonals. 
We obtain four inequivalent discrete positions that trans- 
form into each other under the symmetry operations of 
the cube. The rotations connected with them form a 

non-Abelian subgroup of the group of three-dimensional 
rotations. 

Let us write down the system of equations for the 
quantities haBy6: 

ZLpra=v TabA e-E/r; z-- e-=/', (3.5) 

where T is the temperature, Z is the partition function, 
H is given by the expression (3.3) for fix) =x, and the 
summation is performed over the above-described four 
inequivalent positions. 

The system of equations (3.5) was solved analytically 
in the vicinity of the point, T, of absol+e insiability 
of the high-temperature phase, where T and h differ 
little from their isotropic values. In the remaining 
part of the temperature region we used numerical 
methods. 

The behavior of the system is fully described by the 
function a(T) (Fig. 1); the solution to the system (3.5) 
can be expressed in terms of a ( T )  a s  follows: 

There exist three more physically-equivalent solutions 
besides the solution (3.6). The existence of four solu- 
tions is due to the presence of four possible orientations 
for the crystal axes in our model. These orientations 
a r e  equivalent: a spontaneous breaking of this symmetry 
occurs at T <  T,. 

The results for the other models [including the contin- 
uous-rotation model (2.5)] in the self-consistent field 
approximation.qualitative1y coincide with the results 
(3.6) above. The behavior of the mean-field amplitude 
U ( T )  is determined by the fact that a t  a sufficiently high 
temperature the system possesses neither stable nor 
metastable states with a nonzero mean crystal order, 
while the mean order approaches saturation a s  T- 0. 
The symmetry-group structure th?t admits of, for ex- 
ample, the cubic invariant I, =Sp is responsible for 
the discontinuous character of the phase transition. 

Let us note at once some "numerical" characteristics 
of the curve U ( T )  that do not depend on the specific 
choice of the Hamiltonian, and a r e  therefore a conse- 
quence of the properties of the parameter A(x) itself. 

0151 
:.a 

FIG. 1. 
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The a(T) curve practically coincides with 4 0 )  in the 
range 0 s T < T, - AT, where AT/T, -0.2-0.3 (see Fig. 1). 
In the vicinity of the cuspidal point T,, rapid varia- 
tion of 42') a I T ,  - TI'" takes place. The value a(T,) 
= a(0)/2. This behavior of a(T) leads to a small  exis- 
tence domain of the metastable crystal and t o  the 
appearance near the melting point T, of anomalies, 
described in the following section, in the system's 
properties. 

54. THERMODYNAMIC PROPERTIES OF M E  CUBIC 
SYSTEM 

Let us briefly describe the main properties of the 
solution (3.5), (3.6). The function a(T) in the vicinity of 
the cuspidal point Tt can be represented in the form 

For the model (3.5) 

The equilibrium-crystallization point Tc turns out to  be 
'numerically close to the point T, at which the crystalline 
state becomes absolutely unstable: 

The configuration part, corresponding to  the for mula 
(3.5), of the thermodynamic potential of one unit cell is  

The crystallization point T, is determined by the condi- 
tion A@@,) = AO0(T,), where A@,(T) describes the high- 
temperature phase, and is equal to  the expression (4.4) 
with a 5 0: A+, = -2T ln2. 

The lifetime of the metastable state in the vicinity of 
T, is short: at high (3) concentrations of the "defec- 
tive" regions the system contains many liquid-state 
nucleating centers with dimensions of the order of those 
of several unit cells (i.e., -I&,, where ro i s  the inter- 
atomic distance). Estimates of the region AT, in which 
the lifetime of the metastable crystal is not too short 
yield a value significantly smaller than AT = 0.02 T,. 

The contribution of the crystal order to the specific 
heat C of the system behaves in the vicinity of T, like 

The coefficient of the singular part of AC is numerically 
small. At the point Tc we have AC(T,) = 5.3. The quan- 
tity AC is the heat capacity per unit cell, taken a s  a 
physical point and containing no atoms. From this we 
find that the ratio AC/C of the jump (4.5) to the total 
heat capacity C is AC/C-~;' when the melting point 
Tc is lower than, o r  of the order of, the Debye tempera- 
ture. For no - 10 - 10' we have AC/C - 10-1-10-2. 

The transition point Tc will be shifted if we take into 
account the nonuniversal contribution to  the thermody- 
namic potential from the phonon and other degrees of 
freedom, a contribution which has different values in 
the ordered and disordered states. The contribution to 
the heat-capacity jump (4.5) is higher in the case in 
which the shift is toward TI. 

Our model does not explicitly take account of the de- 
pendence of the quantities of the theory on the volume 
V of the system o r  the external pressure p. T o  take 
the dependence on these parameters into account con- 
sistently, we must include in the Hamiltonian the terms 
describing the interaction between the order-parameter 
fieldA(x) and the local-strain field u,,(x)(i.e., the stric- 
tion effects). Such an allowance has been made in the 
case of magnetic ordering by Larkin and Pikin.' We 
shall derive the corresponding relations with the aid of 
physical arguments. 

In a given {~(x)}  configuration each defective region of 
the lattice is a source of elastic strains and correspond- 
ing displacements, which decrease with increasing dis- 
tance (r - r' I from the defect according to the law 

where r' is the position of the defect. 

The formula (4.6) is easily derived by considering a 
body force, F(r), acting on an elastically isotropic body, 
and satisfying the condition j ~ ( r ) d r  = 0. The anisotropic 
part of the strains vanishes when averaged over the ran- 
domly arranged and randomly oriented defects. For the 
resulting mean displacement for a body of dimension R 
we obtain the volume change 

where n,(r) and j ~ d  a re  the local the mean defect con- 
centrations. The formula (4.7) formally corresponds to 
the evaluation of the integral for the thermodynamic 
potential @{omB) defined by the expression (2.7), in an 
approximation in which for each {~(x)}  configuration we 
take into account only the contribution to the integral 
over the displacements u a ( 3  from the {u,(x)} configura- 
tion that yields the minimum energy. 

In our approximation the mean isotropic deformation 
of each element of the system under constant external 
pressure is equal to zero. In other words, in consider- 
ing the body-dilatation effect associated with the 
variation of the degree of crystal order,  we do not de- 
form the unit cells on the average, i.e., we do not vary 
the "mean" local parameter A,,. In this approximation 
the configuration part of the thermodynamic potential @ 
[see (4.4)] coincides with the potential @(TIP). In the 
next approximation it is necessary to allow for the 
energy associated with the inhomogeneous part of the 
defect-induced deformation. The major portion of this 
energy is  localized. This portion is included in the A(x)- 
field Hamiltonian. We neglect the resulting weak inter- 
action between widely separated defects. The change 
occurring in the elastic moduli when the temperature 
is changed at constant pressure,  which is computed 
below, also makes some contribution to  C,. It follows 
from the above arguments that the configurational part 
of the heat capacity in our model is close to the experi- 
mental value of C, (see also Ref. 8). 

In Fig. 2 we present the experimental data on the 
specific heat AC, for AgCl (the curve 2)* and the theo- 
retical  curve (the curve 1). ,The experimental AC, 
values were obtained by subtracting from C, the . 
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FIG. 2. 

anomaly-free regular part, and the coefficient y in the 
theoretical dependence AC, = y(T, - T ) - ' ~  was obtained 
by fitting the curves at the point T = T,. 

For the volume expansion coefficient a we find from 
(4.7) that 

Figure 3 shows the plot of Aa. as a function of the 
temperature 7 = T/T, (the continuous curve) and the 
experimental data for AgCl (points),lo normalized to 
the A a  ,(l) value obtained from the theory a t  T = T,. 

Let us discuss the elastic properties of the model. 
The irreducible anisotropic part of the elasticity tensor 
X a B y 6  for the case of cubic symmetry is described by 
one coefficient. From this and geometric considera- 
tions we conclude that, without allowance for  the A, fluc- 
tuations, the irreducible part of XaBYd(x) is proportional 
to  the irreducible part of T , ~ ~ ~ ( X ) .  

The elastic properties of the model in the vicinity 
of the melting point a r e  determined by the fact that the 
crystal  lattice contains an appreciable number of de- 
fects, i.e., of incorrectly oriented unit cells (texture). 
Let us  find the defect concentration. Let us consider 
a system of v cells, NR of which have correctly, and 
N, incorrectly, oriented axes. We shall, for definite- 
ness,  assume that the correct orientation corresponds 
to  the discrete state 1, while the incorrect orientation 
corresponds to the states 2, 3, and 4. It follows from 
symmetry arguments that the states 2, 3, and 4 a r e  
energetically equivalent. In our mode1 (3.5), the quan- 
tity TI,, arithmetically averaged over all the possible 
states is equal to  zero, i.e., makes no contribution to  
a(T). The cells in the state 1 make to a(T) a contribu- 
tion equal to ~ ( 0 ) .  From this we easily find for the 

FIG. 3. 

correct-cell and incorrect-cell (defect) concertrations, 
?iR and ?i, respectively, the expressions 

At the point T = Tc we have ?id i,= 0.25. 

Let us  assume that the anisotropic part of XaBy6(x) 
is small  compared t o  the isotropic part, and find the 
corrections to the mean elastic tonstants. Let us, 
following Lifshitz and Rozentsveig," se t  

Here AaByd is the effective elasticity tensor and iuera 
is the texture-averaged constant. The corrections 
AuB,6-contain, besides the contribution to the irreducible 
part A of the effective elasticity tensor,  a contribution 
t o  the isotropic part A-  of the tensor. 

Our estimates (the values for the isotropic parts of the 
elastic coefficients were taken from the experimental 
data given in Refs. 4 and 12) show that in the model (3.5) 
- a ( ~ )  and the corrections AaBy6 t o  the isotropic part 

a r e  small  on account of the smallness of xaBr6 in com- 
parison with the isotropic part of XaBy6. Figure 4 shows 
the plots of ~ l l l l (~ ) /h l l , l (0 )  (the continuous curve) and 
~1111~1111(~)  (the dashed line) as  functions of T = T/T,. 
The strong dependence on T - Tc of both A and the cor- 
rections A to  the isotropic part may be the cause of the 
experimentally observed rapid decrease of the values 
of the elastic constants in the immediate neighborhood 
of the melting point.4 

The dependence of Young's modulus E(q), q = ( l ,  0, O), 
on the reduced temperature T = T/T, is shown in Fig. 5 
(the continuous curve), where we also show the ex- 
perimental data for KC1 (the dashed line)." The nec- 
essary  isotropic parts of the elastic moduli were taken 
from experiment, and the ratio E,.l/~,=o.,, was re-  
quired to  have the experimental value. 

T o  carry  out a comparison with experiment in a 
broader temperature region, and not only in the vic- 
inity of T,, we should take into account the variation, 
due to the anharmonicities, of the local moduli A,, with 
temperature, which in the lowest approximation yields 
corrections to  Il, that a r e  linear in the temperature. 

FIG. 5. 
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Thus, the above-described cellular model treats the 
texture a s  an ensemble of a relatively small  number of 
incorrectly oriented regions in a regular-crystal ma- 
trix. Such a model is justified for the crystalline state. 

In the disordered phase a =0, and the concentrations 
of cells of al l  orientations a r e  the same. In this case 
each cell is, on the average, surrounded by cells of 
different orientations. The influence of such an en- 
vironment leads, generally speaking, to a change in 
the character of the local order,  i.e., of the quantity 
&. The consideration of these effects, which is nec- 
essary for the construction of a theory of the liquid 
state, falls, as  does the calculation of the effects of the 
deviation from cubic symmetry, outside the limits of 
the present paper. 
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