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A procedure is developed to eliminate from the temperature diagram technique the divergences that occur in 
systems with degenerate ground states. The procedure is used to calculate rigorously the excitation spectrum 
and the correlation energy of a two-dimensional electron-hole system in a strong transverse magnetic field. If 
transitions to higher Landau levels are neglected, the system turns out to be an ideal exciton gas whose long- 
wave properties coincide with the properties of a two-dimensional Bose gas. Inclusion of the transitions leads 
to a weak (relative to a parameter) deviation from the ideal. The spectrum of the low-frequency excitations 
then becomes acoustic and the low-temperature behavior changes qualitatively. When the deviation from the 
ideal is taken into account, the topological phase transition with change of the asymptotic forms of the 
correlation functions, which is usual for two-dimensional degenerate systems, becomes possible in the system. 

PACS numbers: 71.35. + z 

1. INTRODUCTION 

The main difficulties in the treatment, from first 
principles, of two-dimensional electron systems in 
transverse quantizing magnetic fields a r e  due to the in- 
finite degeneracy of the ground state. The usual dia- 
gram methods a r e  not applicable a t  a temperature 
T = 0, owing to the degeneracy. Diagram o r  operator 
methods especially developed for degenerate systems' 
a r e  not always suitable: they yield secular equations 
which, without guessing the ground state, a r e  not any 
easier to solve than the Schrodinger equation. On the 
other hand, degeneracy of any state imposes no limita- 
tion on the use of the temperature diagram technique, 
since the averaging is carried out over a grand canon- 
ical ensemble and the equality of the energies of cer- 
tain states plays formally no role, even if the ndmber 
of such states is infinite. In this case,  however, almost 
all the diagrams turn out to be proportional to E d T  (E, 
is  the characteristic interaction energy), and a t  T 
<< E, it is  impossible to separate from the increasing 
diagrams the principal secondary sequence. This is  
precisely why the microscopic theory of two-dimension- 
a l  electron o r  electron-hole (e - h) systems in strong 
magnetic fields was reduced up to nod-' to one variant 
of the Hartree-Fock approximation or  another. The 
purpose of the present paper i s  to devise a temperature 
diagram technique free of the described difficulties and 
capable of rigorous account of the correlation effects 
in such systems. 

Divergences (as T - 0) can be avoided in the tempera- 
ture diagram technique by partially including in the 
zeroth-approximation HamiltonianK an interaction such 
that the degeneracy is lifted. The corresponding choice 
of the zeroth approximation in the case of a two-dimen- 
sional e - h system in a strong magnetic field H is sug- 
gested by clear physical considerations. Since the 
spectrum of a two-dimensional exciton in a magnetic 
field is  not degenerate,6 the interaction that leads to 
exciton formation would have to be taken into account 
in the zeroth approximation. The simplest method 
would be to subdivide the electrons and holes into 

pairs,  include the interaction in each pair in#,, and 
regard the interaction between particles from differ- 
ent pairs a s  a perturbation. In such an approach, how- 
ever, the identity of the particles i s  not automatically 
preserved, and the ensuing difficulties a r e  not offset 
by the lifting of the degeneracy. A method was there- 
fore chosen different from the one described, but 
equivalent to it physically. 

The zeroth approximation should be taken to be that of 
Hartree-Fock with e - h pairing (its characteristics 
were calculated by us  earlier) .  This approximation de- 
scribes a coherent gas of excitons. The diagram tech- 
nique i s  constructed in this case using matrix Green's 
functions whose off-diagonal components describe the 
e - h pairing. All the diagrams converge a s  T - 0, with 
any non-ladder diagram small relative to the parameter 
(E, /T)  . exp( -~d2T) .  Neglecting transitions to higher 
Landau levels (whose contributions tends to zero a s  H - -) the Hartree-Fock approximation turns out to  be 
exact a t  T = 0. At T + 0 the system is an ideal exciton 
gas with Bose long-wave characteristics. The correla- 
tion energy, described by vacuum ladder diagrams, is  
the free energy of the long-wave excitons, and the con- 
tribution made to the energy by the short-wave excita- 
tions i s  exponentially small. The properties of the sys- 
tem a r e  therefore similar in this approximation to 
those of a two-dimensional ideal Bose gas. 

Allowance for the higher Landau levels makes the ex- 
citon gas weakly ideal, thereby changing qualitatively 
its low-temperature properties. Thus, the heat capa- 
city at the lowest temperatures is proportional to p, 
and at higher temperatures it becomes linear. (We note 
that in the absence of e - h  pairing the specific heat of 
the considered system i s  exponentially small a s  a func- 
tion of temperature.') Just a s  in other degenerate two- 
dimensional systems, the long-range order i s  destroyed 
by fluctuations. When account i s  taken of the weakly 
nonideality , however, a topological phase transition, 
accompanied by a change of the asymptotic behavior of 
the correlation and similar to the transition in two-di- 
mensional Bose systems,'v8 i s  possible in the system. 
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2. SELECTION OF DIAGRAMS AT HIGH 
TEMPERATURES 

We consider a two-dimensional electron-hole plasma 
in a transverse magnetic field, with a Hamiltonian 

where &, a r e  the electron-annihilation operators in the 
band U (o= 1 corresponds to the conduction band and o 
=2 to the valence band; the electron representation of 
the operators is  chosen in both bands), A i s  the vector 
potential of the uniform field H in the Landau gauge, 
Z25e2/&, E i s  the effective permittivity, the electron 
dispersion laws a r e  5,(p)=*(p2/2m,,- I), with the equal 
chemical potentials /.I of the electrons and holes reckon- 
ed from the bottoms of the corresponding bands. 

The fixed number N of electrons in the conduction 
band i s  equal to the number of holes in the valence 
band. We assume satisfaction of the condition 

p=N/No<l, (2) 

wherein all particles a re  on the lower Landau level at  
the temperature T = O  [here No=S/2n4 is the Landau- 
level degeneracy multiplicity, S is  the area  of the sys- 
tem, YH= (c/eH)"' i s  the magnetic length, and A = 11. 
The magnetic field is  assumed strong, 

so that we can neglect2 the virtual transitions to higher 
Landau levels. Here %=a,  + a2,a,= l/moZ2 i s  the effec- 
tive Bohr radius in the band o). For typical semicon- 
ductor s, the condition (3) is  satisfied in fields H > lo5 
Oe. 

The single-part icle Green's function of a non-interact- 
ing e - h gas is  given in the Landau representations 
under conditions (2) and (3) by 

. . 
where w=nT(2k + 1); x0(p,, y) ~xo(p,r,-  Y/Y& a r e  the 
oscillator wave functions of the electrons on the lower 
Landau level. It is convenient hereafter to refer the 
functions x0 to the bare vertex, which takes after in- 
tegration over the y coordinates the form 

Here q, i s  the transferred (one-dimensional) momen- 
tum, k, i s  the sum (or difference) momentum; a l l  mo- 
menta a r e  measured in units of ll~,. 

We consider second-order vertex diagrams (Fig. 11, 
where the solid lines denote the Green's functions g, 
and g, (and not GI,,), and the dashed ones the interac- 
tion (5). The frequency parts of diagrams a-c (which, 
a s  in diagrams of any order, a r e  calculated independent- 
ly of the momentum parts) a r e  

where 6,, i s  the Kronecker symbol. We have used here 

FIG. 1. Vertex diagrams of second order: at Ta To,  the solid 
lines are  ree en' s functions of either the first or the second 
band; at T < To each node corresponds to a band index a; the 
solid line joining the nodes a and U' is the Green's function 
g,,'(u). The points denote fixed band indices (1 or 2), the 
shaded circle corresponds to summation over a = 1 and 2. 

the condition that the number of particles is fixed1': 

The momentum parts (i. e.  , the bare vertices) yield, 
after integration:' factors -Eo, where 

is the binding energy of a two-dimensional exciton in a 
strong transverse magnetic field. "t 

diagrams a-c give small corrections to the bare vertex 
(5). At low temperatures, on the contrary, these dia- 
grams turn out to be significant. In higher orders of 
perturbation theory, the number of diagrams -(EdTP 
increases, so that it i s  impossible to select diagrams 
a s  T - 0. The reason is that the zeroth approximation 
was chosen to be the Hamiltonian of a non-interacting 
e-h plasma in a magnetic field with ground-state degen- 
eracy of infinite multiplicity. 

Low temperatures will be considered in the next sec- 
tion. For the time being we confine ourselves to tem- 
peratures satisfying the condition (9). Under this con- 
dition the principal diagrams in all  orders a r e  the lad- 
der e-h diagrams, Fig. Id. The total vertex function, 
corresponding to the sum of the ladder diagrams of this 
type (which describe the scattering of an electron from 
the first band by a hole from the second) i s  obtained 
from an integral equation that takes, after summation 
over the internal frequencies, the form 

1-2p dq.' 
- r ( ~ ;  q = , k = ) = y ( q = , k x ) + - j - y ( q / ,  re-2po 2n k=)I'(e;q=-q=',k=). 

This equation i s  easily solved in the transverse k-mo- 
mentum representation introduced by ~ r a z o v s k i i ~ :  

where I, i s  a modified Bessel function. The transverse 
momentum k has the meaning of the e x c i t ~ n  momentum6 
(introduced by Gor'kov and Dzyaloshinskiilo in the, 
three-dimensional case). We shall need also the 
transverse q-momentum representation which is  har- 
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monically conjugate to the k-representation. The 
bare vertex in the q representation i s  

For an exciton, the quantity q has the meaning of the 
coordinate. The choice of the representation for the 
vertex is not unique, just as in the three-dimensional 
case. Thus, the second-order ladder diagram (Fig. 
l e ) ,  which i s  equivalent to diagram Id with the input 
and output momenta interchanged, has a simple form 
in q-space. The total vertex (i. e. , the sum of all the 
ladder diagrams of this type) also takes the form (101, 
(11) if the momentum k i s  replaced by q ,  and the sum 
frequency c i s  replaced by the transferred frequency 
51. For such a vertex, the momentum q has the mean- 
ing of the exciton momentum. 

When the temperature T i s  lowered, the pole a t  the 
vertex (10) appears first (at k = c = 0) a t  the tempera- 
ture3) 

Continuing analytically the vertex (10) with respect to 
frequency into the upper half-plane (this reduces to the 
substitution ic - c + iO) ,  we can easily see  that a t  T <  To 
the vertex (10) has on the real  E axis a pole correspond- 
ing to pairing of e and h.  The pole points to the pre- 
sence of exciton states with negative energy. Since the 
energy decreases when the excitons appear, it i s  neces- 
sary  to reconstruct the ground state by taking the e-h 
pairing into account. At T < To the vertex functions 
must be made up of single-particle Green's functions 
of the reconstructed state, which were obtained by us 
earlier3 from the Gor'kov equations (in which i s  in- 
cluded, besides the anomalous vertex, also the normal 
Hartree-Fock vertex that describes the exchange inter- 
action). This corresponds to a choice of the Hartree- 
Fock Hamiltonian (with allowance for e-h pairing) a s  the 
zeroth approximation. 

3. SELECTION OF DIAGRAMS IN THE HIGH- 
TEMPERATURE REGION 

We shall show that the ladder diagrams (of the type 
shown in Fig. Id o r  l e )  a r e  special also a t  T 9 To(p). 
At these temperatures the Green's functions a re  the 
matrix quantities g,a(w), and the off-diagonal com- 

" ponents g,,(w) correspond to pairing of an electron and 
a hole from different bands. Each node on the diagram 
is ascribed a band index u (equal to 1 o r  21, the solid.  
line joining the nodes a and a' i s  g,#(w), and the dashed 
line is the interaction (5), which is independent of the in- 
duces. The external band indices a r e  fixed, and sum- 
mation i s  carried out over the internal ones. The func- 
tions goo, a r e  given under conditions (2) and (3) by3 

Here A is  the order parameter and i s  equal to zero a t  
T 2 To; 6 r E g  - P,  with the chemical potential p 
= -Ed2 a t  T >  To. At T >  To the potential p i s  deter- 
mined by the condition (71, in which k0 must be re-  

placed by 5; the parameter 7 = (&' + A')"* satisfies the 
equation 

[Expression (13) for To was obtained earlierS from Eq. 
(15) under the condition A =  0. ) 

The frequency part of the diagram la, which describes 
the simplest correction to a triple vertex, i s  

Summation over repeated indices i s  implied here and 
hereafter. The corresponding contribution of diagram 
l b  is obtained from (16) by summing over v =  p. The 
momentum parts of these diagrams give the factors 
-Et (naturally, the same a s  at T 2 To). The diagrams 
l a  and l b  yield thus a correction of order a to the bare 
vertex, where 

At T<< E, we obtain from (15) 

so that the corrections to Figs. la and l b  a r e  small. 
At T = To, when A = 0, the parameter (17) goes over in- 
to the parameter (9). The parameter (17) is  consequent- 
ly a parameter of the theory both at high temperatures 
( 9 )  and a t  low ones (18). (The region of small a i s  
shown in Fig. 2.)  The ladder diagrams l c  and Id have 
a t  low temperature no small quantity -a. The diagrams 
l c  correspond to repulsion electron-electron interac- 
tions (intra- and interband). The excitations correspond- 
ing to ladder diagrams of this type a r e  pure electron 
(or pure hole), so  that in the long-wave limit they a re  cer- 
tainly separatedfrom the ground state by a gap. It i s  
therefore necessary to sum ladder diagrams of the type 
Id (or the equivalent diagrams le),  whichdescribe elec- 
tron scattering by holes. 

Since a 61 a t  all  p or  T, the selection of diagrams 
on the basis of these parameters makes it possible to 
obtain converging expansions in the entire considered 

FIG. 2. Phase diagram oE the system: line I marks the temp 
erature of the Berezinskii-Kosterlitz-Thouless transition (see 
Sec. 7). Its vertex corresponds to a temperature T < Eo/4, 
since p , differs from p . Line I1 corresponds to the tempera- 
ture T o ( p ) .  Line 111 is the arbitrary boundary on the phase 
plane between the regions of large and small a, with a < 1/2 
on the shaded part. On the unshaded part, where 1/2 6 a 4 1, 
the theory developed is only qualitatively applicable. 
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d e 

FIG. 3. Higher-order diagrams: the designations are the same 
aa in Fig. 1. 

region. Of course, the expansion will converge rapid- 
ly (and the selection will be well substantiated) in the 
region of small o! (Fig. 2). 

The parameter cr i s  not bare (it i s  not proportional to 
the coupling constant). At T <  To a small factor appears 
in front of the diagram only after summation over the 
band indices. Each term (with definite band indices) is  
by far not small a s  T - 0. For an arbitrary vertex 
diagram of order n, the number of such terms is  
2%" (k  = 2,3,4 i s  the number of fixed external indices 
of the diagram). Therefore before summing a ladder 
diagram we must verify that all  the non-ladder diag- 
rams of higher order a r e  small. We divide the vertex 
non-ladder diagrams into reducible and irreducible. 
The reducible will include not only the vertices that a r e  
not cut by two fermion lines, but also those which break 
up after the cutting into two ladder blocks that do not 
contain a small quantity -0. (In this sense the parquet 
diagram 3e is irreducible.) Obviously, it suffices to 
verify the smallness of the irreducible vertices. 

We consider now irreducible diagrams containing a 
ladder block "spoiled" by only one non-ladder element 
(examples a r e  Figs. 3a-c). The frequency parts of the 
diagrams 3a-b contain the sums 

(with summation over repeated indices). It can be veri- 
field (e. g. , by induction) that the following relation i s  
valid: 

where $(w)  = (iw *q)-'; a t  a =  a'= 2 it is necessary to 
reverse the sign of 5 in the upper line of the right-hand 
side of (20). 

At T=O, the sums (19) reduce by virtue of formula 
(20) to integrals of the product ofg' org-  functions along 
the imaginary w axis; these integrals vanish, since a l l  
the poles lie in the right (or left) complex half-plane. 
At T # 0 the sums (19) a r e  represented by the integrals 

along the contour C that encloses the real axis. The 

sum of all  the simple residues in (21) cancels out. This 
is easy to verify by noting that it i s  equal to zero a t  
T = 0, and the temperature dependence of an individual 
residue is  given by tanh(q/2T). The sum of residues 
of order n i s  proportional to the derivative 

Since the n-th order residue appears when the arguments 
of n Green's functions coincide in (201, the resultant 
n - 1 Kronecker symbols 6, ,# reduce the summation over 
the corresponding frequencies to multiplication by T, so 
that the factor l / F 1  in (22) cancels out a s  a result of 
this summation. A similar analysis shows that the dia- 
grams 3c a r e  likewise proportional to the parameter 
a, which appears, after two summations over the f re-  
quencies, in the form of the combination 

cth (q / T )  -th (q / 2 T ) .  (23) 

The vertices containing more than one-ladder element 
(as the diagram 3e, made up of two ladders) can be 
treated similarly. It i s  sufficient to separate a chain 
of Green's functions of type (19), where the summation 
is  over the frequency which does not enter in the argu- 
ments of the other Green's function (this i s  possible for 
the diagram 3e). An alternative is  to separate two 
chains connected by a common frequency argument 
(as in diagram 3c), and then the small param- 
eter appears in the form (23). This procedure can be 
used, at  least in principle, to treat any diagram. Al- 
though it i s  impossible to prove in general form the 
smallness of any irreducible vertex, there a r e  no 
grounds whatever to expect the appearance of some 
special vertex that does not have a small factor, since 
a l l  the considered non-ladder diagrams (including those 
that a r e  far from small in other e-h systemsg.") a r e  
proportional to the parameter a!. Since a! = O  in the 
limit of zero temperature and density, the amplitude for 
exciton-exciton scattering (described by non-ladder 
diagrams of the same structure a s  in the case of a 
three-dimensional exciton gas") turns out to be zero. 
The considered exciton gas is consequently ideal (neg- 
lecting transitions to higher levels), a s  will be con- 
firmed by an analysis that follows. This conclusion 
may seem unexpected, since the Pauli principle calls 
for the excitons to be repelled a t  distances r cr,. In 
addition to repulsion, however, exchange attraction is  
also present. Both interactions a r e  automatically taken 
into account in the formalism developed, and the de- 
duction is  that their contributions to the scattering am- 
plitudes cancel out completely. This conclusion is con- 
firmed by the equality of the exciton binding energy Eo 
to the energy (per pair), calculated exactly in accord 
with the parameter ?-,/ao, of a closely packed e-h sys- 
tem (when all  the places on the lower Landau level a r e  
occupied: N=No, i .e. ,  p = l ) .  

4. CALCULATION OF THE VERTEX FUNCTION. 
EXCITATION SPECTRUM 

To find the total vertex, neglecting the corrections in 
a, we must sum the ladder diagrams. In the trans- 
verse-momentum representation we obtain for the ver- 
tex the linear system 
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r , ,  ,(k, e) =-Eoy (k) { 6 a p S p r + E o .  rv (e) r,. v (k, 8) 1, (24) 

where 

The system (24) breaks up into four systems of four 
equations each (one of them is  shown in Fig. 4); 

1 + E1y E,y E,y -E3y 

= - EOY (k) e , ~  E,*Y 1 - s a y  

(26) 
The interaction (11) is  designated here and elsewhere 
a s  y ry(k), a r(&, k). We used in (26) the identities 

where 

In the calculation of the sums (25) we have discarded 
the corrections -a. Solution of the system (26) yields 
the functions 

Vertex functions with other band indices a r e  obtained 
from (28)-(30) with the aid of the symmetry relations 
(27). The analytic continuation of (28)-(30) into the 
upper & half-plane is  trivial. As a result we obtain 
the elementary excitation spectrum: 

We have used here the fact that, accurate to a, the pa- 
rameter q =  Ed2.  The dispersion law (31) coincides 
exactly with the dispersion law of an individual exciton6 
(reckoned from the binding energy -Eo), thus confirm- 
ing again that the exciton gas i s  ideal. Asymptotic 
forms of O (k) a r e  

FIG. 4. Bethe-Salpeter equation for the vertex function: the 
black and white circles correspond tohe band indices a= 1 
and a = 2, respectively. Summation over cr= 1 and 2 is  carried 
out in the nodes with sharkd circles. The equations given are 
for the functions r,,,,B. The equation for the remaining I' 
functions constitute similar systems. 

(k -- k r ,  in ordinary units.) 

The vertices (28)-(30) have (after analytic continua- 
tion in & ) poles also at  & = -$(k). This is  a consequence 
of the symmetry of the system with respect to the inter- 
change p s 1 - p .  At small p the excitations a r e  ordin- 
a ry  excitons. At small 1 - p ,  when the lower Landau 
level is  almost filled in the conduction band and almost 
empty (i. e. , filled with holes) in the valence band, it i s  
convenient to reckon the energy from that of the fully 
occupied Landau level. The excitations a r e  then "anti- 
excitons" with negative dispersion law, made up of a 
hole in the conduction band and an electron in the 
valence band. 

5. CORRELATION ENERGY 

We analyze now the diagrams for the polarization 
operator. The single-loop operator 

i s  small in the parameter a. (The wave functions X, 
a re  referred here to the Green's functions, and hence 
to the operator Po rather than to the interaction lines. ) 
Since the ring diagrams diverge a s  q - 0, they must be 
summed regardless of the factor a. The sum of these 
diagrams yield the correlation f ree  energy in the ran- 
dom-phase approximation (RPA): 

Equation (341, unlike the standard expression, con- 
tains no summation over the frequencies, owing to the 
factor 6 ,, in (33). Simple transformations yield 

The energy (35) is exponentially small. It i s  clear 
beforehand, however, that the ladder corrections to 
the polarization operator (33) must be substantial. The 
first correction to Po (Fig. 5a) turns out to be -aZ/Eo, 
and the contribution made to the energy by diagrams 

FIG. 5. Ladder corrections to the polarization operator (b, d) 
and the corresponding first approximations (a, c). The main 
contribution to the correlation free energy is  given by the 
firstrapproximation diagrams in the operator of Fig. 5d, which 
is shown in the bare notation in Fig. 4. The contribution made 
to the energy by the diagrams with the operator of Fig. 5b is  
neglected. 
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with this polarization operator is negligible even com- unity) momenta from the large o n e ~ . ~ )  
pared with (35). ~ i a ~ r a m  5a is  the first approximation 
to diagram 5b. In the latter the vertex inset depends 
only on the frequency E, and a summation, independent 
of E, of the external Green's functions over the frequen- 
cies o and o' yields, just a s  in the first-order approxi- 
mation, a factor a2/Eo. The ladder inset 5d, in contast 
to that considered above, is  quite significant. The po- 
larization operator of Fig. 5d is given in the k-repre- 
sentation by 

where, a s  in the preceding sections, the wave functions 
a r e  referred to the bare vertices. After rather un- 
wieldy summations we obtain from (361, using (27)-(301, 
the expression 

Just a s  when the RPA diagrams a r e  considered, it i s  
convenient to refer the wave functions to the polariza- 
tion operator rather than to the bare vertices. Then the 
correlation free energy is  expressed in terms of the 
operator 5d by the following formula: 

where the polarization operator is  

Here l I ( ~ , k ,  A) i s  given by (37), where each interaction 
function y i s  multiplied by the coupling constant A( Jo i s  
a Bessel function). 

The main contribution to the energy (38) is  made by 
the first approximation in P(q) (i. e. , by the sum of 
diagrams 5e). The formula for the free energy can be 
written in this approximation directly. in the k-repre- 
sentation:) without calculating the operator P(q) (39): 

After summing over the frequencies and integrating with 
respect to the coupling constants we obtain from (40) 

(41) 

At k>> 1 (when y<< 1) the integrand is -E,,a2y2/96T 
- 0 . 0 1 ~ ~ a ~ / k ~ ~ ,  so that a contribution proportional to 
Eoaz is  accumulated a t  large momenta k. 

The main contribution to the energy (41) is  made by 
integration over the small momenta k S TIE,<< 1. Neg- 
lecting the corrections -aZ in the integral over the 
small momenta, we obtain 

and the result does not depend (accurate to a2)  on the 
upper limit that separates the small (compared with 

It i s  important that the free energy (42) is  independent 
of density, a s  a r e  also any other correlation corrections 
to the f ree  energy [including the RPA energy (3511. 
Consequently, all  corrections to the chemical potential 
2/.1= -Eo a r e  equal to zero. This is  precisely why it 
was convenient to employ in the technique the variables 
N and T (rather than p and TI, for then the sum of the 
vacuum diagrams yields the free energy (and not the 
a-potential). 

The free energy (42) can be obtained a s  the energy of 
the long-wave (with momenta k << 1) excitations (32) if it 
i s  assumed that they a r e  described by Bose statistics. 
(Of course, short-wave excitons do not obey Bose statis- 
tics: if this statistics is applied to the entire spectrum 
(31) we obtain not the correct (converging) formula (411, 
but an expression that diverges a s  k - .o. )') Consequent- 
ly, neglecting transitions to higher Landau levels, the 
system behaves indeed a s  an ideal Landau gas of quasi- 
zero -dimensional excitons , and the long-wave proper - 
ties of this gas coincide with those of an  ideal two-di- 
mensional Bose gas. The free energy (42) is the energy 
of the above-condensate excitations, which vanishes a t  
T=O. This energy i s  small (in the parameter T/Eo 
st) compared with the Hartree-Fock free energy3: 

where F,,,(p) is the free energy per e-h pair at  T 2- To: 

F,r(p, T) =-E8p+2T[ln p+ (p- ' -1)  In (1-P) 1, (44 
and po(T) is either solution (of the two) of Eq. (13) for 
p at fixed T -( E0/4. 

At T=O, when al l  the correlation corrections a r e  
equal to zero, Eqs. (43) and (44) a r e  exact. Despite 
the smallness of the free excitation energy (42) com- 
pared with the energy (43), a number of thermodynamic 
properties a r e  determined precisely by expression 
(42). Thus, the specific heat at  constant volume, deter- 
mined by the energy (43), i s  exponentially small if the 
theory (18) i s  valid, whereas the specific heat of the 
above-condensate excitations, determined from (42), i s  
proportional to T: under condition (9) the correlation 
pressure turns out to be larger than the Hartree-Fock 
pressure. 

6. TWO-DIMENSIONAL DIVERGENCES 

We have ignored so far the divergences in the consid- 
ered two-dimensional system. It is clear from the cal- 
culation of the correlation energy that a s  k - 0 the mo- 
mentum tends to have a Bose distribution function 

with a zero chemical potential 5. (This result can be 
easily obtained directly. ) Since the function (45) is  not 
integrable at  the lower limit a t  T = 0 (in two-dimension- 
a l  space), no excitation condensate can exist at  nonzero 
temperatures. Just a s  in an ideal two-dimensional 
Bose gas, the condensate is  destroyed by the fluctua- 
tions of the density rather than those of the phase of the 
order parameter. (In the system considered here this 
is true only if the corrections in r,/ao a r e  neglected. ) 
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No phase transition whatever i s  therefore possible in 
the system in this approximation. 

Expression (42) for the correlation free energy, ob- 
tained in the preceding section (under the assumption 
that the condensate exists) i s  valid despite the absence 
of a condensate. The point i s  that the chemical potential 
I; of the elementary-excitation gas, while not zero (as 
w o u l d h  in the case of condenpation), i s  small  a s  T - 0, s o  that the energy (42) remains constant accurate 
to exp(-E,,/T). Since the condensate i s  destroyed by 
long-wave fluctuations and the free energy i s  deter- 
mined only by long-wave excitations, it suffices to de- 
monstrate the validity of (42) for a n  ideal Bose gas with 
the same long-wave properties a s  the considered ex- 
citon gas. The chemical potential I; and the free energy 
F of an ideal gas with a spectrum E,,k2/4 and a distri- 
bution (45) a r e  given by 

~ - ( ~ T I E o ) ~ I ( - E I T ) ,  (46) 
F---2NoT'Eo-ig~(-~/¶') + t N o p .  (47) 

where - 
g+ (z) = C e-=rn-* 

n-I 

i s  an integral Bose function. At p > we must replace 
p in (46) and (47) by 1 -p. At T <<E,,p [or respectively 
T<< Eo(l  -p)], using the asymptotic formulas12 for g,,(x), 
we obtain f; from (46) in the form 

E=-T exp (-pEol2T), 

after which expression (47), accurate to exponentially 
small terms,  goes over into (42). 

In a number of thermodynamic quantities, the singul- 
arities (that would exist in the case of condensation) 
a re  preserved in a "smoothed" form. Thus, the iso- 
thermal compressibility and the specific heat c, a r e  
finite also a t  T < To, but increase exponentially under 
the condition (18) (and become infinite a t  T =  0). The 
specific heat c, has a t  T - To a maximum (rather than 
the kink at T = To in the case of condensation). 

7. CHANGE OF LONG-WAVE CHARACTERISTICS 
WHEN HIGHER LANDAU LEVELS ARE TAKEN INTO 
ACCOUNT 

Inclusion of the higher Landau level leads to weak non- 
ideality of the exciton gas and this changes qualitatively 
i t s  long-wave (and hence low-temperature) behavior. 
Since the corrections in the small parameters r,/ao 
and a a re  additive, we consider a t  present only the 
corrections connected with transitions to higher Landau 
levels, and assume that a = 0. 

It is  easily seen that at T = 0 each order in the inter- 
action yields a factor r,/ao in the diagrams for the 
correlation energy so that it suffices to retain diagrams of 
the lowest second order. The contribution of these diag- 
rams to the energy (per e-h pair)  i s  

and this energy does not depend on the e-h pairing. 
(Here a, = O .  13r,/a0. ) It must be recognized that the 
Hartree-Fock energy (43) also changes when account 

i s  taken of transitions -to higher levels. The left-hand 
side of the compatibility Eq. (15) must be multiplied 
by (1 + a,), where a, = 0. 29r,/ao, and the chemical po- 
tential of the exciton phase changes a s  a result. The 
total energy change a t  T = 0 i s  

The compressibility a t  T = 0 i s  therefore 

The compressibility thus turns out to be finite also 
a t  T = 0, but still quite large-inversely proportional to 
the small parameter r,/ao. One can therefore expect 
to  observe in experiment a practically critical opal- 
escence that increases with increasing H and with de- 
creasing T. T-he sound velocity c i s  obtained from (49) 
in the form 

C-EorH[p(at-al )  1'''. (50) 

At T = 0 the spectrum and the correlation energy can 
be calculated from the same diagrams that were used 
to calculate them above without allowance for the cor- 
rections in r,/ao. It is clear beforehand, however, 
that the spectrum i s  acoustic a t  momenta kr,Sko<< 1 
and quadratic in the interval ko S k r  ,S 1. The order of 
magnihde of the momentum ko i s  determined by the en- 
ergy-matching condition ck0 - E&d,  whence kor, 
- (pr,/a,)"2. At temperatures T Zck, the free energy 
i s  determined by the quadratic part of the excitation 
spectrum, but formula (42) remains valid for it. At 

the free energy i s  the energy of the acoustic excitations, 
for which we obtain in the usual manner 

[1;(3) = 1.20'is a Riemann zeta function]. 

In the region (51) the specific heat determined from 
(52) i s  quadratic in the temperature, and a t  ckoS T 
s E d 4  the growth of the specific heat becomes linear 
in accord with (42). The temperature (51) that separ- 
ates the quadratic growth from the linear decreases 
with increasing H. 

At k r ,  S 1 the momentum distribution function re -  
mains, naturally, of the Bose type, but a t  k S ko<< r-,' 
it has an acoustic spectrum. Long-range order in the 
system i s  impossible, but, just as in a weakly ideal 
gas, it is  destroyed by fluctuations of the phase of the 
order parameter. A topological phase transition there- 
fore becomes possible, with a change of the asymptotic 
behavior of the correlation functions from exponential 
to power-law , in analogy with the transitions in other 
degenerate two-dimensional systems. 

The low-temperature characteristics of the transi- 
tions a r e  determined entirely by the low-lying excita- 
tions, which in the considered system a r e  of the Bose 
type (accurate to exponentially small quantities). 
Therefore the formulas that describe the transition coin- 
cide with those for two-dimensional Bose systems.718 
There is only one substantial difference, due to the al- 
ready mentioned symmetry of the considered system 
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re la t ive  to  replacement  of p by 1 -p. [At f i r s t  glance 
th i s  symmetry  i s  violated in  Eq. (491, which descr ibes  
t h e  cor rec t ions  in r,/a,, s ince aI # a2. This  inequal- 
ity, however, e n s u r e s  a correct (positive) s ign  of the  
compressibi l i ty  of the exciton g a s  and  a negative s ign 
of the  equal (in absolute value)  compressibi l i ty  of the 
gas of antiexcitons, with negative dispersion law.] T h e  
collective acoustic excitations can b e  regarded  as ex- 
ci ta t ions in a n  exciton g a s  at s m a l l  p or  in a n  antiexciton 
gas at s m a l l  1 -p. The  formula for  t h e  t ransi t ion tem-  
p e r a t u r e  can  therefore be  wri t ten in  the f o r m  

H e r e  p,=N,/N, is the superfluid density. 

At low T, the  only ones  fo r  which (53) i s  valid, we 
have pa= p. A plot of T, is shown in Fig. 2,  f r o m  which 
it i s  s e e n  once m o r e  that (53) i s  valid only at p ( l  - p )  
<< 1. Since the speed of sound does not en te r  in (531, 
th i s  expression descr ibes  formally also the  case of a n  
ideal  g a s  (c = 0). In real i ty  the  t ransi t ion vanishes as 
c - 0. T h i s  follows formally f r o m  the vanishing, at 
c = 0, of the cutoff p a r a m e t e r  r, =c/T in the asymptotic 
f o r m  of the  correlat ion function. Physical ly ,  owing to 
the  infinite growth of the  size and of t h e  d e c r e a s e  of the 
energy of the  vor t ices  in the  Bose g a s  as c - 0:' it i s  

clear that  a topological phase t ransi t ion i s  impossible  
at c = O .  

')1n Fig. 1 there a r e  no diagrams describing the Hartree-Fock 
(exchange) corrections to the Green's functions. The sum- 
mation of all  such diagrams2 leads to replacement of po in 
the Green's functions (4) 0, where EO= -cop is  the renor- 
malizatioa of the energy of the lower Landau level. How- 
ever, will replace +io also in the condition (7), so that ex- 
pression (6) (and the other estimates of that section) will 
not change if the Hartree-Fock approximation (without e-h 
pairing) is taken to be the zeroth approximation and the bare 
 ree en' s functions a re  replaced by Hartree-Fock functions. 

')~ivergences a t  small momenta in ring diagrams (of the type 
shown in Fig. lb) a re  eliminated by summing these diagrams 
in all orders, a s  will be shown in Sec. 5. 

')we emphasize that the selection of diagrams in accord with 
the parameter (9) a t  T  a T o  is valid up to T =  To. At T 
= (p) the parameter (Y is equal to 1 only a t  p = 1/2 (when 
= ~,,/4), and a t  all  other p < 1 we have cr < 1, with a- 0 a s  
p -0 or  l - p  -0. 

4 ) ~ e  note once more the full equivalence of the k and q spaces. 
The operator P could be obtained in the q representation by 
taking the upper insets in the form shown in Fig. l e .  The 
energyF would then be given by Eq. (38) in terms of the o p  
erator P in the k representation. The interchange of the re- 
presentations reduces here to the transformation qsk. 

')l'he contribution of any finite number of vacuum ladder dia- 
grams (Fig. 5e) is - ~ , , c u ~ .  The exponentially small factor 
is offest by summing the entire ser ies  of such diagrams. 
But even the first diagram of the series makes a contribution 
of the same order a s  FXpA to the free energy. 

6)That Bose statistics does not hold for excitations with krZl 
is  clear from the following considerations: just a s  in the 
three-dimensional case, the distance between the electron 
and hole constituting the exciton is equal to k (kr; in the us- 
ual units), so that a t  k 2 1  the Fermi character of the elec- 
tron and of the hole that make up the exciton manifests it- 
self. 
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