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The spectral and angular distributions and the polarization characteristics of the radiation are obtained in the 
quasiclassical approximation in the csse when a relativistic particle executes a motion that is periodic in the 
frame moving with the mean velocity of the particle. The results are give-n in a form convenient for 
applications such as the description of radiation in undulators and the radiation produced when relativistic 
particles are channeled in crystals. 

PACS numbers: 41.70. + t 

1. INTRODUCTION . laboratory system, 9 i s  the angle of emission of the 
photon with respect to the mean velocity V of the par- In recent years,  the radiation of relativistic chan- 

neled particles has attracted much attention. '* In- ticle's motion, n i s  the number of the harmonic, and 
n,=k/w, where k i s  the wave vector of the photon. If vestigations also continue into radiation produced in 
allowance i s  made for the recoil on emission, the sub- periodic structures (undulators), this being stimulated, 
stitution w - w'= WE/(& - W )  must be made in (1.1). in particular, by the development of free-electron las- 

ers.  4" The development of laser technology, which When the motion in the comoving frame becomes re-  
makes it possible to obtain waves with a high intensity lativistic, the nature of the radiation changes. First ,  
of the electromagnetic field (up to lo0 V/cm), has stim- the higher harmonics become important in the radiation 
ulated extensive investigations of quantum processes and, second, it becomes necessary to take into account 
in the field of a strong electromagnetic wave. '" Of the dependence of the longitudinal velocity of the par- 
particular interest i s  the radiation of ultrarelativistic ticle (in the direction of the mean velocity) on its trans- 
electrons and positions (y= &/mc2w 1). verse motion. Indeed, to terms -U/E (U i s  the poten- 

tial in which the particle moves) y =const and by de- 
Many papers have been devoted to these problems; as 

finition y2(1 -vi - vf) = 1, so that for the longitudinal a rule, the theoretical description i s  developed indepen- 
(v,,) and mean (V) velocities of the particle we have 

dently for each of these phenomena and by very differ- 
ent methods. However, it should be borne in mind that v,,=i- (l+us'y')/2y2, v = i -  ( l + ~ l l y ~ ) / 2 y ~ .  (1.2) 
a t  y w 1 the elementary radiation event takes place in Here and below, it is  assumed that Iv, 1 << V. The ex- 
the same way for all the above processes and, there- 

pression for the radiation frequency hecomes 
fore, is  described by the same expressions, since we 

2y20,,n are  dealing with the radiation of a relativistic particle O =  
i + y W + ~ y '  ' 

(1.3) 
whose motion i s  periodic in the frame moving with the 
mean velocity of t h e  particle (we shall say that such where 3 i s  the mean square of the transverse velocity 
motion i s  quasiperiodic). The problems listed above of the particle. 
differ because of the specific dependence on the phy- 

In the ultrarelativistic limit of the motion in the co- sical parameters and also the need to average the ob- 
moving frame (v,y>> I), the main contribution to the tained characteristics of the radiation over some of 
radiation i s  made by high harmonics with n>> 1. The 

these parameters. 
radiation spectrum is quasicontinuous and the well- 

Let us  consider the main qualitative features of the 
radiation in the case of quasiperiodic motion. It is 
convenient to do this in a comoving frame, in which the 
mean velocity of the particle i s  zero, and then make an 
inverse Lorentz transformation. In the comoving . 

frame, the properties of the radiation depend strongly 
on the ratio of the kinetic energy to the res t  mass of 
the particle. In the nonrelativistic limit, we have dipole 
radiation, which i s  completely determined by the Four- 
ier components of the particle's ~ e l o c i t y . ~  As a rule, 
one o r  a few of the first  harmonics, which a r e  mul- 
tiples of the frequency of the particle's motion, a r e  
emitted. Transforming back to the laboratory system, 
we obtain a s  a result for the frequency of the emitted 
photon (Doppler effect) 

where coo i s  the frequency of the particle's motion in the 

known expressions that describe synchrotron radiation 
(see, for example," Ref. 9) hold. In this limit, the 
radiation is formed over a short section of the trajec- 
tory during a time T - c /  I i  l y ,  and the characteristic 
frequency of the radiation, with allowance for the Dop- 
pler effect, i s  w - l y3. Bearing in mind that the : 
main contribution to the radiation i s  made by angles 9 
-v,, we obtain the estimate 

The present paper i s  devoted to a systematic study 
of the radiation in the case of quasiperiodic motion. 
Since the nonrelativistic limit of transverse motion 
(see, for example, Ref. 4)  and i ts  ultrarelativistic 
limit (see, for example, Ref. 9) have been well stud- 
ied, the main attention will be devoted to the general 
case. For each of the radiation characteristics we have 
tried to obtain representations convenient for both qual- 
itative analysis and numerical calculations. 
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2. BASIC EXPRESSIONS 

The most adequate approach to the problem of the ra-  
diation of relativistic particles in quasiperiodic motion 
i s  a formalism that employs the operator quasiclassi- 
cal method developed by two of the present authors 
(see Ref. 9). After the necessary commutations have 
been made and the exponential expressions disentang- 
led, this method permits a transition to be made to 
quantities determined from the classical trajectory of 
the particle; the recoil resulting from the emission of 
the photon i s  also taken into account exactly. In the 
general case, the method i s  applicable if the commu- 
tators of the dynamical variables a r e  small compared 
with the variables themselves (see Ref. 9). For exam- 
ple, in the case of motion in the field of a plane wave 
and in an undulator we mxst have Rwdc << 1, and for the 
case of channeling Awd cg << 1. 

The general expression for the radiation intensity is  

The above expressions determine all the characteris- 
tics of the radiation, including the polarization charac- 
teristics. The intensity of the radiation, summed over 
the spin of the final electron and averaged over the 
spin of the initial electron, has the form [see Eqs. 
(10.75)-(10.76) in Ref. 91 

dI=e:- j dl ,  j dt2 L(*, f ) exp[ ikr  ( r , - - r )  1, (2.3) 
(2n)' 

where we have introduced the notation x,,, =x(t,,,), 
v,., =v(t,,,). Summing over the photon polarizations, we 
have 

There a r e  two ways in which calculations with the 
above expressions can be made. The first  is  associat- 
ed with direct calculation of the integral 

j @ ( t )  dt,  

where v* = ( I ,  v). This way reveals fairly clearly the 
physical picture of the phenomenon and the main fea- 
tures of the radiation. However, the further calcula- 
tions may prove difficult, this being particularly s o  in 
the case of plane motion of the particle. 

The other approach is k s e d  on direct use of the ex- 
pressions (2.4) and (2.5). The integration over the 
angular variables of the emitted photon can be per- 
formed readily, which makes it possible to obtain, for 
example, expressions for the spectral distribution that 
a r e  convenient for numerical calculations. Another ad- 
vantage of this method is the comparative simplicity 

and clarity in the derivation of the asymptotic expres- 
sions for both nonrelativistic transverse motion and 
the other limiting case when the transverse motion is 
ultrarelativistic. In the case when w << E, i. e. , the ra- 
diation i s  classical, the integration over w in these for- 
mulas leads to the well-known results of classical the- 
ory, expressed in terms of the Lienard-Wiechert po- 
tentials. 

3. SPECTRAL AND ANGULAR DISTRIBUTIONS OF 
THE RADIATION 

We represent the integral in (2.3) in the form 

T 
2s 

qo=oiT (1-%V), v.'= 5 ~ ' ( t ) e ' ~ " ( ~ )  dt, T = --, 
0 0  

(3.2) 
0 

where T i s  the period of the motion. Substituting (3.1) 
in (2.5), we obtain for the intensity of the radiation in 
unit time 

Using (1.2), introducing the notation 

where w0=2r/T, and ignoring terms of higher order in 
l/y2 and v:, we obtain the following expression for the 
spectral and angular distribution of the radiation: 

Here, we have used the circumstance that cp,= w'T(1 
-n,V), and the frequency of the emitted photons i s  de- 
termined by the relation [cf. Eq. (1.3)] 

8 = 
2yzoon 

e-w ' l+yW2+p/2 ' 

where 9 i s  the angle of-emission of the photon with re- 
spect to V, and p = ly2vf. The nature of the radiation 
depends strongly on p: for p<< 1, we have dipole radia- 
tion, for p>> l radiation of synchrotron nature. 

The integrals in (3.6) have a relatively simple form 
only for circular transverse motion, when Iv,l= const. 
In this case A($)= 0, 

f ($) =n$-x sin ( 9 - q ) ,  Zll=v~'Zo, 

I lo 1 2 =  ( 2 4  z ~ l  ( x ) ,  x=o'ul~/oot  (3.8) 
l 1 , l 2 = 2 n a v L ~ ~ . ~ ~  ( x )  + l I ~ i ( x )  1, 

where J,(n)  is  a Bessel function, and cp i s  the azimuth- 
a l  angle of emission of the photon. Integrating over the 
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emission angles of the photon [the integration over cp o d o  d q  - uz 
dIp=ez -- is trivial, and the integration over 9 reduces to inte- 

gration of the 6 function in (3.511, we obtain the follow- 
2 1  

(3.12) 
ing expression for the spectral density of the radiation 
in the case of circular motion of the particle (index -4, = J elf(*) cnsm rp drp, 

f (9) =n$-as sin ++P, sin 2$, (3.13) 

. . In this case,  P =  2y&,/m. 
~ ~ ~ - - ~ . ~ ( x ) + * / , ~ [ l + u ~ / 2 ( l + u )  ] [ 1 , ~ ~ ( x ) + l ~ - , ( x ) - 2 1 , ~ ( x )  I, G:;' =O, 

The expressions (3.9) and (3.12) a r e  identical to the 
G!:' =[i+u2/2(l+u) ]I,(x) [I,,-, (x)  --I,+, (x) ] (npI2x-x/2E), expressions for the spectral density of the radiation in 

G,'!' =Jnz(x) (l+p/2) -112pJn-l(x)1n+l (x) .  the field of a monochromatic plane wave of circular and 

Here and below, the index 0 i s  used for expressions 
summed over the polarizations of the photon; 

g(i)=dpo/dl(o) 

a r e  the Stokes parameters; and 

The vectors eQ', the photon polarizations, a r e  chosen 
such that 

In the case of plane motion of the particle, we can, 
without loss of generality, take TI,($) to be an even func- 
tion of $(v, = 0); then A$) in the expression (3.6) be- 
comes (apart from a constant term) an odd function of 
$. Thus, apart from a common phase factor, the quan- 
tities I,, I=, and I,, a r e  real. This means that for plane 
quasiperiodic motion the radiation can be only linear- 
ly polarized. From the physical point of view, this fact 
is obvious, since for such motion there i s  no pseudo- 
vector with which circular polarization of the radia- 
tion could be associated. 

With allowance for what we have said above, we ob- 
tain for plane motion (subscript p )  

G:o'=-~o'+r'[ i+az/2 (i+u) ] (2-IJ,), 

G "'-0 
(3.10) 

P - , G:1'.-2~. 7' sin p (I. cos (p-€tIO), 

G:" =[I? sin' p- (I.cos p - - ~ ~ ) * ] ~ ~ .  

After integration over the azimuthal emission angle of 
the photon G;'=O. 

Assuming that the plane motion of the particle is  de- 
termined by some potential U(x) and using the quasi- 
classical condition of quantization of the energy in this 
one-dimensional well, we can represent vz in the form 

where n, i s  the number of the level, and E ,  i s  the ener- 
gy of the transverse motion. 

In the special case of motion in an oscillator poten- 
tial, the spectral density of the radiation can be writ- 
ten in the form 

linear polarization, respectively. This agreement i s  
not fortuitous and i~ due to the circumstance that in the 
comoving frame of the electron the field in which the 
electron moves is ,  with relativistic accuracy, a wave 
field. The special distribution of the radiation in the 
field of a plane wave has been investigated in detail 
already7** (see also the literature cited there). 

As one further example of the use of the general ex- 
pressions (3.5) and (3.6), we consider the case when 
the transverse motion takes place in an ellipse, but 
the time dependence of the coordinates i s  not harmon- 
ic : 

z=a(cos 5-8), y=a(l-13')'~ sin 5,  rp=oot=&-8 sin 5. (3.14) 

Such a motion can be realized if the potential U(x,) has 
Coulomb form. In this case,  

f (9)  =n&-psin (&+E.), 
ctg &o-[n6-60'ooaa+to'a(l-62)"6 sin p ] l  ( a d 6  cos p), (3.15) 

p2=[n6-80'ooa~ao'(l-8z)'h6 sin (ao'6 cos p)', p-2yza'oo'. 

Substituting (3.14) and (3.15) in Eqs. (3.5) and (3.6) 
and integrating over the polar angle 9, we obtain the 
intensity distribution of the radiation: 

(3.16) 
For 6=0 ,  the expression (3.16) goes over into the in- 
tensity distribution for circular transverse motion [cf. 
(3.911, and in the limit p - 0 we have the dipole case. 

4. SPECTRAL DISTRIBUTION OF THE RADIATION 

To obtain the spectral distribution of the radiation 
intensity, we can integrate over the photon emission 
angles in the expression (2.3) by means of the relation 

Going over also to the variables 

we find for the radiation intensity 

us -- iue 1 
2 ( i + u , ] ~ x ~  {-?;;$[2t(1 + + ) + ( A ~ A ~ ) T ' -  -uo2~'(&-lj)l']). 2t 

(4.2) 
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The indices 1 and 2 denote the dependence on the vari- 
ables t, = (+ - t)/wo and t2 = (T + t)/oo, respectively. 

Note an important circumstance. If the integral over 
t in (4.2) i s  to be correctly defined, it i s  sufficient to 
assume that the contour of integration with respect to 
t i s  displaced below the real  axis. This operation cor- 
responds to the subtractional procedure in the finding 
of the mass operator in an external field (see Ref. 8) 
and ensures, in particular, vanishing of the radiation 
intensity when the field i s  switched off. 

We consider the case of elliptic transverse motion of 
the particle: 

v.(t) =a cos mot, v , ( t )  =b sin oot .  

We reduce the expressions in (4.2) to the form 

y' (1-vlvz) =l+p sinz t  ( l - a  cos 22) ,  

y2(Az-A,) ='lZap sin 2t cos 22, 

~200Z(x,-xz) ,Z=2p sinz t  ( l + a  cos 22) ; 

p=y2(a2+ bz) , a= (az-b2)/ (a2+ b*) . 

After this, the integration over T can be readily per- 
formed2': 

iu (2+u) sin t  
X[lo(azo)  -iaJ, (azo)  ] + - pp (CV) sin t  (- - cos t )  J o ( a z o ) }  e-iz*; 

2(1+u) t . . 

zo=xo-x,, zi=2ht-xo, x0=p6 sinz t l t ,  (4.4) 

z,=%pf sin 2t, f=ue/20.y2, h=f ( l + p / 2 ) ,  p=2ab/(a'+ba). 

The expression (4.4) corresponds to the imaginary part 
of the expression for the mass operator of an electron 
in the field of a plane wave obtained earlier in Ref. 8. 

Note that, using the expressions (2.3) and (2.4) and the 
calculation procedure adopted above, we can obtain all  
the polarization properties of the radiation. For 
example, in the case of a helical motion of the particle 
(a=O), we have 

A::' ( t )  exp[ -2iht+ixo ( t )  J ,  

A: = P ( e -h(V- i )  -i. 
220 ( t )  

In the case of plane motion ( a  = l ) ,  we obtain the fol- 
lowing expressions for the intensity and polarization 
of the radiation: 

dl. = -- 

The degree of linear polarization 5" i s  given by 

1 )  = - - " d" 7 -!? e-'+ (2% (I . )  +p[  ( l /xo+it  sin 2t) 
4n ( l + n ) ' - _  t  

X (Jo(zo) -lo (s,) e-'a) -k t  sin 2t (I i  (s) +I,  ( z l )  e-'*) I}. (4.7) 

Let u s  analyze this expression for the case of plane 
motion. For simplicity, we shall assume that soft 
photons a r e  emitted:' i. e. , u<< 1 [this is valid if 
20,yZ(1 + p)'I2/ E << 11. In this case,  the expression 
(4.4) becomes 

In general, the integral in (4.8) i s  a discontinuous func- 
tion of the parameter A =  5(1 +p/2) a t  the points where 
A = n  with n an integer. To separate the discontinuity, 
we use the relation 

Froril (4.8), we have 
~ . ( t )  =ti ( t )  = (Jo(yO)  +pz sinz t [ J ~ ( y a )  + i J % ( y ~ )  I)e-'"', 

1-- (4.11) 
yo=l/,Ep sin 2t. 

Using the Fourier expansion of the Bessel functions, 

we can explicitly separate the discontinuities a t  the 
points A=n. The remaining integral is a continuous 
function of A, and in the limit t - - the integrand be- 
haves as l / t2 ,  which i s  convenient for numerical cal- 
culations. The separated part of the spectral distribu- 
tion of the radiation intensity has the form 

~~.:~(y)+6(2n+l-h)y[l,(y)-J~+~(y) I;), y=pV4. (4.13) 
It can be seen from the expression (4.13) that discon- 
uities of the integral exist only for odd n, i. e . ,  for A 
= 2m + 1. In the language of the radiation in the field 
of a plane wave, this circumstance i s  due to the fact that 
if the angle of the emitted photon is 9 = 0 only an odd 
number of photons can be absorbed from a linearly po- 
larized wave, this, in i t s  turn, being due to the con- 
servat ion of the project ion of the angular momentum on- 
to the momentum. 

In the case of helical motion, the integral in (4.5) i s  
a discontinuous function a t  A =  1. Proceeding a s  in the 
case of plane motion, we separate explicitly the terms 
containing this discontinuity. For simplicity, we con- 
sider the case @/&<<I: 

sin t  
X ( o ) ( t ) = i [ l + p s i n a t ] ,  X ( 2 ) ( t ) = p s i n t ( c o s t - - )  , 

t  
all) ( t )  =- (i+t/2f sin' t )  ; (4.14) 

F,'" --'/ ,p([l--2f ( i + p )  ( $ 4 )  ]811-h)+-'/gE (2-b)6(2-A)), 

F?) - 1 / 9 ( [ i - 2  (i-'/ ,pf (1-2b)) ( 1 4 )  16(1-L) 
-V,PE (1-A) ( 2 4 )  e (2 -L)  I ,  
F."' =p6(1-L)6(1-&). 
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FIG. 1. 

In the dipole approrimation (p<< l),  we can ignore the 
integral in (4.14), and in the expression for Fa we re-  
tain only the leading terms in p; then 

As can be seen from (4.151, ["'= 1 a t  5 = 1 and 5 "' - -1 a s  5 - 0. This is  due to the helicity conservation 
law (from the point of view of the Compton effect), a s  
can be seen by noting that in the electron res t  frame a 
circularly polarized photon is scattered backward 
o r  almost forward. 

To conclude this section, we give the asymptotic ex- 
pressions for the spectral distribution of the radiation 
intensity (4.4) in the case opposite to the dipole case 
when p>> 1. Using the integral representations of the 
Eessel functions, and also the method of stationary 
phase for [p>> 1, we obtain for unpolarized particles 

d 2 f ( u ) - 1  d  
~ f ( . ) ~ ( x K ~ ~ ( x ) ) + - g ( a ) d x ( ~ ~ K ~ ~ ( x ) )  10 ] ) . 

u2 1-2a cos* %,= 3 2 E A 4 .  16) 
f(u)'1+2(l+u)v &I= i - a c o s ~ ~  Sp(1-a cos l j 7 )  ' 

where a i s  determined in (4.3) and 5 in (4.4). The first 
two terms in the curly brackets agree with the expres- 
sion for the intensity of the synchrotron radiation of an 
ultrarelativistic particle [see Eq. (10.27) in Ref. 81, 
and the remainder a r e  corrections -l/p. For a =0,  
u<< 1, we can write (4.16) in the form 

7' d l  
_?-= 1 

F , ( x ) + - F a ( % ) .  
e'o.' dx P 

The functions E; and F, a r e  shown in Fig. 1. 

Here, a s  in the preceding sections, the index 0 is used 
for the total intensity of the radiation, and the remain- 
ing indices a r e  used for the quantities needed to find the 
Stokes parameters 5'=dl'"/d1'~'. 

For dl"', we have 

-I/, sin 2t (pq2 sinZ t+ f  0') +30tq2 sin' t 
(t%J1-2pq2 sinz t)"* 

+ (1+p/2)'+qZ(p/2-1-2q2) 
T? (Q2-2pqz)'/* 1 .  (5.2) 

Integrating (5.1) and (5.2) over q ,  we obtain for the 
total intensity of the radiation and the Stokes param- 
eter s 

3  - E"'.=-- j d t '  sin t ( t  cos t -  sin t )  
n [ tZ(l+p12)  -'l,p sin' t ]" 

For p<< 1, the expressions (5.1)-(5.3) go over into the 
expressions of the dipole approximation.* In the case 
p>> 1, we obtain the corresponding results for synchro- 
tron radiation. The dependence of the degree of c i r -  
cular polarization ( @ '  determined by (5.3) on the pa- 
rameter p is  shown in Fig. 2. 

In the plane case for sinusoidal transverse motion of 
the particle, the angular distribution of the radiation 
intensity i s  

+ 4 ( l + q z  sinZ c p )  

F=l+qZ+p cost g 
-2p'"q cos g cos cp. 

The integrals over J I  in (5.4) can be calculated by means 
5. ANGULAR DISTRIBUTION OF THE RADIATION 
INTENSITY 

We consider, finally, the angular distribution of the 
radiation integrated over all  frequencies. When w 
-we<< E , such integration in Eqs. (2.4) and (2.5) 
gives a 6 function of the difference between the times, 
and the subsequent calculation of the intensity and lin- 
ear polarization of the radiation leads to results that 
can be obtained directly from the Lienard-Wiechart 
potentials (see Ref. 9). 

I I I 
0 5 I0 

P 
FIG. 2. In the case of helical motion 



of the relations 

1 h+ + (h+'-4pqz cos' 9) " 
f(.)=-{[ 

p h- + (h+'-4pqz cos2 9 )  'h 

In the dipole case p<< 1 and in (5.4) we can set  F =  1 
+q2;  then the integration over I) in (5.4) becomes tri- 
vial. At the same time, for both plane (5.4) and c i r -  
cular (5.1) motion the main contribution to the radia- 
tion i s  made by angles 9-~-'(77 - l) and arbitrary angles 
9. For  relativistic transverse motion p>> 1, and the 
main contribution to the radiation in the case of 
plane motion is made by the region of angles 
9 -'p'/2/y, Isinrp 1 5 p"l2, i. e. , the radiation i s  concen- 
trated in the plane of the motion. For circular trans- 
verse motion in the limit, the radiation is concentrated 
on the surface of a cone with angle 9=y-1(p/2)1/2 and 
width &3 - l /y  of the distribution. 

6. CONCLUSIONS 

The results obtained above give the spectral, angular, 
and polarization characteristics of the radiation in the 
quasiclassical approximation in the case of quasiperiod- 
ic motion for arbitrary values of the parameter p 
=2y2u:, which characterizes the extent to which the 
transverse motion is relativistic. It i s  of interest to 
compare our results with those of other authors. 

In a series of papers (see Ref. 5 and the literature 
cited there), Alferov, Fashmakov, and Pessonov con- 
sidered radiation in undulators. In the framework of 
classical theory and on the basis of the Lienard- 
Wiechert potentials, they obtained the spectral and an- 
gular characteristics of the radiation in a form anal- 
ogous to the well-known expressions for the radiation 
in the case of circular motion. If many harmonics con- 
tribute to the radiation, the use of such expressions is 
very difficult. 

The region p 2 1 has been discussed by a number of 
 author^^*'^ in connection with the problem of the radia- 
tion produced when particles a re  channeled in crystals. 
The basic formula [Eq. (1411 in the first  of the papers 
in Ref. 3 i s  incorrect (the square of a sum i s  replaced 
by a sum of squares). The assertion that for w << E: 

the coefficients in this formula satisfy C f f ,  = bff  is  er -  
roneous, since in the region of energies in which the 
dipole approximation i s  invalid the important point is  
that C f f #  does not reduce to 6 ,  a .  Also incorrect is the 
assertion that in a certain interval of emission angles 
around 9 = O  the radiation is of a dipole nature for all 
energies, whereas, in fact, in the case P>> 1 (in the 

notation of Zhevago) all harmonics up to n-0' a r e  ra- 
diated. This is  the cause of the incorrect estimate of 
the spectral density of the radiation [Eq. (25)]. In the 
second paper in Ref. 3, the treatment is  given for scalar 
particles, but in the region o - E (where quantum recoil 
effects a r e  manifested) the spin terms become import- 
ant,  s o  that the conclusion drawn at  the end of this pap- 
er-that the obtained expressions a r e  valid for the ra- 
diation of electrons of arbitrarily high energies-is 
false. Equation (35) in the second paper in Ref. 3, 
which describes radiation in the potential -cr/p, i s  in- 
correct [cf. Eq. (3.16) of the present paper]. Con* 
trary to the assertion of the authors, Eq. (35) does not 
lead to Eq. (361, which describes the radiation in the 
dipole approximation. In Ref. 10, the basic expres- 
sion for the spectral properties of the radiation is in- 
correct [in the notation of Eq. (3.6) of the present 
paper, the term with A($) i s  absent in Ref. lo]. There- 
fore, all  the remaining expressions describing the ra- 
diation intensity a r e  incorrect. 

') It should be borne in mind that these expressions cease to 
hold a t  sufficiently low frequencies when n - 1. 
For greater generality, we have included in the expression 
(4.4) the spin term; b is  the spin vector in the electron's 
rest  frame. 

3, For u 2 1, the treatment is similar. 
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