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We construct a complete microscopic theory of spin-wave relaxation due to modulation, by these waves, of 
the distances between the levels of the impurity paramagnetic ions in ferro- and antiferrornagnets. The 
nonlinear effects produced when intense spin waves are excited in a crystal are calculated, and the possibility 
of cooling the impurity subsystem when intense spin waves interact with a field is indicated. 

PACS numbers: 75.30.Ds, 75.30.H~ 

Ferro-  and antif erromagnetic crystals frequently 
contain a s  impurities ions of r a re  earth elements o r  of 
transition metals of the iron group. These ions have 
spin and orbital momenta and a r e  characterized by a 
strong spin-orbit coupling. The influence of the crys- 
tal lattice field and the exchange interaction with the 
spins of the neighboring atoms, in conjunction with the 
spin-orbit interaction, leads to splitting of the energy 
levels of similar impurity ions. As a result, besides 
elastic scattering of the electron spin waves (SW), pro- 
cesses accompanied by transitions between levels in 
paramagnetic impurity ions become possible. The 
largest contribution to the SW relaxation i s  made by 
resonant transitions between levels, accompanied by 
absorption of one SW. These processes, however, 
a r e  allowed only if the distance between the two lower 
levels in the impurity ion equals the frequency of the 
given spin wave. If this condition is not satisfied, the 
main contribution to the SW relaxation i s  due to the 
"slow" (longitudinal) relaxation mechanism,' which is 
caused by the modulation of the distance between the 
lower levels in the impurity ions by the spin wave. The 
purpose of the present paper is to construct a complete 
microscopic (linear and nonlinear) theory of slow re-  
laxation in ferro- and antiferrornagnets." 

5 1. FORMULATION OF MODEL 

following expression for the contribution made to the 
Hamiltonian and describing the modulation of the dis- 
tance between the levels in the impurity ion 

where b: and b, a r e  the canonical complex amplitudes 
of the spin ~ a v e s , ~ ' S / i s  the total number of si tes in the 
crystal, and ,, a r e  the interaction amplitudes and a r e  
given in the Appendix. 

We note that since 6H commutes with H,, the modu- 
lation of the distance between level is by itself incapa- 
ble of producing transitions between these levels. It 
is therefore important to take into account the interac- 
tion of the impurity ions with the thermostat (the ther- 
mal phonons and magnons), an interaction that ensures 
relaxation of the populations in the impurity ions to the 
equilibrium value. We write down the Hamiltonian of 
this interaction in the general form 

V= V,=ajF:+aj+Fj, (3) 
9 

so a s  to  be able to replace in the final expressions the 
thermostat operators and F, by those concrete com- 
binations of phonon o r  magnoncreation and annihilation 

Under conditions, the impurity operators that correspond to different relaxation mecha- 
density is low (tenths o r  hundredths of one percent). It nisms of the population. 
is therefore natural to regard the impurity subsystem - - .  

a s  an ensemble of independent ions located at random Owing to the interaction 6H, the average spin-wave 
sites {R,} of the crystal lattice. We assume also that intensity nk=(b,*bJ varies with time like 
the impurity atoms a r e  two-level. Since the level pop- &=- (2/tur'Ia) z ~ r n ( @ , ~ < b ~ a , + a ~ ) ) , .  
ulation decreases sharply a t  low temperature with 

(4) 
> 

increasing level energy, one should expect the contri- 
We shall see  below that the correlator (bka;aj) is pro- butions from the third- and higher-order levels to be 

negligible under these  condition^.^' portional to n,, so that expression (4) determines the 
rate of the SW relaxation on account of the modulation 

We introduce the operators a; and a,, which relate of the distance between the levels and of the impurity 
the ground 1 0,) and excited I l j )  states of an impurity ions. 
ion located a t  the site R, of the crystal lattice: 

In the calculation of the correlator (b,a;a,) it can be 
a,+lOj)=llj), ajllj)=lO,), ajill,)=ailOj)=O. (1) taken into account that the characteristic SW relaxation 

times exceed by several orders  the relaxation time The operators a; and aj pertaining to the same site sat- 
of the level population in the impurity ions (it amounts 

i s f ~  Fermi permutation relations; the 'perators per- 
to 10"-10* at low temperatures), and the adiabatic taining to different si tes commute with each other. 
approximation can be used. That is to  say, it can be 

Changing over to  the SW variables for the spins of the assumed that the probability distribution for the im- 
host lattice and using the operators introduced above for purity ions (i. e., their density matrix) attunes itself a t  
the impurity ions, we can obtain (see the Appendix) the each instant of time to the instantaneous value of the 
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spin-wave intensity [or to i t s  slow amplitude, defined 
a s  & = b, exp ( i w k t ) ] .  As a result, the correlator (b,aia,) 
can be written in the form 

where the trace is taken over the atomic variables, P 
=~({b;, b3) is the probability distribution for the com- 
plex SW amplitudes, while the density matrix a, which 
depends on the spin-wave amplitudes {&), character- 
izes the atomic probability distribution that se ts  in a t  
the specified values of these amplitudes. 

52. THE CONTROL EQUATION 

To find the density matrix o of the impurity ions we 
use the approach developed by Lax (see Ref. 3). We 
note that owing to  the low density of the impurities, 
they can be considered independently and it suffices 
therefore to consider one impurity atom with the dis- 
tance between its  levels modulated by the given field of 
spin waves with amplitudes b, = b, exp(io,t), and take 
into account i t s  interaction with the thermostat. The 
total Hamiltonian of such a system is 

H ~ = H + V + R ,  (6) 

where H is defined in (2), V is given by (31, and R is 
the Hamiltonian of the thermostat. 

The equation of motion for the total density matrix p 
of this system is of the form4) 

The density matrix P can be represented in the form 
p=ofo+Ap, (8) 

where a=Tr,p is the atomic density matrix (the trace 
is taken over the thermostat variables) and f o  is the 
equilibrium Gibbs density matrix of the thermostat at 
the temperature 0, 

e x p  ( - R / B )  
f o =  

S p  exp( -RIB)  ' 
(9) 

We confine ourselves to those ion-relaxation mechan- 
isms for which the operators F* and F in (3) satisfy 
the condition 

SpR ( F f , )  =SPR ( F + f o )  =O. (10) 

Taking in (7) the trace over the thermostat variables 
and using the condition (lo), we obtain an equation for 
the atomic density matrix 

asp= ( H ,  o )  + s p R  ( V ,  A P ) + S P R  ( R ,  P). (11) 

Multiplying (11) by f o  and subtracting the obtained 
equation from (7), we can obtain an analogous equation 
for Ap, solve it in first  order in the interaction V, and 
substitute the obtained value of Ap in (11). The final 
form of equation for the reduced density matrix o (of 
the control equation) is then 

1 

a o i a t = ( H , o ) +  j dt' s p n ( V ,  ( V o l t ' ,  t l , o [ t , t ' l f o ) )  

I f 
-- 

d t S p R ( V ,  ( ( G H h ) ,  v o [ t ' , t l ) , o [ t ,  t ' l f o ) )  -- 
1 I '  ' 

(12) 
-- 1 d t r j  d t ,  j d r r  S p n ( V ,  ( G H ( z , ) G H ( r z )  Vo[ t ' ,  t ] ,  o [ t r  t ' l f o ) )  

2h= -- f *  f *  

We have used here the notation 

and carried out the expansion 

e x p  [ t j ~ ( r ) d t ]  
f '  

Assuming the modulation of the distance between the 
atomic levels to be s ~ n a l l , ~ '  we have retained in (12) only 
terms up to  second order in 6H. 

We a r e  interested in that solution of (12) which is es- 
tablished in a given modulating spin-wave field. Were 
there no modulation the density matrix a would relax 
to the Gibbs equilibrium form 

e x p  ( - H o l e )  
='  ~ p  e x p ( - ~ , / ~ )  

or,  taking into account the concrete form of the Hamil- 
tonian Ho and the Fermi  permutation relations for a' 
and a, 

Since we assume the modulation amplitude to be small 
(see footnote 5), we can expect the density matrix o in 
the steady state and in the presence of the modulating 
field of the SW to be given by the expansion 

which is a ser ies  in powers of the modulation ampli- 
tudes (6J. The correction u p  is proportional to the 
first  power of the amplitudes &, while the next terms, 
left out of (18), a r e  of higher order in these amplitudes. 

To find a t '  and the higher-order corrections we can 
use an iteration procedure. Indeed, substituting the 
expansion (18) in the control equation (12) and equating 
terms of equal order in the SW amplitudes, we obtain 
a system of equations for these quantities. To deter- 
mine the first  corrections a:" it suffices to know the 
equilibrium density matrix 00, the second-order cor- 
rections call for additional knowledge of the first-or- 
der corrections, and s o  on. It is useful to note, when 
solving these equations, that the modulation of the dis- 
tance between levels does not lead to the appearance of 
off-diagonal elements in the atomic density matrix," 
i. e., each of the corrections Ao is of the form Ao= ff 
+Pa'a, where a and j3 are  numerical coefficients. 
Since all the corrections of this form, a s  well as the 
equilibrium density matrix ao, commute with the Ham- 
iltonian ~ ( t ) ,  the equality d t ,  t'] =&') is satisfied for 
the steady state [see Eq. (1411. 

53. LINEAR RESPONSE 

The equation for finding the first-order correction 
a?, which is the linear response of the atomic system 
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to the modulating field of a spin wave with amplitude 
&, is the following: 

t 

I i ( @ k / ~ " ' ~ k )  6k 5 dt' [ l  - e'*k(l- t ' )]  SpR ( V ,  ((aia, V o  [I,, t]), o$,)). (19) 
-m 

The first  term in the right-hand side of this equation 
describes the relaxation of the correction AU =up) 
x exp(-iwk t )  in the absence of a modulating field. It 
is therefore of the order of YO:', where Y is the atomic 
frequency of the relaxation, amounting to l0~-10~ sec" 
a t  low temperatures, and is therefore much lower than 
the typical frequencies (w, -10" sec-'1 excited in ex- 
periments on parallel pumping of spin waves. The 
indicated term is therefore small compared with the 
term -iw,ap' in the same equation, and can be neglect- 
ed. 

With the aid of the correction up' determined by (19) 
we can calculate the frequency of the linear SW relaxa- 
tion due to modulation of the distance between the levels 
in the impurity bands. Knowing a?, we can calculate 
the contribution proportional to the intensity of the spin 
wave n, made to the correlator (b,a;a,) and find, ac- 
cording to (4), an expression for the spin-wave relaxa- 
tion frequency I?:: 

I?k"(cI Q) Iz/f i2~rZ) { y l l ( Q O + ~ ~ )  (I(S20)-I(Qo+or) ! 
+TI,( lQo-otl ) ( ~ ( Q o - o r )  -I(%) 1). (20) 

Here c is the dimensionless density of the impurity 
(the ratio of the number of impurity atoms to the total 
number x o f  sites in the crystal), Z(52) =[ exp (R52/8) 
+I]-' is the average equilibrium population of the upper 
level in a two-level atom with distance EQ between the 
levels at  a temperature 8. 

The =laxation r: is expressed in terms of the atomic 
population relaxation frequency yII(n) for an atom with 
a distance fi52 between levels, a s  given by 

where 

The atomic relaxation frequencies were calculated 
earlier in Refs. 4 and 5 (see also Ref. 1). According 
to the results there, the main contribution to y11(52) 
a t  temperatures down to several dozen degrees a r e  
made by transitions between impurity-atom levels 
with emission of one SW or  of a phonon ("direct" relax- 
ation processes). The expressions for ya(S2) in the case 
of various direct processes in ferro- and antiferromag- 
nets a re  the following. 

a) Transition with phonon emission 

nIp"(Q) =3n2(hlpvaz) ( 1 YPh 1 /eD)'Q (Q/oD)' eth (fiQl28). (21a) 

Here p is the crystal density, v the phonon velocity, a 
the interatomic distance, and el, =Rw, the Debye tem- 
perature. 

b) Transitions with emission of spin wave in a ferro- 

magnet : 

y,!"(Q) =nZ(Y,'~Bc)ah-'[fi(Q-oo)8cl'" cth (fiQI28). (2 1b) 

Here Oc =Fza/d is the Curie temperature, and the spin- 
wave dispersion law is taken in the form w, =wo + ak2. 

c) Transitions with spin-wave emission in an antifer- 
rotnagnet of the "easy plane" type: 

yjlm(Q) = ~ ~ ( Y , " i f i o ~ ) ~ ( Q / o ~ )  (Q2-oOz)'h eth (AQ/28). ( 2 1 ~ )  

The SW dispersion law is taken in the form wi = W: 

+ wi (akl2. 

The values of the coefficients 9 a r e  given in the 
Appendix. yT(52) = O  in formulas(2lb) and (21c) if 51< w,. 

It is seen from expressions (21) that the dependence 
of the atomic relaxation YII on the temperature is the 
same in a l l  cases, but the frequency dependences of 

a r e  different. In particular, the contribution 
made to the atomic relaxation frequency by transitions 
with spin-wave emission vanishes when the distance 
between the levels in the impurity ion is less than the 
lowest frequency wo of the spin waves in the crystal. 

Formula (20) contains atomic relaxation frequencies 
taken a t  the combination frequencies 52 = no * w,. If the 
modulating frequency w, is low compared with no, then 
by expanding the expression in the curly brackets in 
(20) in terms of w, we can arrive at  the known result 
obtained for slow relaxation in the semiphenomenolo- 
gical theory .2 The general expression obtained by u s  
for describes slow SW relaxation a t  any ratio of 520 
and w, in the entire range of temperatures. 

At high temperatures, when 8 / ~  >> no, 1 520 - 0, 1, no 
+ w,, the value of r: decreases with rising temperature 
like I?: = A  + ~ 8 " .  In the opposite limit of low tem- 
peratures, the dependence of the SW relaxation fre- 
quency ri on the temperature is different for the cases 
520 > W, and no < w,: 

rkOaexp [-(file) (Qo-oh) I, Qo>or, 
(22) 

rkoal-exp 1- (fi10) (or-Pa) I ,  Qo<wr. 

Thus, a t  < w, the relaxation r: remains finite in the 
limit a s  8-0. 

An estimate of the absolute value of r: for a ferro- 
magnetic yttrium iPon garnet a t  8 = 10 K, no = 1012 sec-', 

FIG. 1. Dependence of the relaxation r: on the temperature 
for two values of the magnetic field H =  1 kOe (1) and H =  4 
kOe (2), corresponding respectively to the conditions no 
< u, and Q0 > w,. 
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FIG. 2. Dependence of ri on the magnetic field H for the 
temperatures (in K) 0.5 (1). 1 (2), 1.5 (3), 2 (4), and 2.5 (5). 

W, = 10'' sec-l, YI, = 10' sec", c = 10/,, and @ = 10-l~ erg 
yields ri = 10' sec-', which agrees with the results of 
the experimental investigations (see Ref. 1). 

Typical temperature dependences of r: for  antiferro- 
magnets at helium temperatures a r e  shown in Fig. 1. 
All the plots presented in this paper were calculated 
from the theoretical formuias a t  the parameter values 
c =0.010/,, 1 i~ I =lo-" erg, 'lkph = loq  erg/cm, q m  = 10-l5 

11 erg, and w, = w,/2 = 2.2 x 10 sec-'. The SW dispersion 
law was chosen in the form2w: = wi + wi (a&)', where w* 
= 10'' sec", a = 10" cm, wo = g 2 [ ~ ( ~  + H,) +  TI, HD 
= 4.4 kOe, and a =6 K . k0e2. The crystal density p is 
5 g/cm3, the phonon velocity v = lo5 cm/sec, and the 
Debye temperature 8, = 10'" erg. 

The distance between the levels in the impurity ions 
depends on the static magnetic field H andits orientation 
relative to the crystalIographic axes. Figure 2 shows 
the relaxation frequencies ri calculated from (20) and 
(21) a s  functions of the magnetic field for an antiferro- 
magnet ." 

84. NONLINEAR EFFECTS 

The nonlinear effects a r e  determined by corrections 
of higher order to the equilibrium atomic density ma- 
trix DO. The most important are :  a) the time-inde- 
pendent second-order correction Abo -C, b:b,, which 
yields the change of the average stationary population 
of the atomic levels in the presence of excited SW in 
the crystal; b) the third-order correction hap) 
- E J ~  bzbr)bkexp(-iw,t) and the correction that is its 
Hermitial conjugate, which make it possible to calcu- 
late the nonlinear SW damping. To calculate these cor- 
rections we can use the iteration procedure described 
above. It is facilitated somewhat by noting that for 
each of the corrections it suffices to allow for the con- 
tributions that have the lowest order in the amplitude 
of the interaction of the impurity field with the thermo- 
stat. 

A detailed calculation shows that the change of the 
stationary average population n =(a'a) of the upper 
atomic level following excitation of No spin waves of 
frequency w, = w,/2 in the crystal is given by 

where xis the total number of si tes in the crystal, and 
~ n = n - Z ( n ~ ) .  

Formula (23) can be represented in the form 
~~(620) In-I(%) I +  (21 @IIfior)2(Nolfl) 

X T I I ( { Q ~ - ~ ; ~ )  [ ~ ( Q o ) - I ( Q o - ~ L )  I 
+ (21 @IIhor)'(NolR)~l(Qo+~t) [I(Qo)-Z(Qe+or) ]=0. (24) 

Thus, from the quantum-mechanical point of view, an 
atom placed in a modulating SW field of frequency w, 
= w,/2 spends, as it  were, a fraction (proportional to 
the modulation depth) of i t s  time in states with shifted 
distances between the ground and first  excited levels, 
i. e. , with shifted frequencies S2 = no i w,. The equili- 
brium values of the population of the upper level Z(52) 
a r e  different for the unshifted (S2 = no) and the two 
shifted positions of this level. The relaxation process- 
es, tending to restore the thermal equilibrium disturb- 
ed by the level shifts, give r ise  to transitions within 
the impurity atoms, and the frequency of these transi- 
tions, i. e., the relaxation rate y,t(Q), depends on the 
distance a between the levels. 

When the temperature is relative high, so  that @/If 
>> no, 1 no - wk I, no + w,, the expansion I ( a O i  w,) -Z(Qo) 
* (Plw,/2@) is valid, and expression (23) for the correc- 
tion An =n  - I(510) takes the simpler form 

As follows from the expressions (21a) and (21c) for 
Y,,(s~) in antiferromagnets, the relaxation rate is in this 
case always a monotonically increasing function of n." 
Therefore the change of the average population is then 
always negative, i. e . ,  the excitation of SW in the crys- 
tal  is accompanied by an effective cooling of the impurity 
subsystem (the absolute value of the correction An de- 
creases with increasing temperature like @-I). Since 
the atomic-relaxation frequency is higher when the level 
is shifted upward, the average population deviates to- 
wards the equilibrium population of the upward-shifted 
level, and is thus decreased. 

In the opposite limit of low temperatures, the condi- 
tion satisfied is Z(KJo - w,) >> I(n0), Z(a0 + o,), s o  that 
the following holds true: 

and heating of the impurity subsystem is therefore ob- 
served. Typical plots of An(@) for an antiferromagnet 
in a wide temperature interval a r e ~ h o w n  in Fig. 3. 

We emphasize that in the situation considered by us  
the impurity subsystem is in a state of flux equili- 
brium-it is open and an energy flux passes through it 
from an intense external source (parametrically ex- 
cited waves) into a thermostat. The possibilities of a 
transition of open systems with flux equilibrium into a 
more ordered state with increasing energy flux through 
the system (the "self-organization" phenomenon) a r e  
being extensively discussed,in the literature (see, e. g., 
Haken's m~nograph .~)  Included in this group of pheno- 
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FIG. 3. Transition from heating to cooling of impurity sub- 
system with increasing temperature, at different values of 
the magnetic field (in kOe): 1) 1, 2) 1.5, 3) 4. The number of 
parametrically excited SW is fixed at N ~ / S / =  

An, lo-' 

mena is  also the effect observed by us, the cooling of 
impurities following parametric excitation of SW. In 
this effect an intense energy flux from parametric SW, 
passing through the impurity subsystem, draws addi- 
tionally some power from the latter. 

r 

z 

The change of the level populations in the impurity 
ions is reflected in a change of the SW relaxation fre- 
quency. If the crystal contains No parametrically ex- 
cited spin waves with frequency w,/2 the SW relaxa- 
tion r, acquires on top of i ts  equilibrium value r: a 
correction Ark proportional to the number No of the 
excited spin waves8': 

-' 

- 

where An is given by formula (23). 

I 

Since Ark -(No/S/), it is convenient to introduce a co- 
efficient q of nonlinear damping of the excited spin 
waves, defined by the relation rk = ri + q ( ~ ~ / f l .  When 
(23) and (27) a r e  taken into account, the expression for 
this coefficient takes the form 

In the high-temperature limit, when O / t i  >> no, /a0 
- w,/2 I, no + w,/2, the coefficient q is negative and 

FIG. 4. Dependence of nonlinear-damping coefficient rj on 
temperature at various H (in kOe): 1) 1.2, 2) 2.0, 3) 5.2. 

FIG. 5. Dependence of 1111 on the magnetic field H at different 
temperatures (in K): 1) 1.0, 2) 1.5, 3) 2.0, 4) 2.5. 

tends to a temperature-independent constant value (7 
is negative because in this case An < 0). On the other 
hand, in the opposite low-temperature limit the nonlin- 
ea r  damping is positive, for heating of the impurity sub- 
system is then observed. Typical temperature depen- 
dences of the nonlinear damping 7, calculated in accord 
with (28) for an antiferrornagnet of the "easy plane" 
type, a r e  shown in Fig. 4, while plots of 171 vs the 
magnetic field a r e  shown in Fig. 5. 

6. CONCLUSION 

The SW relaxation mechanism considered by us and 
connected with the modulation of the level spacing in 
impurity paramagnetic ions by the spin waves exhibits 
significant peculiarities compared with other SW relax- 
ation mechanisms. Since the interaction 6H commutes 
with the Hamiltonian Ho, it does not by itself lead to 
transitions between stationary states of the impurity ion 
in any order of perturbation theory. The appearance 
of a contribution to the SW relaxation from the level 
modulation in the impurity ions is therefore due in 
principle to the finite widths of these levels or,  in other 
words, to the relaxation of their populations. In the 
semiphenomenological theory,2 the modulating action 
of the spin waves is taken into account within the 
framework of the kinetic equation for the average popu- 
lations n of the impurity levels. This theory is there- 
fore valid only in the case of smooth modulation, when 
the modulating frequency (i.e., the SW frequency wk) 
is low compared with the level spacing 510 (only such 
slow external fields can be included in the kinetic equa- 
tion). From the point of view of the semiphenomeno- 
logical theory, the SW relaxation is then due to the de- 
lay between the attuning of the atomic populations to 
the instantaneous value of the level spacing. 

In contrast to the approach of  artm man-~outron,' 
the complete microscopic theory developed in the pres- 
ent paper does not assume that the modulating field is 
smooth-only a small modulation depth is assumed (see 
footnote 5). In the development of the theory we have 
used methods devised in connection with the study of 
laser systems3 and stemming directly from the equa- 
tion for the system density matrix. It follows from our 
formula (20) for the equilibrium SW relaxation, this 
quantity is expressed in t e rms  of the impurity density c, 
the interaction amplitude iP ,  and the atomic relaxation 
frequencies YII, the latter being taken a t  the combination 
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frequencies aO,t w,, a s  if the level spacing in the impur- 
ity ion were not no but Oo k w,, a situation directly con- 
nected with the modulating action of the spin wave. 
Since the frequency dependence of the atomic relaxation 
plays in this case a rather important role, we have cal- 
culated anew (with certain refinements) the expressions 
for this relaxation, with account taken of the "direct" 
processes that a r e  most substantial a t  low temperatures. 
We have discussed, in addition, the nonlinear effects 
connected with the restructuring of the state of the im- 
purity subsystem following parametric excitation of 
intense spin waves. 

The situation most thoroughly investigated to  date is 
the one in ferromagnetic yttrium iron garnet. Experi- 
ments on ferromagnetic resonance and parallel pumping, 
performed with a controlled content of one of the rare- 
earth elements or  of the transition metals of the iron 
group, show (see Refs. 1, 8, and 9) that a t  tempera- 
tures below 100 K, starting with an impurity density of 
several tenths of one percent, the "slow" relaxation 
(due to modulation of the level spacing) makes the main 
contribution to the SW relaxation frequency. Since it 
follows from calculations' that the distances between 
the lower impurity-ion levels a r e  in this case much 
larger than the ferromagnetic-resonance frequency or  
half the pump frequency, these experiments a r e  well 
described by the semiphenomenological theory. 

The MnC03 and CsMnF, crystals used in experiments 
on parallel pumping in antiferromagnets contain appre- 
ciable amounts of paramagnetic-ion impurities (accord- 
ing to Ref. 6, the investigated crystal contained 0.35% 
Fe, 0.04% Ni, and 0.01-0.45 Co). In these experi- 
ments, the plot of the SW relaxation frequency (deter- 
mined from the threshold of the parametric resonance) 
vs the static magnetic field has a sharp peak inter- 
preted a s  the consequency of resonant transitions be- 
tween the impurity levels, accompanied by absorption 
of a spin wave when half the pump frequency equals 
the impurity-ion level spacing (which depends on the 
magnetic-field intensity) .' At different values of the 
magnetic field, the impurity level spacing in these ex- 
periments can be either larger or  smaller than the fre- 
quency of the excited SW. Therefore only the complete 
microscopic theory of slow SW relaxation, proposed 
in this paper, is valid in this case. 

A comparison of the dependence of our calculated 
slow relaxation on the temperature (Fig. 1) and on the 
magnetic field (Fig. 2) with the experimental curves of 
Refs. 6 and 10 (see, in particular, Fig. 8 of Ref. 10) 
shows that our plot duplicates both the qualitative form 
of these curves and the absolute value of the SW relaxa- 
tion in the investigated temperature range. It must 
also be noted that the clearly pronounced maxima ob- 
served when the crystal orientation i s  varied" a r e  
typical of slow relaxation (see Ref. 1) and a r e  attributed 
to  the decrease of the impurity-level spacing a t  cer- 
tain directions of the static magnetic field. 

The nonlinear negative damping of parametrically ex- 
cited waves, due to partial cooling of the impurity sub- 
system, may be one of the causes of the "hard" SW 
excitation observed in the experiments. As seen from 

Figs. 4 and 5, the fraction Ar =-7No/S/of the relaxa- 
tion that drops out in antiferromagnets at small excess- 
e s  above the resonance threshold (No/S/=  lod) i s  ap- 
proximately ten percent of the total SW relaxation. The 
value of hf' increases with decreasing magnetic field 
and, as follows from Fig. 5, increases with decreasing 
temperature in the interval from 1 to 2.5 degrees in 
weak magnetic fields, in accord with the experimental 
data." The experimentally observed abrupt increase of 
Ar when half the pump frequency becomes equal to the 
impurity-level spacing can be attributed to  heating of 
the impurity subsystem by direct transitions with ab- 
sorption of a parametrically excited spin wave. It is 
important to emphasize that according to our present 
results the coefficient of nonlinear damping should re- 
verse sign a t  temperatures below 0.5 K. Experiments 
a t  such low temperatures might show the degree to 
which hard excitation of SW in antiferromagnets i s  con- 
nected with the slow-relaxation mechanism. 

The authors take pleasure in thanking A. G. Gurevich 
and M. I. Kaganov for helpful discussions. 

APPENDIX 

The energy spectrum of paramagnetic impurity ions 
in ferro- and antiferromagnets i s  the result of the ac- 
tion of the crystal electric field and of the exchange 
interaction with the spins of the neighboring atoms of 
the host lattice. As a result, because the degeneracy 
of the lower multiplet i s  lifted, the distance between the 
ground and first  excited levels of the impurity ion turns 
out to be quite small and close in magnitude to  the SW 
frequencies in the crystal. For  3d ions, the unfilled 
electron shell that determines such energy levels is an 
external shell and the level splitting due to the effec- 
tive electric field exceeds considerably the splitting due 
to the spin-orbit coupling and to the exchange interac- 
tion. For  4f ions, the unfilled electron shell is screen- 
ed by 5s and 5p electrons, so that the splitting due to 
the effective crystal field i s  much weaker than the spin- 
orbit splitting and turns out to be close to the exchange 
splitting. The energy levels of paramagnetic impurity 
ions should be calculated separately in each case; this 
calculation is not the subject of the present paper (for 
ybS' impurity ions in dodecahedra1 sites of the yttrium- 
iron-garnet lattice this calculation was performed, for 
example, in Ref. 12). 

The modulation of the distance between impurity 
levels by spin waves i s  of exchange origin. For  spin 
waves much longer than the characteristic interatomic 
distances, one can start  out in the case of a ferromag- 
net with the exchange Hamiltonian 

H.. = z s,hj ($9) 
/ 

o r  for a two-sublattice antifferomagnet with the Hamil- 
tonian 

The summation in (29) and (30) is over the sites {R,} 
in which a r e  located impurity ions having magnetic mo- 
ments J,. In (29), S, i s  the averaged magnetic moment 
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of the host-lattice atoms that a r e  adjacent to the im- 
purity, while in (30) s:' and s:' are  the instantaneous 
average moments of neighboring ions belonging-to _the 
two antiferrornagnet sublattices. The tensors A, A"', 
and describe the exchange (anisotropic) interaction. 

Carrying out the Holstein- Primakoff transformation 
of S, or of S? and s?, we can express the Hamiltonians 
(29) and (30) in terms of spin-wave variables b: and b, 
(confining ourselvgs in the case of an antiferromagnet 
to  the waves of the lower branch of the spectrum), we 
obtain 

The contribution Vo, which does not depend on the spin- 
wave variables, can be left out and regarded a s  account- 
ed for in the calculation of the energy spectrum of the 
impurity ions. The coefficients qP;, (where LY =x ,  y, z )  
a r e  certain combinations of the elements of the tensor 
A (or of fIa' and A"), a s  well a s  of the coefficients of 
the Holstein- Primakoff transformation and of additional 
transformations made on changing over to the variables 
of the SW in the crystal. 

The amplitudes a,, in the Hamiltonian 6 H  that de- 
scribes the modulation a r e  determined by the expres- 
sions 

in which 10,) and I I,) a r e  the ground and first excited 
states of the impurity ion located a t  the site R,. 

A successive calculation yields the following concrete 
form of the amplitudes a,, for a two-sublattice anti- 
ferromagnet: 

~ ) * = - 4 / ~ i ( S / 2 )  'b (mE/mk) (sin 0,A,':' - sin 0~11,':' )em',, (33) 

where 81 and 02 a r e  the angles between the direction of 
the magnetic moment of the impurity ions in the ground 
state (the z axis) and the magnetization vectors of the 
two sublattices. In the derivation of (33) it was assum- - ~ . . 
ed that the exchange tensors a r e  diagonal ( g i 2 '  
=a"*"6,e). 

In the case of a ferromagnet with anisotropic ex- 
change interaction and the directions of the magnetic 
moment of the impurities does not agree with the di- 
rection of the magnetization of the principal sublattice 
( 9  is the angle between these two directions) we obtain 

Qjt= (S/2)'I2 (&,-i cos 0A,,-i sin OA,.) e'kRI. (34) 

The z axis is directed here along the magnetization of 
the host lattice. 

We note that the angles 8, el, and 82 depend in the 
general case on the direction and magnitude of the ex- 
ternal static magnetic field. As a result, similar rela- 
tions may hold also for the interaction amplitudes a,,. 

The Hamiltonian corresponding to the direct process- 
es-transitions between levels, with absorption o r  
emission of a spin wave-is of the form 

The amplitudes 9; of the direct processes a r e  given by 

A successive calculation yields for a two-sublattice 
antiferromagnet 

(C) YJkm = '/z(S/8)'1~(os/ok)L12(cos q~~h(sl)'+ cos (PA.?- cos 01 cos qItAyy 

+ cos 0,  cos ~I~A::' -i cos ~I,A::' -i cos qIrA;:'-i cos 0,  sin (P&' 

-i cos O1 sin p z d )  ) e ikn ,  (37) 

where (el, ql) and (82, qz) a r e  the Euler angles of the 
magnetizations of the two sublattices, in a coordinate 
frame whose z axis is directed along the magnetic mo- 
ment of the impurities. 

In the case of a ferromagnet, the expression for *;L 
is 

Y,k"'= ( S / 8 )  " ( L - c o s  OAw-sin 0A.,-ihy 
-i cos 011,-i sin OA,) eik'l. (38) 

The Hamiltonian that describes interlevel transitions 
with absorption o r  emission of an acoustic phonon can 
be represented in the form 

where d,, is the annihilation operator for a phonon of 
frequency w,, polarization et, and wave vector q. It 
is assumed for simplicity that a l l  atoms have the same 
mass M. 

There a r e  two causes of such transitions. Excitation 
of a phonon initiates a periodic change of the distance 
from the impurity ion to its nearest neighbors from the 
host lattice, so  that changes occur in the crystal field 
that acts on the ion and in the constant of the exchange 
interaction with the spins of the neighboring atoms. If 
the direct transitions with phonon emission a r e  of ex- 
change origin, then the amplitude *% is given by 

The summation here is over the atoms that neighbor 
with the impurity, a r e  located a t  the sites R,,,, and 
have average spins S,,,: Az =R,,, - R, is the equili- 
brium distance to the impurity ions. We have taken 
into account the fact that the exchange-interaction ten- 
sor  depends on the distance between the spins [ h = f i ( x ) ] .  
In the estimates the derivative ah/ax, can be set equal 
to ~ a " ,  where a is the interatomic distance. 

An expression for the amplitude *'* governed by the 
crystal field variations can be found in Ref. 5. 

'1 The existing semiphenomenological linear theory of slow 
relaxation in ferromagnets2 is valid only in a situation where- 
in the distance between the lower levels of the ion is much 
larger than the frequency of the spin waves. 

'1 In a number of cases the distance between two lower levels 
is much less than the distance to the levels that follow. This 
takes place, in particular, if the lower pair of levels is  a 
Kramers doublet and the splitting in the crystal field greatly 
exceeds the exchange splitting (see Ref. 1). 
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3, We use the classical description of the spin waves. The 
calculated linear damping of the SW a r e  the same in the clas- 
sical and quantum descriptions. The nonlinear effects (in 
particular, the nonlinear damping of the SW) a r e  significant 
only above the threshold of the spin-wave resonance, when 
the excited waves a r e  already intense enough and the classi- 
cal description is certainly valid for them. 

4 ) ~ e  use the notation (. . . , . . .) r (l/iti) [. . . , . . . I .  
5, w e  assume satisfaction of thecondition 2CNoH) << Roo, 

where & is  the total number of parametrically excited spin 
waves. 

')'This can be easily verified by analyzing directly the structure 
of the control equation (12). 

') Using the data given for MnC03 in Ref. 6, we put in the 
calculations n o =  0.62 ( ~ [ k O e l  + 0.4) x 10" sec-'. 

*) In ferromagnets, the contribution yr(S1) contains a decreas- 
ing section. 
Excitation of intense SW of frequency w, /2 in a crystal 
changes the relaxation also of other SW with different fre- 
quenics. 
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