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The resistance force acting on ions near a surface and due to excitation of surface waves is calculated. The 
cases of a surface anion, a vortex ring, and ions beneath the surface, vibrating and moving parallel to the 
surface, are considered. The obtained resistance force has a nonlinear dependence on the velocity of the body, 
on the immersion depth, and on the geometric dimensions. It is shown that in the case of ions beneath the 
surface stationary motion in suficiently strong clamping fields (E, > 1 cgs esu) is possible at not all velocities. 

PACS numbers: 67.40.Pm, 67.40.Vs, 66.10.Ed 

Calculations of the mobility of charged particles near 
the surface of liquid helium were made in a number of 
papers (see the reviews of Shikin and Monarkha'.'). In 
these papers were calculated the electron mobility in- 
duced over a liquid-helium surface by scattering from 
surface oscillations, and also the surface-anion mobility 
due to energy dissipation in the volume of the liquid 
helium. For a n  ion beneath the surface, calculations 
were made of the friction force exerted on the ion bv 

of the body a r e  decreased account must be taken of the 
viscosity forces, which a r e  small  if the Reynolds num- 
ber Re =cR/q  i s  large (here c i s  the velocity of the 
body and q is the kinematic viscosity). The body velo- 
city, in turn, must be l e s s  than that of sound, since 
ordinary surface waves a r e  solutions of the equations 
of incompressible liquids. Estimates show that such a 
situation i s  practically impossible to simulate in an  o r -  
dinary liquid. 

the quasiparticles in the volume. The change pro- It i s  known (Ref. 7,0129) that the problem of flow of 
duced in negative-ion mobility by the decrease of incompressible liquid helium around a body breaks up 
the number of phonons near a f r e e  surface was ac- into two problems in ordinary hydrodynamics for an  
counted fo r  in a paper by Shikin.= ideal and a viscous liquid. The contribution of the 

The energy-dissipation mechanisms described above 
become ineffective for a surface anion and for  ions be- 
neath the surface, since the number of quasiparticles 
that take part in the process decreases. An important 
role i s  assumed in this case  by the emission of surface 
waves, "ripplons," an  effect known in classical hydro- 
dynamics a s  wave resistance. The present paper i s  
devoted to the calculation of the wave resistance of ob- 
jects moving parallel to a helium surface, as well as 
those vibrating near the surface. 

5 1. FORMULATION OF PROBLEM 

Questions connected with the motion of solids under 
a liquid surface have been intensively studied a t  the 
beginning of the century (see Ref. 4 and the references 
therein, a s  well a s  the papers of Lamb5 and Havelock6). 
As a rule, account was taken in these investigation of 
only the influence of the force of gravity on the defor- 
mation of the surface (see, however, 062 of Ref. 4). 
This i s  understandable, for a number of conditions must 
be satisfied to take surface tension forces into account. 
First ,  it turns out that the body immersion depth h 
should be less  than the capillary constant a (a2= d p g ,  
o! i s  the surface-tension coefficient, p i s  the liquid den- 
sity, and g i s  the acceleration due to gravity). Second, 
to be able to use a linear approximation the liquid velo- 
city excited by the motion should be less  than the velo- 
city of the body. This leads, a s  will be shown below, 
to the condition 

'R<h<a. 
Since the objects considered in classical hydrodynam- 

ics  have characteristic dimensions -1 m and the capil- 
lary constant for all liquids i s  -0.1 cm, allowance for 
the surface tension under these conditions in only of 
academic interest. In addition, when the dimensions 

normal part  of the helium, which gives r i s e  to the vis- 
cosity, i s  small  to the extent that p,<<p, ( p ,  and pa a r e  
the normal and superfluid densities). Thus, the motion 
of a solid in helium a t  low temperatures i s  described 
by the equations of an ideal liquid. In addition, under 
rea l  experimental conditions the ions beneath the sur-  
face a r e  fixed a t  depth h - 10"-104 and this, taking the 
foregoing into account, provides an exceptional pos- 
sibility of considering phenomena connected only with 
surface-tension forces. We proceed now to the for- 
mulation of the problem. 

Let the helium occupy the half-space z s ((x, y), where 
((x, y) is the shape of the f ree  surface. The velocity 
potential cp satisfies the equation v2cp=0. On the 
boundary of the body there must be satisfied the non- 
leakage condition 

where Z i s  the surface of the body and 0 i s  the angle 
between the directions of the body-velocity vector and 
the normal to the surface. 

For mathematical convenience, we introduce into the 
nondissipative-hydrodynamics equations a fictitious 
Rayleigh force proportional to the velocity4: 

R--pu, (1) 
where /.A > 0 i s  a small  dissipation coefficient. We let 
/.A - 0 in the final expressions. It i s  important that the 
dissipation introduced in this manner does not violate 
the potential character of the m ~ t i o n . ~  

When formulating the boundary condition on the f r ee  
surface, account must also be taken of the polarization 
interaction of the ion with the surface, i.e., the fact 
that the electrostatic forces repel  the ion from the 
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boundary while the external field clamps it; the joint 
action of these forces deforms the surface and causes 
it likewise to contribute to the wave resistance. 

The electric field in the liquid consists of the field of 
the ion, the ion image field, and the clamping field. 
Since the polarizability of helium i s  very small, the 
image-charge field is  smaller by a factor c - 1 than the 
ion field ( E  i s  the permittivity of the helium), and will 
therefore be neglected. The constant clamping field 
produces a constant displacement of the interface and 
is equivalent simply to a change of the external pres- 
sure. The surface z=0 will hereafter be taken to mean 
just the displaced surface. Thus, the electrostatic 
pressure in the helium i s  due only to the ion and i s  of 
the form 

(e i s  the ion charge and r is the distances in the x and 
y planes). We then obtain on the free surface z = 5 

where PI: ,  i s  the pressure of the liquid: 

Differentiating (3) with respect to t and recognizing that 
ag/at= acp/az, we obtain the sought boundary condition 
in the form 

We note that allowance for the polarization pressure 
leads to a distortion of the equilibrium shape of the 
free surface. The boundary condition (4) should thqrefore 
be specifiedat z = to(?-), where t0(r)  is the equilibrium 
shape; it will be shown below, however, that this leads to 
inclusionof terms-kt,, with [,/h << 1. In otherwords, if 
the deformation (,(r) i s  small, then the contributions from 
the polarization mechanism and from the hydrodynamic 
mechanisms must be calculated independently. When the 
problem is soformulated, it i s  necessary to solve a com- 
plicated integral equation, if the boundary condition on the 
liquid surface and the streamlining condition for the body 
a r e  to be exactly satisfied. Such an integral equation was 
f i rs t  obtained and investigated by K ~ c h i n . ~  

A good approximate solution of the problem can be 
obtained by using Lamb's method, which satisfies the 
streamlining conditwn only partially and which works 
better the deeper the body. Namely, we seek the po- 
tential cp in the form4 

where 40, i s  the potential of a body in an unbounded 
liquid. , i s  its "reflection," i.e., the potential of a 
body located at the point z = h ,  and cp, i s  the potential 
of the wave motions. Lamb's method is equivalent to 
the requirement 

i. e. ,  we seek the shape of the surface for a given body 

potential, neglecting the redistribution of the velocity 
on the body surface. 

To calculate the wave resistance in stationary motion 
we can use the energy conservation law. Let F be the 
resistance force. Then the work performed per unit 
time i s  W = Fc. This is equal to the ra te  of energy 
dissipation due to the Rayleigh forces (1). It is  easy 
to show that the dissipative function for such forces 
i s  of the form 

where the integral is  taken over the free surface of the 
unperturbed liquid. From this we get an expression for 
the wave-r esistance force6 

$2. WAVE RESISTANCE OF ION BENEATH A 
HELIUM SURFACE 

We note, by way of introduction, the following. It i s  
known that the dispersion law for surface waves in a 
liquid i s  given by 

The phase and group velocities up, = w/k and u ,  =dw/dk 
of the wave have then the same shape, shown in Fig. 1. 
The minimum of the phase velocity corresponds to urn 
= (2ga)''2 and k, = a-'. From the momentum and energy 
conservation laws it follows that a body moving with 
velocity c excites surface waves only if the condition 
c 2urn i s  satisfied. It i s  then obvious from Fig. 1 that 
there a r e  always two solutions for the excited wave, 
k- and k,, and they turn out to be related, k,k+=a-'. 
The solution k- corresponds to a gravitational wave, 
i.e. , a wave in which the principal role i s  played by 
the force of gravity. Correspondingly, k + is  a capil- 
lary wave. The gravitational wave is always produced 
behind the moving body, and the capillary ahead of it. 

Let the liquid move with velocity c in the direction of 
the x axis. Then in the case of stationary motion a/at 
=ca/ax and the boundary condition (4) is  written in the 
form 

a=rp P a9 % + v % + B + - -  aza az az c az 

Z a 
=-- 

1 

pc az [r' +(z+h)'12' 

FIG. 1. Schematic representation of the solutions k- and k, 
for a body velocity c > v ,  = (2ga)'/2. 
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Since the ions in the helium a r e  geometrically spheres, 
we choose cpo and cp, in the form 

Recognizing that 

we obtain from (6) a boundary condition for cp,: 
a%, ap asp p ap ,  z a i 

+ v ( + & ( + - = - - -  
azl az aza c ax p~ at.  

B aa i 
(7) 

+2M- v-+p- -----. 
:t.( dh a h a ) ( r z + h 2 ) "  

Taking the symmetry of the right-hand side of (7) inte 
account, we seek a solution for cp, in the form 

where Jo(kr) is  a Bessel function. . Expanding both sides 
of (7) in a Fourier-Bessel series,  we obtain 

9 

K ,  ( u )  - ch te-uch ' d t .  
0 

We note an interesting figure of the function g,: the 
contributions from the polarization and from the hydro- 
dynamic mechanisms have opposite signs, therefore 
at  certain values of the parameters of g, the amplitude 
of the surface wave vanishes. The meaning of this phen- 
omenon i s  the following. The electric field in the hel- 
ium tends to push out the free surface and to form a 
"hump," while the hydrodynamic forces produce a sag 
in the surface. This can be seen already from (71, 
where the first term on the right is  negative and the 
second positive. Substituting the obtained expression 
for cp, in (51, we obtain after calculations 

where 
0. 

g,,' cos 0 
F. = 4np I k.' ( 

C O S ~  0 - ~ 4 ) l l r  
do. 

0 

k, a re  the roots of the equation k cos2e +v + pk2 = 0; 

k,= (2p)-'[cos2 0* (cos' 8-x') "1, 
x=v,/c, &=arc cos x .  

It is seen from the expression for k, that k+-k_-a-' 
if cose - x ,  therefore the contributions from F- and F+ 
become equal in a small angle region hB near 8,. But 
at  H.<< 1 it can be shown that the contribution from the 
region A0 - x near 0, amounts to F+- F,- Fox5, where 
F, is the contribution from the angles 0 - 1. Therefore 
at  x<< 1 we can replace 0, by n/2. 

If h>> a ,  then F->> F+, except for velocities satisfying 
the condition x -  1. Neglecting the polarization term in 

724 Sov. Phys. JETP 53(4), April 1981 

the expression for g,, we obtain an equation for the re- 
sistance for  of an uncharged small sphere4: 

1 1 2  

F- = 4npczR'v' erp ( -2vh sec' 8) sec5 0 dB. (10) 
0 

For the case h<< a, 1 of interest to us we obtain 

gb,=Z(2pch) - 'K,(k+h)  -2M cosZ 0 exp ( -k+h)  . 
It i s  convenient to rewrite this expression in the form 

F+=4naK (Rlh)  ' p  ( x )  , 

The asymptotic expressions for cp(x) are 

(P ( 5 )  =2Q1x/3, x a 1 ;  rp (x) =iS/I6x,  x B 1 .  

In the region x -  1 the funct io~ V ( X )  has a minimum due 
to the cancellation indicated above. At c < c,,,, the 
resistance is  determined by the polarization mechanism 
and i s  equal to 

At c rn c,,,, the decisive factor is  the hydmdynamic 
mechanism. In this case 

Plots of F+ at E, = 1 and 2 cgs esu a r e  shown in Figs. 
2 and 3. R was assumed to be 10 A for the positive ions 
and 17 Afor the negative. The upper curves on each 
plot a r e  the sums of the contributions of the wave resis- 
tance and the scattering by impurities. The contribu- 
tion of the residual impurities from the experiment of 
Schwartz and Stark is e / p  = 5 x 10-l7 (Ref. 9). 

It should be noted that the descending parts (Fi < 0) 
of the F(c) curve a r e  unstable in the sense that if we 
apply a force F,, to a body having an initial velocity co 
on this segment then, depending on whether this force 
is larger or smaller than F+(co), the body will respec- 
tively go off to infinity o r  to a stable part of the curve 
(Fi> 01, where it will continue a stationary motion. 
The foregoing pertains only to bodies whose energy in- 
creases with increasing velocity. For vortex rings, 
which will be discussed below, the energy decreases 
with increasing velocity, so  that for them it i s  the 
curve segment with F t <  0 which is stable. It is also 
obvious that if the applied force Fo > F+(c, ,,, ), then no 
stationary motion is possible at  all. 

It follows from Figs. 2 and 3 that a t  E,, corresponding 
to extremal points F+ (El, 5 10-~-10-~ cgs esu) the mobil- 
ity I-( - I': depends on c. In strong clamping fields, E, 
> 1 cgsesu, stationary motion i s  likewise impossible 
also on the section between the first maximum and mini- 
mum of F+(c). Comparison with the results of earlier 
calculations of the mobility213 shows that these effects 
become noticeable at  T 0.2 K. 

Yu. A. Matveev 



FIG. 2. Resistance force E+(c) for positive ions (R+ = 10 A) ,  
calculated from formula (12). Curves 1 ,  2 )  E l =  2 cgs esu; 
3, 4 )  El= 2 cgs em,. Curves 3 and t were plotted with allow- 
ance for the residual resistance of the impurities e/p = 5 
x lo-" (Ref. 9). 

We consider now the velocity region 1.c- 1. We note 
first that it i s  legitimate to introduce the fictitious dis- 
sipation coefficient only a t  velocities not too close to the 
threshold, n - 1, or more accurately speaking, it i s  
required that 1 - n4>> p', with a corresponding angle 
region M 2  1 - n4  (p' is  the dimensionless dissipation 
coefficient a t  k =a-'). The region 1 - x4<< P' calls for 
a consistent solution of the problem with finite viscos- 
ity, and will not be dealt with here. Recognizing that 
F+ = F_ a s  1.c - 1, we easily obtain from (12) 

Owing to the very strong dependence of the parameter 
1 - 1.c4 on the particle velocity, the transition from the 
region H. > 1, where F = O ,  to the region 1.c-e 1 will take 
place almost jumpwise. 

We note also that the deformation of the surface on 
account of the polarization is 5 - eEl /a - 10'9-10" cm 
for El- 1 to 10 cgs esu. The characteristic wave vec- 
tors k a r e  of the order k G lo6, therefore the imposition 
of the boundary condition on z = Fo(r) and not z = 0 (re- 
ferred to above) leads to the allowance for small terms 
k5 - 10'2-10-3. In the derivation of (4) we have assumed 
that the shape of the polarization "hump" does not 
change in the course of motion, i. e. , the pressure in 
the moving liquid i s  less than the polarization pres- 
sure. This is ture a t  velocities c2<< alph.  

When an ion reaches a certain critical velocity, an 
annular vortex is formed behind it. lo At distances 
exceeding the vortex radius d, the vortex velocity field 
coincides with the field of a moving sphere. Therefore 
if the vortex is locatedat a depthh>>d, its wave resis-  
tance is calculated in the same manner as in the case of 
a sphere. Comparing the velocity field a t  large dis- 
tances from the ring with the field of a sphere, we ob- 
tain the connection 

FIG. 3. Resistance force for negative ions (R- = 17 A) with 
the same impurity density as in Fig. 2. The segments c 2 
cmi, and cd c2,,were taken, E l =  2 cgs esu. The effect of 
the impurities is small near c ~ c ~ ~ ~ ~  

where i s  the circulation of the ring. The polariza- 
tion forces a re  insignificant a t  the velocities of inter- 
est  to us,  and the angular momentum of the ring exceeds 
that of a sphere in a ratio (cu/R)'>> 1. Therefore the 
resistance of the "ion +ringm complex i s  determined 
entirely by the resistance of the ring, which can be 
represented in the form 

111 

Fk=npra(pcla)' jcos" 0 exp(-2k+h)d0. (16) 
0 

83. WAVE RESISTANCE OF SURFACE ANION 

The electron pressure of a surface anion on the sur- 
face of liquid helium is given by1 

where $(r) = (rL2)-' exp(-?/L2) is  the electron wave 
function, and L2 = 2 ~ c r h ~ / r n ( e E ) ~  i s  the size of the anion. 
An expression for the force F i s  obtained from (7), (81, 
and (9) with account taken of (17) and of M =O. We ob- 
tain 

and for n<< 1 

We have recognized that J+>> J-, since L << a. Just a s  in 
the case of ions beneath the surface, motion with velo- 
cities c > c + - ( C X / ~ L ) ' / ~  i s  not stationary. Therefore, 
confining ourselves to the case c < c +, we obtain for- 
mulas (13) and (15). We note also that in the case of a 
surface anion a lucid interpretation can be offered for 
the inequality c < c +. It is obvious that the fields El, 
must be weak enough so a s  not to "roll out" the elec- 
tron from the deformation well," i. e. , we must have 
eEllL<<w (w is the binding energy) -(eE,)'/a. But F+ at 
the maximum is of the order, of (eE,)2/cr2L, SO that the 
stationarity condition for the surface anion is equivalent 
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to the requirement that the complex be indestructible. 
Just a s  in the case of an  ion beneath the surface, al-  
lowance for the distortion of the shape of the anion be- 
comes important a t  c - c +. 

The limits of applicability of (19) a r e  obtained from 
the condition k5 << 1; since 5 - kP, /pc2 e E / a ,  this 
condition reduces to eE,/a,L << 1, which holds true for 
fields E s 10' cgs esu. 

We estimate now the temperature region where the 
described effect becomes substantial. Since a t  T 
S 0.1 K, where the surface anion is  produced, the 
phonon mean free path I>> a (see, e. g., Ref. ll), where 
a is  the characteristic dimension of the deformation, 
it follows that the force of the phonon pressure on the 
anion must be obtained by solving the kinetic equations. 
We confine ourselves to estimates of this force. 

At not too low temperatures, T>> To-w,, the wave- 
length of the thermal phonon i s  A, << a, therefore the 
cross  section scattering by the surface anion is equal to the 
geometric cross section, a -a2 .  The projection of the force 
onthexaxisisthen F - A p s i n a / ~ ,  whereAp"pt-T/s i s  
the momentum transferred to the anion, s is the speed of 
sound, and T i s  the interaction time: T-I- U C N  ,,kt 

tan a, = a .@x, and NPb i s  the number of phonons. To 
observe the wave resistance we must have F << F+ , 
and F+ is  defined by expression (13). It i s  convenient to 
rewrite this inequality in the form p,as/cp(c<< 1 or  
1OgT'/cE1 << 1. For fields El - 10 cgs esu and c - 10' 
cm/sec, the wave resistance becomes noticeable start-  
ing with T s 0.03 K. 

$4. WAVE RESISTANCE OF OSCILLATING ION 

For an ion oscillating along the z axis'' we have 

z f h  z-h + ~ = ~ l { ( ~ + ( ~ + ~ ) . p h  [++(z-h)21d2}+ vl* 

M =  %ocosotR3 and A i s  the oscillation amplitude. 
The boundary condition (4) takes than the form 

Bearing in mind the use of the formula for the dissipa- 
tive function S, we seek that part  of the potential cpl 
which does not vanish as j~ - 0. It i s  of the form - 

v, = cos o t  cp,, eb"lo(kr) k dk. 
0 

We then obtain from (20)'': 

Substituting (21) in the formula for S ,  we obtain after 
going to the limit p = 0 and averaging over the period of 
the oscillation 

n' k,' do -' 
s = - p - ( - )  gcl. 

(22) 
2 oZ dko 

where ko i s  the solution of the equation w2 - w;=O. If 
w2 << g /a  then, omitting the first term in the expression 
for g,, we obtain 

S = n Z p A Z ( R Z o 3 / g ) z  esp ( -2oz lhg ) ,  (23) 

which agrees with the result of Ref. 4. 

For w2>>g/a we obtain 

Here m, =QnpR3, M, a r e  the ion masses,  z =  koh, and 
& = a,/pR2. We note an interesting feature of cp(z); 
the quantity kJ t  does not depend on the clamping field 
E,. Therefore S [Eq. (24)] i s  an increasing function of 
E, , S - E:/~ , in contrast to (23), whereS is nonmonotonic . 
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