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We consider nonlocal corrections to the hydrodynamical equations of He I1 caused by long-wavelength 
fluctuations. Using the hydrodynamical equations of He I1 we obtain an equation for the matrix of the binary 
correlators of fluctuating quantities. We consider two frequency regions: o <c: /r and c: /r<o <c: /r (r is 
a combination of kinetic coefficients). In the first region the matrix equation reduces to the set of the usual 
kinetic equations. In the second frequency region one must solve the matrix equation. We find the fluctuation 
corrections to the kinetic coefficients in both frequency regions. Using the expressions for those corrections 
we find the contribution of the long-wavelength fluctuations, which has anontrivial frequency dependence, to 
the velocity and damping of first and second sound. In the first frequency region this contribution is small, 
but in the second one there are terms which diverge near the A - point and give grounds for expecting an 
experimental observation of the effect. We show in an Appendix that in the low-frequency region the kinetic 
matrix equation reduces to the set of the usual kinetic equations for any system for which the diiipationless 
hydrodynamical equations are in Hamiltonian fonn. 

PACS numbers: 67.40.Pm. 67.40.M~ 

lNTRODUCTlON problem of the search for the hydrodynamical equations 

We consider in the present paper non-local correc- 
tions to the hydrodynamical equations of He 11 which 
are  caused by long-wavelength fluctuations. We under - 
took a study of superfluid helium in connection with the 
important information which follows from the interpre- 
tation of hydrodynamic processes in He 11. This problem 
has been studied earl ier  by Andreev' for a normal 
liquid. 

We assume in what follows that there is in HeII a 
macroscopic motion with wavevector k and frequency w. 
We understand by long-wavelength fluctuations hydro- 
dynamic fluctuations with characteristic wavevector 
q>> k, and by short-wavelength fluctuations the phonons 
and rotons. We a r e  dealing with temperatures 2 1 K so  
that the short-wavelength fluctuations have wavelengths 
-a (a is the atomic size). 

The short-wavelength fluctuations make a basic con- 
tribution to the thermodynamic quantities and corres- 
pondingly determine basically the local hydrodynamical 
equations. However, the short-wavelength fluctuations 
contribute non-local terms -&a to  the equations, while 
the long-wavelength terms a r e  -k/q so  that the contri- 
bution of the latter to the non-local corrections dominate, 
as  qa<< 1. The present paper is devoted to  a calculation 
of these corrections and an elucidation of their role. 

HYDRODYNAMICS OF He I I  

It is well known that the hydrodynamic state of HeII 
is characterized by the locally given densities of energy 
E, momentum g, mass p and the superfluid velocity v,. 
Correspondingly, the hydrodynamical equations a re  a 
se t  of conservation laws and an equation for the super- 
fluid velocity: 

aElat+GQ=O, ag,lat+OIIIe=O, 

~ ~ / a t + v g = o ,  av.iat+vm=o. (1) 

By virtue of the Galilean invariance the mass flux den- 
sity is the same as the momentum density s o  that the 

reduces t o  the construction of the energy flux density Q, 
the s t r e s s  tensor I I i ,  and the potential @ for the super- 
fluid velocity. To do this it is necessary to know the 
way the entropy density S depends on the variables en- 
umerated above. The differential of the entropy density 
S has the form 

TdS=dE-pdp-v,dg-jdv.. (2 

Here T is the temperature, p the chemical potential, 
and v, the normal velocity. By virtue of the Galilean 
invariance 

j=g-pv,. (3) 

For the pressure P we have the following equation: 

P = pp+TSS-v,g-E. (4) 

The dissipationless t e rms  in Eqs. (1) have the following 
form: 

Q,= (p+E)v,+~lj, 6.=~+u.un, 
n , , , = P f i i k + ~ . , g , + j ~ .  (5) 

 oreo over: there a re  dissipative terms in Eqs. (1) 
which can be written as follows: 

Q~=-xVT-B~(VV~)-$~(V~),  
Od=-/j2V 111 T-cSVj-flVvn, 

nd,,=-l1 (v,v,,+ O~V,~-~I~G,,VV,) 
-6tr(BtV In T+5,Vj+5,Vvr,). 

(6) 

Here TJ is the first  viscosity coefficient, 5 the second 
viscosity coefficient, and u the thermal conductivity CO- 

efficient. Moreover, we took into account the B coef- 
ficients which in the usual case a r e  small, as  they are  
proportional to the relative velocity. However, we re- 
tained these coefficients, bearing in mind the fluctuation 
corrections considered below. 

Up to terms of third order in the relative velocity 
w =v, - v, the expans ion of the energy density has the 
form 

P- 
(7) 
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Here p, = p- p, is the superfluid mass density, p, and Eo 
a r e  functions of p and o =S/p. In this approximation 

Up to first  order in r the temperature and pressure 
can be expressed in t e rms  of Eo as follows: 

In the same approximation the specific heat at constant 
pressure is 

It will be convenient for us ts introduce the following 
dimensionless parameters 

a l n p  a h a  
T = - ( - )  a l n o  , z = - ( - )  . 

a l n p  T, (1 1) 

The first of them, y - lo-', is small  by virtue of the 
f a d  that the thermodynamic quantities of He 11 depend 
weakly on the temperature. With the same parameter 
is also connected the anomalous smallness of the thermal 
expansion coefficient of He 11: 

In what follows we shall take y to  be the small  expan- 
sion parameter. Taking the smallness of y into ac- 
count the expressions for the velocities of f irst ,  c,, and 
second, c,, sound in He11 have the formZ 

a p  p. TO' ( )  , c: - - - .  
P. CP 

We shall consider temperatures 2 1 K for which the 
ratio ci/cf - lo*, which is also connected with the 
smallness of y. We note that Eq. (13) for c, is t rue  up 
t o  terms in y2. 

We shall express the answer in terms of the following 
dimensionless parameters : 

y, = I  -3 In p./a In p, y,=a Inp,/a In o, 
pi-a In c,/a ~n p, cp,=a ln c,ia ~n a, (14) 

ps=a In CJa ln p, cp,=a In C d a  In a. 

We also introduce their linear combinations: 

We note that none of the parameters introduced a re  
small  of order y, except cp, -7. 

FLUCTUATION CORRELATORS 

We shall look for equations for the mass,  energy, 
and momentum densities and for the superfluid velocity 
taking long-wavelength fluctuations into account. We 
shall denote averages over them through the 
brackets (. . .). We shall  denote by p, E, g ,  and v, 
average quantities and by the letter 6 their fluctuations. 
Thus, by definition 

<6p)=(6E)-(6g)=(6v.) =O. 

This equation guarantees us the natural conditions under 
which the integrals of p, E, and g have the meaning of 
the total mass, energy, and momentum and also curl 
v, = 0. 

T o  find the fluctuation corrections to @, Q, and II,, 
we must expand them in the fluctuations bp, 6E, 6g, and 
8v,, and average. When averaged the linear terms 
vanish and the quadratic one gives the required fludua- 
tions. By virtue of the assumed smallness of the wave- 
vector k we shall neglect the dissipative t e rms  in the 
expansions of cp, Q, and q,. We find from (5) 

We have introduced in these formulae instead of 6E a 
more convenient quantity-the fluctuation in the entropy 
density1) 6s. 

The fluctuation corrections to the transfer terms a re  
thus determinedby the binary correlators (6p, 6S, 6v,, 6g), 
and we shall denote this se t  by a single symbol a, We 
introduce the following notation for the matrix of binary 
correlators : 

Als(rc, ra) =(a,(rl), 46(n) ). (17) 

As usual, we change t o  the variables r =$(r, +r2) and 
r, -r2 and Fourier transform with respect to the latter 
variable, denoting the corresponding wavevector by q. 
We understand in what follows by A the function A(r,q). 
As regards the corrections to the hydrodynamic equa- 
tions, it follows from (16) that they a r e  determined by 
the matrix (17) with coincident spatial variables : 
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We consider the equilibrium expression for the 
matrix A,, the components of which we shall list a s  
follows : 

The matrix B, refers here to  the correlators of the 
scalar quantities (bp, 69, its components a r e  scalars;  
the matrix B, refers  to the correlators of vector quan- 
tities (6v,, 6g), i t s  components a r e  second rank ten- 
sors; correspondingly the matrix B2 r e fe r s  to corre- 
lators of scalar and vector quantities, its components 
a r e  vectors. 

It is well known3 that the classical equilibrium dis- 
tribution of fluctuations is  given by the function 

In the quadratic approximation this distribution function 
gives the following equilibrium expression for  the matrix 
B (written down up to terms linear in the velocities): 

(20) 
We have introduced here the following notation: 

6,2 =%, 6,k1=6,h -PtQ*, W ,  II=6irll~k, w ,  L=6 ,h1~k .  (21) 
(I (I' 

EQUATION FOR THE CORRELATORS 

We now consider the equation of motion for the matrix 
A. Expanding (5), (6) up to first  order t e rms  and chang- 
ing to the variation in the entropy density we find the 
equation 

- + Vj(Mi=p~e) = Vj(r,ra~V@n) + fa. 
a t  (22) 

Here the fa  a re  the random forces and in the dissipative 
term we have dropped terms containing the gradient of 
r which a r e  unimportant for what follows. The matrices 
M,,, and I'jraB have the following form: 

0 0  0 

(23) 
where 

P mzlj = ( ~ 1 + y r - I ) ~ w j - 0 -  u.,, m3,ji, = (u.,+w. ( 1 - Y X - Y Z )  )6ii, 
P .  

with 
P* 1 

r s s j k d =  - ( i s ~ - f ~ ) 6 j , 6 k , , ,  r3,,kn, = --(f,-p,f3)6,i6h,, 
P .  P .  

11 1 
~ L L  jhl, = 1 6j& + - ( i2 -ps i i  + 

P .  P .  3 

The components of a a r e  here numbered a s  follows: 

T o  find the equation for A we differentiate the matrix 
(17) with respect to  time and use (22) to  replace the 
tirne-derivatives under the averaging sign. Changing 
then to Fourier components with respect to q and ex- 
panding the equation obtained up to first  order in k/q 
we find 

Here 6A =A - A, is the deviation from the local equili- 
brium value. For the correlator (fa, a,) we took the 
local function which guarantees the relaxation of the 
matrix A to  its equilibrium value. 

We linearize Eq. (25) with respect to  8.4 and transfer 
all terms with 6A to the left and the others to  the right- 
hand side. The deviation 6A is small  inasfar as devia- 
tions from equilibrium in macroscopic motions are  
small. In the linear case in which we a r e  interested 
the coefficient of 6A must thus be taken to be equal to 
their  equilibrium (homogeneous) values. Assuming that 
the macroscopic motion occurs with wavevector k and 
frequency w we find 

1 
io6A-qiq,rj,6A-qjq&ArihT - iq ,  (IM,GA-6AM;) - - Mjkj6A 

2 

We now perform a similarity transformation of Eq. 
(26), multiplying it from the left by the matrix and 
from the right by the matrix ET. The left-hand side 
then retains its form except for the substitution 

We choose the matrix 3 corresponding to the change 
from a, to normal coordinates :4 

(27) 
The first  two rows correspond to first  sound, the second 
two to second sound, and the last one to  vortex oscilla- 
tions. The transformation by means of the matrix (27) 
diagonalizes the matrix M: 

diag(EM8-I) =q-I ( C , ~ , - C I ~ ,  c~q,-czq, 0 ) .  (28) 
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The structure of Eq. (28) shows that on the left-hand 
side of the transformed Eq. (26) we must have the coef- 
ficients c,q, c2q in front of the off-diagonal terms of 
5 6 ~ Z ~ .  We shall assume that in the essential integra- 
tion region we have the inequality 

We shall give below the condition which this imposes on 
the frequency w. It follows from the inequality cl> c, 
that a relation similar to (29) occurs also for the first  
sound velocity. Moreover, we assume that q >> k - w/c 
s o  that on the left-hand side of the equation the coef- 
ficients in front of the off-diagonal elements of ~ 6 ~ 8 ~  
a r e  much larger than those in front of the diagonal ones. 
As all  component on the right-hand side of Eq. (26) a r e  
of the same order we reach the conclusion that we can 
neglect the off-diagonal terms in E 6 G T  when evaluating 
the fluctuation corrections. 

Therefore the only important t e rms  a re  
diag E6AE1 

= ( 6 n 1 ( q ) ,  6n , ( -q ) ,  a n ~ ( q ) ,  h n ~ ( - q ) ,  6t,h(q) 1. (30) 

The diagonal t e rms  a re  written down here, taking into 
account the structure of 8, bn, has the meaning of the 
distribution function of the f i rs t  sound fluctuations, bn, 
that of the second sound fluctuations, and 6f that of the 
distribution function of the vortex fluctuations. 

We now proceed to solving Eq. (26). We a r e  interested 
in the linear regime s o  that we must split off on the right- 
hand side of (26) the terms linear in the deviations (in 
the macroscopic motion) which is done starting from 
Eqs. (20), (23). After this V- ik; a s  regards the time- 
derivative, we replace it taking intoaccount the linearized 
Eqs. (1) in which we take into account only the dissipa- 
tionless contributions (5) a s  we assume that not only the 
contribution from the fluctuation terms (16), but also 
those from the dissipative terms (6) is small ,  which is 
guaranteed by inequality (29). After this we must per- 
form with the right-hand side of (26) the same pro- 
cedure as with the left-hand side, i.e., multiplying 
from the left by 8 and from the right by ZT. By virtue 
of the earl ier  indicated structure of 8 6Az we shall 
be interested only in the diagonal terms in the right- 
hand side thus obtained. 

Using the structure of the matrix EMS'' and also 
performing the transformation r- 5 r8-' we find that 
the diagonal terms of the transformed Eq. (26) have the 
following form: 

( ~ + z i ~ q a ) a f t h = T a , .  [ (u ,  - e ) l . v .  + --e,kj + T(v. , ,k lr+kl .~ . l l ) .  
P" P I 

(33) 

In these formuale occur the quantities r, and r, which 
determined the first  and second sound damping and 
which a r e  linear combinations of kinetic coefficients 
(we give below the explicit expression). 

It is well known4 that the dissipationless hydrodynami- 
cal equations of He11 can be written in canonical form. 
Hence it follows in correspondence with Appendix I that 
the equations for the distribution functions of the fludua- 
tions have the form of the usual kinetic Eqs. (~23). ') 
The dispersion laws for  f i rs t  and second sound must 
be taken in the approximation which is linear in the 
relative velocity :5 

Linearizing Eqs. (A23) and using (34) andthe equilibrium 
express ions 

leads to  the same Eqs. (31), (32). 

CORRECTIONS TO THE HYDRODYNAMICAL 
EQUATIONS 

Equation (30) for Z6AzT enables u s  t o  express the 
fluctuation corrections to the hydrodynamical equations 
in terms of the distribution functions for the first and 
second sound and the vortex motion fluctuations. Multi- 
plying (30) from the left by 8-' and from the right by 
(Z r ) - l  we canfind 6A after which we find, using (16), 
(181, 

We have introduced here the following natation for the 
integrals: 

F = j d r  sf,,. F.,, = j  dr  s fch .  
T o  evaluate the integrals (37) we must substitute the 

distribution functions (31) to  (33) into the integrands. 
We then get formally divergent integrals3) but their 
divergent part gives an unimportant renormalization of 
the transfer terms which is independent of w, k We 
shall therefore only be interested in the pole part of 
the integrals (37) which gives a nontrivial w, k depen- 
dence of the transfer t e rms  (36). We note that if the 
usual kinetic coefficients a r e  small by virtue of being 
proportional to the relative velocity, the fluctuation 
corrections to  j3 have the same order a s  the other cor- 
rections, as by virtue of the non-local nature p can be 
directed along the unique vector k/k:$ = Bk/k. 

As a result of the calculations described above we 
get the following express ions : 
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The functions 4%) a r e  introduced in Appendix 11, and 
we have denoted by a single prime functions with argu- 
ment c,k/w and by two primes functions of argument 
c2k/w. We note that all corrections to  the kinetic coef- 
ficients consist of three terms referring, respectively, 
t o  f irst  sound (with rl in the  denominator), t o  second 
sound (with r2 in the denominator) and to vortex fluctua- 
tions (with q/p. in the denominator). 

If we consider a sound wave a s  the macroscopic motion 
we have w -ck. It follows in that case from (31) to (33) 
that the integration in the integrals (37) is over a region 
with characteristic 

In the temperature range considered, 2 1 K, rl - r2 
-q/p,, s o  that the inequality (29) can be rewritten in the 
form 

which is the same a s  the condition that second sound is 
weakly damped at the frequency w. The same inequality 
(45) guarantees the satisfying of the necessary condition4) 
q >> k. 

FLUCTUATION CORRECTIONS NEAR THE A-POINT 

Above we considered that the condition w << c,q, c2q 
was satisfied. However, when we approach the A-point 
the second sound velocity decreases, which is connec- 
ted with the decrease in p, and the intermediate region 

therefore becomes larger and more interesting for us 
to  study. We shall study this region in the present 
section. The characteristic q which occur in the inte- 
grals a re  q - (r/w)lP s o  that the inequality indicated 
above can be rewritten in the form 

This condition means that it is no longer possible to 
assume that c2q is a quantity large compared to w s o  
that in the matrix Z ~ A Z ~  it is necessary to consider 
many more terms which we write in the form 

Performing now the transformation of 6A and sub- 
stituting (l6), (18) we find a generalization of (36): 

We have here introduced the notation 

Multiplying Eq. (26) from the left by E and from the 
right by ZT, substituting the expression (47) and using 
inequality (46) we can find the equations 

Here 

We note that the characteristic quantity in Eq. (53) is 
q - (w/r4)lD which a s  is clear from (561, increases in 
proportion to  (p,/p,)3f2 a s  the A-point is approached, s o  
that the justification of neglecting t e rms  with c,q re- 
quires a more detailed verification which shows that 
condition (46) is sufficient for neglecting the terms with 
c2q which might appear in Eqs. (51) to (53). 

Substituting the solutions (50) to (55) into (48), (49) we 
a r e  able to obtain expressions for the fluctuation 
fluxes. The integrals (49) a re  determined by functions 
given in Appendix 11. As a result we obtain for the 
kinetic coefficients fluctuation contributions which 
formally do not satisfy Onsager's symmetry principle. 
However, one can easily restore this symmetry by 
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using the zeroth order equations of motion for the 
deviations of various quantities from their equilibrium 
values.') Finally, the fluctuation corrections to the 
kinetic coefficients have the form 

Tolls cp? el" To'" 
cz = z ( i - i )  ( 2 a + j p ) + z ( i - i )  

k + - +  le,.(e.-e,.) 1 (57) X- 
0 I r3.la ri5 ' 

To'& I 1  To'" I  
q ==(i- i )  (x+s, )  + % ( i - ~ ) k y ~  p. (-+A 2pnrs* ) y .  -L- 3r,% 

We have dropped from these expressions contributions 
caused by first sound and by vortex fluctuations which 
have the same form a s  in (38) to (44). 

SOUND WAVES 

We now find the corrections t o  the speed and damping 
of f irst  and second sound which a r e  caused by fluctua- 
tions. We assume here that both the damping of sound 
waves and the fluctuation corrections t o  the dispersion 
law a r e  small  s o  that we may assume that in the zeroth 
approximation w = clk and w =c,k. 

We can find the first and second sound dispersion law 
expressions most simply from the linearized Eq. (22) 
by a method known from quantum mechanics. The t e rm 
with the matrix M which gives the first  and second 
sound velocities plays the role of the zeroth order 
Hamiltonian in the wave Eq. (22) and the term with the 
matrix r plays the role of the perturbing Hamiltonian. 
We can find the perturbing terms in the first  and 
second sound dispersion laws as the diagonal components 
of the kinetic term in the representation ill which Mq 
is diagonal, i e . ,  in the representation ErZ-'. As a 
result we obtain for the f i r s t  and second sound disper- 
sion laws corrections characterized by the following 
coefficients of kZ in the damping rates: 

We must distinguish in Eqs. (58), (59) between the 
contributions from the usual kinetic coefficients and 
the fluctuation corrections. When we considered above 
the equations for the matrix of the binary correlators 
of fluctuating quantities we had in mind Eqs. (58), (59) 
with the usual kinetic coefficients. We obtain the fluc- 
tuation corrections by substituting into (58), (59) the 
expressions for the fluctuation corrections to  the kinetic 
coefficients. 

Putting w =c,k for f irst  and w =c,k for second sound 
and using the expressions for the integrals J given in 
Appendix 11 we can obtain explicit formulae for the 

coefficients (38) to (44). Substitution of the expressions 
obtained into (58), (59) yields for the sound dispersion 
laws corrections which we express in t e rms  of the 
corrections to  the sound speeds and to the imaginary 
parts of the wavevectors : 

1 T a"' Ei = --- 
Mn el ~r;' " 

1 I' 0"' a ---- (60) 
I - 48n c,' zcp; 

Here 

We note that the corrections to  the f i rs t  sound disper- 
sion law a r e  written down up t o  t e rms  of orders (C,/C,)~ 
and to  the second sound dispersion law up to terms of 
orders (c, /c,)~". 

We can similarly evaluate the corrections to the first  
sound dispersion law near the A-point under condition 
(46). For this it is necessary to  substitute Eq. (57). As 
a result we get the same formalue (60), in which now 

We note that there is in this expression a term,  caused 
by r,, which diverges near the A-point like (p,/p,)3f2 
and which is connected withthe fluctuations inthe super- 
fluid velocity. 

CONCLUSION 

As seen, the expression for the first-sound distribu- 
tion function changes in the limit a s  p,- 0 to the expres- 
sion for the sound fluctuations distribution function in a 
normal liquid;' moreover, if we correct the expression 
for the vortex fluctuations in Ref. 1, we answer for the 
vortex fluctuations distribution functionalso changes into 
the expression for a classical liquid in the limit a s  
ps- 0. Correspondingly, the contributions to  the fluc- 
tuation corredions,  caused by first sound and vortex 
fluctuations, change in the limit a s  pa- 0 to  the expres- 
sion for a classical liquid. 

The situation is more complicated with the contribu- 
tion from the second sound fluctuations, since it cor- 
responds above the transition point to  a purely damped 
mode that is responsible for specific entropy oscilla- 
tions. Correspondingly, it is impossible t o  take the 
limit a s  p,- 0 in the region described by inequality (45), 
since (45) gives w - 0 as  ps- 0. It is also impossible 
to take the limit as  p,- 0 in the region described by 
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inequality (46), since the corrections obtained formally 
diverge a s  p,- 0. The reason is that we have neglected 
fluctuations in the absolute magnitude of the order 
parameter which become important in the immediate 
vicinity of the A-point. 

We now give estimates of the corrections to the 
sound dispersion laws at T =2 K for which inequality 
(45) gives 

We have for the relative changes in the velocities and 
in the imaginary parts of the wavevectors 

The change in the f irst-sound velocity is thus completely 
unimportant. As for the other quantities, the correc- 
tions to them for limiting frequencies of some tens of 
MHz a re  of order lom4. Such corrections are ,  apparent- 
ly, beyond the limits of possibilities of experimental 
techniques, but the non-trivial frequency dependence of 
these corrections enables us to hope for their experi- 
mental detection. 

The fluctuation corrections to the kinetic coefficients 
diverge in the region determined by inequality (46) be- 
cause r, tends to zero as  p,- 0; this enables u s  to hope 
for an experimental observation of the fluctuation cor- 
rections to the first sound velocity and damping near 
the X-point. 

APPENDIX 1 

THE KINETIC EQUATION 

We saw that in order to find the fluctuation corrections 
to the hydrodynamical equations we must solve the 
matrix equation for the matrix of binary correlators of 
fluctuating quantities. We show now that if the dissipa- 
tionless hydrodynamical equations a re  in canonical form 
the matrix kinetic equation reduces to the se t  of the 
usual kinetic equations for each type of long-wavelength 
fluctuations. 

Let ( p ,  8 )  be the complete se t  of canonically conjugate 
variables. It was shown in Ref. 4 that the Hamiltonian 
density for the hydrodynamical equations for He11 can 
be written in the form H(P,  Vp). T o  avoid unwieldiness 
we restrict ourselves to this form of function for the 
Hamiltonian density although the final answer-the form 
of the kinetic equation-is retained for any way that H 
depends on its variables. It is well known that the 
canonical equations for p , p  have the form 

a BH a a~ 
-p=v-, --p--. 
at avg at a p  

Linearizing these equations and adding kinetic terms 
and the random forces f, we find 
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Here y is the kinetic-coefficients matrix. 
(A2) 

We now introduce the binary correlators matrix: 

As usual, we change to r = +(r, +r,) and Fourier trans- 
form with respect to r, - r,. Denoting the Fourier com- 
ponent of the matrix (A3) by A(q) and using the fact that 
6p, 6p a re  real ,  the matrix A(q) is Hermitean. We de- 
fine another two Hermitean matrices: 

We note that J' = 1. 

We define now the matrix a: 

Q=JA. 

We consider the problem of the eigenvalues of the 
matrix a ,  which can be seen from (Al), (A2) to have 
the meaning of eigenfrequencies of local oscillations of 
the system. It follows from (A5) that the eigenvalues 
of a a r e  determined from the equation 

det (A-hJ)  =O. 

Because A and J a r e  Hermitian, this is an equation 
for X with real  coefficients, i.e., its solutions are  
either real  o r  pairs of complex conjugate numbers. 
The latter would indicate local instability of the system, 
s o  that we reject that possibility. Thus, all A a r e  real. 

Let now x, be the eigenvector of 0 which corresponds 
to  the eigenvalue X,. By virtue of (A5) we have 

Using the analogous equation for x,, the fact that A and 
J a r e  Hermitian and the A a r e  real, we find that 

Thus, when A, # X, we have the orthogonality condition 

We shall assume that the vectors x, a r e  normalized to 
unity: 

However, because of the indefiniteness of the metric 
given by J it is also possible to have for an eigenvector 
x' of the matrix Sa 

We introduce a vector z given by the conditions 

Here the x, a re  all eigenvectors of a, except x'. We 
consider the vector 2 ' :  
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equilibrium distribution 

We take the conjugate of this definition and multiply it 
from the right by Jx. As a result we get by virtue of 

(Al l )  

Comparing this with (Al l )  we a re  led to z' =hz. 

Therefore z, and also any linear combination of z and 
x', is an eigenvector of 8 corresponding to  the eigen- 
value A, i.e., the condition (A 10) can hold only when 
there is degeneracy. We introduce a linear combina- 
tion x" of the vectors x' and z, for which we have 

We note that x' and xN a r e  not uniquely defined. We can 
s t i l l  perform a rotation in the x', XI'-space: this is a 
linear transformation of x', x" which does not change 
the form of (AlO), (A12). 

By virtue of the definition of A and A we have the 
conditions 

From the second of Eqs. (A13), (A7), and J *  = -J it 
follows that if x is an eigenvector of Q(q) corresponding 
t o  the eigenvalue h then x* is an eigenvector of Q(-q) 
corresponding to the eigenvalue -A. The eigenvectors 
of n can thus also be renumbered as  xi(-q), i.e., 

When there is no degeneracy one can have only a single 
number with absolute magnitude unity in each row and in 
each column of the matrix S. Since x*(-q) corresponds 
t o  the eigenvalue -A(-q), the diagonal elements of the 
matrix S can be non-vanishing only, if for any eigen- 
values h(q) =-A(+). In particular, it follows from this 
that if the matrix A is diagonal, pairs of functions of 
q and -q stand on its diagonal. 

We now find the form of the matrix A  in equilibrium. 
It is well known that the local equilibrium fluctuation 
distribution is given by the function3 

Here R is a linear combination of AH and the deviations 
from equilibrium of the densities of the conserved quan- 
tities. In the quadratic approximation R is a positive 
definite quadratic form of the fluctuating quantities 
(6P, Vbj3): 

R= (6pT 1 f )  O(r. -iP) (::) + diu. 

In the approximation in zeroth order in k/q, A,,(q) 
determines the matrix a(r ,q) .  As the matrix is 
determined by a linear combination of the conserved 
quantities we have the relation 

which for the particular case @ = A  can be varied di- 
rectly. Thus, 52 and @ a r e  reduced simultaneously to 
diagonal form. Using this we find from (A15) the 
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Here the @, a re  the corresponding eigenvalues of @. 
We note that 

We differentiate now A with respect to time. Using 
the equations of motion (Al) and (A2) we can obtain a 
kinetic equation for A: 

aApt=-iQA+iAB+-'lr(Q, A) +'/,{A, a+) 
-raqtqklA-qjqkbArjr'. (A191 

Here 6 A = A  - A,, is the deviation from the equilibrium 
value, r the matrix of the kinetic coefficients and the 
{. . .} a re  Poisson brackets: 

We have written Eq. (A19) up t o  t e rms  in first  order in 
k / q .  The correlator containing the random forces is 
chosen such that it guarantees the relaxation of A  to its 
equilibrium value. By virtue of (A18) we can replace 
A- 6A in the first  two t e rms  on the right-hand side of 
(A19). 

We now introduce the Hermitian matrix B: 

A -- z a a n + .  
ab 

(A2 1) 

We substitute this expression into (A19) and multiply it 
from the left by xiJ and from the right by Jx,. Using 
the f a d  that the x, a re  eigenvectors of 52 and the ortho- 
gonality condition (A8) we find that the first  two t e rms  
on the right-hand side of (A 19) give 

If ha = h, (in particular, for the diagonal components), 
this difference banishes. If A,#A,, the presence of this 
term leads to  the fact that the component B,, i s  small  
of order w/h (let us say,  or order w/cq  in HeII) a s  
compared to  the diagonal ones; in what follows we 
shall neglect these components. The diagonal t e rms  of 
the matrix B we shall denote by n-they a re  real  be- 
cause of the Hermiticity. In the degenerate case the 
off-diagonal terms of B a re  of the same orders as the 
diagonal ones. In that case we perform a linear trans- 
formation of the x, which gets rid of these off-diagonal 
terms. This is, however, impossible under condition 
(A10). Retaining (AlO), (A12) we can reduce the cor- 
responding terms in A t o  the form 

By virtue of the Hermiticity of B the quantities n' and 
n" a re  real. 

We now find the equation for the n, which have the 
meaning of distribution functions for the fluctuations. 
If we perform the operation with Eq. (19) which we 
described above, the derivatives of al l  x, except x,, 
cancel in the equation we obtain for n, by virtue of (A8). 
The time-derivative in (A19) gives the following term 
with derivatives of x,: 
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It vanishes a s  the terms in the brackets combine into 
the derivative of (A9). Similarly all other terms with 
derivatives of x, cancel, and we get for the n, the usual 
kinetic equation 

Here I?, is a diagonal component of the matrix l?. 

The situation is somewhat more complicated if there 
a re  eigenvectors satisfying condition (Hi€)). In that 
case, after substituting (A22) into (A19) we multiply the 
ensuing equation to the left by x " ~ ,  to the right by JX', 
and add to  it the same multiplied to  the left by X"+J and 
to the right by Jx". The terms with derivatives of other 
x, cancel by virtue of (A8). One can easily check that 
terms with derivatives of x', x" also cancel by virtue of 
the normalization conditions (AlO), (A12) and we a re  
led to the same kinetic Eq. (A23) for n'. Similarly, 
multiplying (A19) from the right by JX", to the left by 
~c" J and subtracting (A 19), multiplied from the left by 
X"+J and to the right by JX' we get for n" a kinetic equa- 
tion which is the same a s  (A23). 

APPENDIX 2 

We give the express ions for the integrals: 

In the case x >  1 we choose for the functions containing 
the root of 1 - x the sheet of the complex plane on which 
((-1) = i. 

')we must bear in mind that <bS> * 0. 
')The inequality (29) guarantees that this equation to satisfied 

in this case. 
3 ) ~ f  we take the quantum nature of the fluctuation distribution 

functions into account, the divergence of these integrals 
vanishes. 

')we note that it  is impossible to evaluate by the method deve- 
loped here the corrections to the dispersion relation of the 
vortex oscillations a s  i t  follows from (33) that for the inte- 
gration region q "((4, /Q)''~ - k is  characteristic, i. e., the 
inequality q >> k is not satisfied. 

' ) ~ l t h o u ~ h  such a procedure is not unique, it  does not affect 
the physical results in the region where the theory is  appli- 
cable. 
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