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A generalized version of the multichannel quantum defect (MQD) theory is proposed for the investigation of 
the Rydberg states of molecules. The basic equations of the MDQ theory are derived under fairly general 
assumptions regarding the nature of the interaction between the electron and the ion core. If the adiabatic 
reaction matrix or the reaction parameters are known, the obtained equations allow the determination of the 
structure of the electron spectrum under conditions when the period of the electron motion is comparable to 
the period of the vibrational or rotational motion of the molecule and the energy levels are characterized by a 
significant irregularity in their disposition. The equations of the theory are analyzed for molecules of the 
symmetrical-top type (without allowance for the combined effect of the vibrational and rotational motions on 
the Rydberg states of the electron). The autoionization level widths of molecular hydrogen are determined, 
and the theory is compared with the experimental data and versions of the simplified theory. 

PACS numbers: 3 1.15. + q, 32.80.Dz, 32.70.J~ 

1. INTRODUCTION of the electronic spectrum. The study of this effect on 
the basis of information obtained in the adiabatic ap- 

The highly excited Rydberg states of molecules have 
proximation is the main problem of the multichannel been the subject in recent years of intensive experimental 
quantum defect (MQD) theory. At present this theory 

and theoretical study,'-l4 which is explained by the im- 
has been developed only for  the simplest molecules (of 

portant role played by these states in the processes of the type %). 2*81'2 In i ts  original formulation, given by 
photoionization and ionization of molecules during col- Fano,' the MQD theory allows for only a two-channel 
lisions with electrons. If one of the electrons of the nonadiabatic coupling with the rotational motion, since 
atom or  molecule is in a highly excited state, i ts  energy the effect of the nonadiabatic electron-vibrational motion 
spectrum has the hydrogenic-level structure: coupling for  the unexcited core can be neglected because . - 

Em=-1/2(n--p.)', ( I )  of the presence of a small parameter (the ratio of the 

where p, is the Rydberg level shift and s is the se t  of 
quantum numbers specifying the system with allowance 
for the internal degrees of freedom (here and below we 
use the atomic system of units with f i= me = e = 1). The 
quantum defect (QD) theory has been widely used to in- 
vestigate states of this type. 15-19 

The problem before the QD theory is the determina- 
tion of the quantities pS o r  their connection with para- 
meters observed in other physical processes (e. g. ,  in 
electron scattering by atomic and molecular ions20*21, 
etc. ). For atoms, this problem has been investigated 
fairly thoroughly. 

The quantum defect in Rydberg states of molecules i s  
found to depend not only on the orbital motion of the 
electron and the state of the ion core M', but also on the 
principal quantum number n. The dependence on n is 
due to the change in the character of the coupling be- 
tween the electronic and nuclear motions a s  the binding 
energy of the electron decreases. For small n, when 
the electronic-level spacing, l / n 3 ,  is significantly 
greater than the vibrational and rotational energy quan- 
ta (i. e. , when l/n3 >> B, w) ,  the motion is adiabatic, and 
the Rydberg shifts a r e  determined by the quantization 
rules for the motion of an electron in the field of a sta- 
tionary molecule. In this case the energy levels a r e  
correctly given by the formula (I), with p, parametri- 
cally depending on the set  of vibrational coordinates, 5 ,  
of the molecular ion M*.  As n increases, the adiabatic 
coupling between the electron and the vibrational (when 
l/n3 - W )  and then the rotational (when l/n3 -B) motions 
is severed, i, e., there occurs a significant restructuring 

vibration amplitude to the interatomic distance). But 
in view of the recently increased requirements for op- 
tical diagnostics of vibrationally excited molecules, it 
is necessary to have a MQD theory that takes into con- 
sideration the combined effect of the vibrational-rota- 
tional motions on the Rydberg electron states in a mole- 
cule. The appropriate equations of the MQD method - -  - 

are  derived in the present paper. 

Another aspect of the problem consists in the gener- 
alization of the results of the MQD theory to the case 
of polyatomic molecules. The method expounded by 
Fano in Ref. 8 (and in other papers; see, for example, 
Ref. 12), and consisting in the use of appropriate boun- 
dary conditions to select a set  of solutions for the 
Schradinger equation, seems to us to be complicated 
and inconvenient for this purpose. An approach based 
on the integral formulation of the Schradinger equation, 
which eliminates the problem of boundary conditions, 
turns out to be easier to generalize. With the aid of 
this approach we formulate in the present paper a gen- 
era l  algorithm for the construction of a system of 
transcendental equations describing the energy spec- 
trum of the Rydberg electron under conditions when 
there is a strong nonadiabatic coupling between the 
electron and the rotational motion of the molecule. The 
equations obtained a re  analyzed for molecules of the 
symmetric-top type. A classification of the Rydberg 
states of these molecules is proposed on the basis of 
the various series. 

Considerable attention is given in the paper to di- 
atomic molecules and, in particular, to the hydrogen 
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molecule. Here the autoionization states of simple 
diatomic molecules a r e  considered in detail. The vi- 
brational-rotational autoionization rates in the various 
regions of the energy spectrum a re  computed in the 
particular case of the H, molecule. 

2. THE GENERAL EQUATIONS OF THE MQD METHOD 

It i s  convenient to consider the energy-eigenvalue 
problem for an electron in a molecule with the aid of 
the following system of integral equations: 

Here V i s  the electron-ion core interaction potential, G 
is the Coulomb Green function, and Go is some single- 
electron Green function, chosen in accordance with the 
physical conditions of the problem. Equation (2) differs 
from the standard integral Schradinger equation, ob- 
tained from (2) by setting Go= 0, in having the vertex 
part and the basis of the intermediate states renor- 
malized. The integral equation (2) can be significantly 
simplified and in certain cases solved when there a r e  
data on the matrix elements of the t-operator. 

Let us f i rs t  consider the adiabatic problem. The 
Coulomb Green function of a highly excited electron can 
be represented in the form 

Inlm)(nlml 
G ( E ) = C  E-E, +GO(E), 

(I,," 

where the Inlm) a r e  the wave functions of the discrete 
spectrum, 1 and m being the electron angular momen- 
tum and its component along a prescribed axis. As re- 
gards the function Go(E), which is defined in such a way 
a s  to include the states of the continuous spectrum 
I klm), i t  is known that i t  is a smooth function of the 
electron energy. Thus, we obtain from (2) with al- 
lowance for (3) the following system of equations: 

For any potential V that strongly distorts the Coulomb 
interaction between the electron and the ion core a t  
small distances and decreases not slower than -l/r2 
for r- a, the range of electron coordinates that makes 
the dominant contribution to the matrix elements of the 
t-operator is significantly smaller than the radius 
r -n2 of the outer electron's orbit (it is then assumed 
that limVr2 - 0 a s  r -- 0). For  this reason, the matrix 
elements of the t-operator can be considered to be 
weakly dependent on the electron energy (for example, 
on a scale -l/n3), which allows us to represent them 
in the form 

The representation (5) i s  valid for any relation between 
the quantum numbers n and nr if V(r) decreases faster 
than l / r 2 ,  and for In - nr 1 <<n i f  V(r) - l/r2. 

Let us now assume that the interaction of the electron 
with the ion core i s  axially symmetric, not depending 
on the azimuthal angle, rp, of the internal rotation. 
Then the matrix of the t-operator is diagonal in m, 

i. e . ,  

(at A >O the adiabatic states a r e  twofold degenerate with 
respect to a change of sign of *A). Taking out in (4) 
from under the sign of summation over n' the factors 
that depend weakly on the energy, we find that for n >> 1 

zlA=-n ctg npA(&) C CY ( E ) T L , ~ .  (7) 
I' 

For  the variables cotnp,(S), the equations obtained a re  
algebraic and describe ser ies  of Rydberg levels under 
adiabatic electron-motion conditions. It is important 
for what follows that we be able to relate the coeffi- 
cients Cy'  with the experimentally observable adiabatic 
shifts p,(() o r  intensities of the corresponding spectral 
lines. We shall assume that these coefficients a r e  
known. Let us note in this connection that the two- 
channel QD theory developed by Fano for diatomic 
homonuclear molecules8 operates .mitb f w ~  arliahatic 
parameters, C, and C,, corresponding to the a and n 
states of the Rydberg electron (1 = I' = 1). 

To investigate the problem with allowance for the 
internal degrees of freedom of the molecule, we turn 
to Eq. (2) with the Green-function operator defined a s  

where q i s  the se t  of vibrational and rotational quantum 
numbers and E ,  is the energy associated with the in- 
ternal motion of the nuclei. Let us  choose the function 
Go in the form 

then the t-operator is defined in the same way a s  in the 
adiabatic case. For  definiteness, we restrict  our- 
selves to the case of the singlet states of the molecule, 
when the angular momentum J, the resultant of the or- 
bital angular momentum of the electrons and the angu- 
l a r  momentum of the nuclei, and i ts  component M along 
a given axis a re  integrals of the motion. 

Further discussion requires more detailed informa- 
tion about the structure of the rotational spectrum of 
the molecules. It seems most natural to begin it with 
the case of molecules of the symmetrical-top type. 
This case, on the one hand, includes linear molecules 
and molecules of the spherical-top type and, on the 
other, forms a basis for a further generalization of the 
theory to the case of an arbitrary type of molecule. 

3. THE RYDBERG STATES IN MOLECULES OF THE 
SYMMETRICAL TOP TYPE 

To molecules of the symmetrical-top type pertain 
polyatomic molecules possessing a natural symmetry 
about the internal-rotation axis. To them may also be 
roughly referred molecules two of whose principal 
moments of inertia a r e  for some reason nearly equal to 
each other. 

In order not to complicate ,the problem from the very 
beginning, let us exclude the vibrational degrees of 
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freedom from consideration. Let us write the rotational 
ion-core Hamiltohian for the symmetrical top in the 
form 

a., (R, 5 )  =BIYE+(A-B) dZ. (10) 

Here A and B a r e  the corresponding rotational con- 
stants, R is the coordinate of the center of gravity of 
the system, I? is the core's angular momentum opera- 
tor, and 2 is the operator corresponding to the com- 
ponent N of the angular momentum along the symmetry 
axis. 

The eigenfunctions of the Hamiltonian (10) have the 
formz2 

where N, is the component of the angular momentum N 
along the fixed axis, z ,  and X, 8, and @ a r e  the corre- 
sponding Euler angles specifying the position of the 
molecule. 

We can, in accordance with the addition rules for 
angular momenta, write the normalized total angular 
function of the compound (electron + ion core) system 
possessing a total angular momentum J and a compo- 
nent M along the z axis in the form 

Here Y,,(9, cp) is the spherical harmonic of an electron 
with the angles 9 and cp in the fixed system of coordi- 
nates, Dc-,,(Q) is a generalized spherical harmonic, 
and the (ZN, mM - m I JM) a re  the coefficients a r i s i ~ g  
from the vector addition. 

Substituting the angle function (12) into the formulas 
(8) and (91, we obtain in place of the integral equation 
(2) the expression 

where the summation is performed over the primed in- 
dices, the (nl) a r e  the radial Coulomb wave functions, 
and 

The computation with the formula (14) of the diagonal 
- in m-adiabatic reaction matrix (6) leads to the follow- 
ing expression: 

W(l1'NN'; j J )  a r e  the Racah coefficients. It can be seen 
from (15) that the electron-rotating core interaction 
potential V is diagonal in the total angular momentum J ,  
in i ts  component M along the axis of quantization, and in 
the component K of the angular momentum of the nuclei 
along the axis of symmetry of the molecule, and mixes 
the states with different values of the angular momen- 
tum N of the nuclei and of the component A of the elec- 
tron's orbital angular momentum. Let us recall that 

the mixing of the states with different 1 occurs even in 
the adiabatic limit [see the formula (5)], and is due to 
the fact that the interaction potential V is, in the gene- 
ra l  case, not invariant under the replacement of the 
electron's polar angle 9 by n -9. 

It also follows from the expressions (14) and (15) that 
the matrix of the t-operator is invariant under simul- 
taneous transposition of the indices E and N, i. e. , 

I N K  I'N'K' 1'N.K INK' 
s > M , ; , M '  = 8 J M , J ' i ,  . 

Since the dominant contribution to the matrix elements 
(5) is made by the region of small r ,  where the Coulomb 
radial wave functions behave likez0 -rl, let us restrict  
ourselves to consideration of the coupling of the S and 
P states. Evidently, only the a (A = 1 m 1 = 0) states can 
be mixed, whereas the n and a states do not interact 
with each other. Then the system of equations deter- 
mining the se t  of Rydberg states of the molecules for 
arbitrary J and K assumes the following form: 

11' 
 INK= C A , x N N .  e t g n v ~ . ~ z l , ~ . r .  

I'N' 

Here vN,(E) is the effective principal quantum number 
of a Rydberg state belonging to a given series,  i. e. , 

For  fixed values of the quantum numbers J and K there 
a re  in the general case three pairs of series,  corre- 
sponding respectively to the various N values,2) 

In this case each of these ser ies  pairs converges to 
i t s  ionization limit. The coefficients, A:';,,,, in the 
system of equations (18) a r e  defined a s  

where the Cil'([) are  the corresponding adiabatic coef- 
ficients [see (6)] and the for A =  0 and 1 a re  
equal to 

r IXNNr=[10(2N+1)/3] 'b(2N, 0-KIN1-K)W( l lNNT;  23). 

The expression (20) for  1 = 1 and 1' = 0 are ,  according 
to (17), obtained by simultaneously transposing the 
IN and I'N'. The system of equations ( la) ,  together 
with the formulas (19)-(21), can be applied to all kinds 
of molecules of the symmetrical-top type (including the 
spherical top, i.e., the case inwhichA = B ) ;  the transi- 
tion to diatomic (or arbitrary linear) molecules here is 
obvious: i t  is sufficient to se t  K = 0 in (19)-(21). 

Let us  now proceed to analyze the system of equa- 
tions (18) and classify the electron-rotational Rydberg 
states for the important case of the J =  1 states, which 
can be populated in the process of photoabsorption by 
the unexcited molecules. The rotational states of the 
symmetrical top in the ground, nondegenerate vibra- 
tional state can be classified according to the values of 
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the quantum number K. For definiteness, let us  
analyze the spectra of molecules whose symmetry is 
specified by the group C,, (i. e . ,  molecules of the type 
XY,). Then states of symmetry E a r e  realized for a K 
value that is not a multiple of three states of the A 
symmetry for a K value that is a multiple of three 
(these states do not interact with each other, i. e . ,  
A--E). In the case under consideration N assumes the 
values 0 ,1 ,2  for K = 0 ,  ~t 1, * 2, respectively; therefore, 
to the E-type (twofold degenerate) states correspond the 
values N =  1, 2, and K = *  1, *2, while to the A-type 
states correspond N  = O,1,2 and K = 0 (non-degenerate 
states). 

Let us first  analyze the states of the type E. For  the 
IK(= 1 case, equating the determinant of the system 
(18) to zero, we find 

(a-tg nv,,) (b-tg n v l J  (b-tg ~ V Z L )  ~ - 2 f b  
+ b ( b - t g  nv, , )  +d"(b-tg nvz l )  +$(a-tg nv l l )  ; (22) . - 

a=nCmDo, b=n(C."+Cxi1)/2, f=n(C."-CXL')/2, d=-nC,01/Y2. 

(23) 

It can be seen from (22) that the energy spectrum of the 
molecule contains three Rydberg-level series,  two of 
which have the same ionization limit, and correlate a t  
small n with the split u doublet, while the third ser ies  
correlates with the n state. The distance between the 
corresponding ionization limits is equal to 4B. Thus, 
the Rydberg ser ies  can be classified according to the 
total angular momentum J, the ionization limit (deter- 
mined by the quantum numbers Nand K), and the type 
of adiabatic molecular orbital with which the states with 
small n correlate. 

If the interaction potential V(r - R, 5 )  is  invariant 
under reflection in a plane perpendicular to the axis of 
symmetry of the molecule, then all  the matrix elements 
that a r e  off-diagonal with respect to I vanish. Then 
d=O, and Eq. (22) describes the independent states with 
2 = 0 and the two groups of interacting levels with 1 = 1. 

For the 1 K 1 = 2, N  = N' = 2 case, we obtain a single 
twofold degenerate-with respect to *K-series of a 
states with energy 

Let us now investigate the important case K = O  (i.e., 
the case of the nondegenerate, A-type states). Here 
N, N'=0, 1 ,2 .  The condition for the system of equa- 
tions (18) to have a unique solution in this case yields 
the relations 

and 

(a-tg nvoo) (b- tgnvio)  (d-tg nvlo) =fgL 
+$(a-tg nvoo) +f (b-tg nv,.)/2+ga(d-tg n ~ , ~ ) / 2 ,  (26) 

where the coefficients a r e  equal to 

Consequently, there a r e  three Rydberg-level series,  
which correspond to different ionization limits, and 
correlate, a s  Bn3 - 0, respectively to the Pa,  S, and 

P, states (the para modification), and a separate v,, 
ser ies  of n states (the ortho modification). 

The case in which the interaction potential V is in- 
variant under reflection in a plane perpendicular to the 
axis of symmetry of the molecule corresponds to the 
case of homonuclear diatomic molecules X,. 

To consider the most interesting situation, which is 
the situation with 1 = 1, we se t  K = 0  in the general 
formulas (19)-(21), and retain only those matrix ele- 
ments for which I = I' = 1. Since the coefficients 

(ZN, 001 N'O) - (-1) N-"' (ZN, 00 ( N'O) 

in expression (21) a r e  different from zero only when 

only the two possibilities 

N, Nf=O, 2 and N=Nr==1 

a r e  realized in the system. For the first  of them we 
have the equation3' 

( p, and p, a re  the adiabatic quantum shifts of the u and 
a states1e2), while the second ser ies  is found to consist 
of the terms corresponding to the nP,II, ortho-modifi- 
cation of the X, molecule ( N =  1), which do not interact 
with the rotational motion of the molecule [the generally 
accepted designation of this ser ies  is112 Q(l)]. 

4. THE AUTOIONIZATION RYDBERG STATES OF A 
DIATOMIC MOLECULE X2 

Let us now consider both the rotational and the vibra- 
tional degrees of freedom of the molecules. Of great 
importance for the determination of the nonadiabatic 
coupling between the electronic and vibrational motions 
is the smallness of the parameter, q, characterizing 
the ratio of the vibration amplitude to the interatomic 
distance. It is precisely this circumstance that allowed 
us to investigate the electronic-rotational spectra with- 
out allowance for the vibrations of the molecules. The 
vibrational transitions are ,  however, quite important 
in those cases in which they lead to the interaction of 
the states with a continuous spectrum, a s  a result of 
which interaction the discrete levels acquire autoioni- 
zation widths. Here we focus our main attention on the 
investigation of the autoionization states with allowance 
for the nonadiabatic coupling of the electron motion with 
the vibrational-rotational motion. 

The equation determining the energy levels In the 
case n question has the form4' 

where the A;;, a r e  the corresponding matrix elements: 

the 1 v)  a r e  the wave functions for the vibrational motion 
in the ground electronic state of Xi, the ANN,(R) a re  
given by the expressions (29), 
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and E, is the energy associated with the vibrational 
motion of the nuclei. 

Since the quantum defect depends weakly on R,  we 
can, in considering the combined effect of the vibra- 
tional and rotational motions on the electron energy 
levels, restrict  ourselves to the one-quantum transi- 
tion (i. e. , Av = * 1) approximation. Setting, for defi- 
niteness, v, v' = 0 ,1  in Eq. (30), and introducing the 
following notation: 

we obtain a 4 X4 determinant, from which i t  is con- 
venient for the investigation of the decay characteristics 
of the Rydberg states to separate the diagonal blocks 

which determine in the zeroth approximation Rydberg- 
electron-energy-level series with different ion-core 
vibrational energies (in the present case these a re  
v=O and v =  1). Then Eq. (30) assumes the form 

where the off-diagonal-with respect to v-right-hand 
side characterizes the nonadiabatic coupling of the elec- 
tron-rotational states to the vibrational motion of the 
molecule's nuclei, and is defined a s  

Firs t  of all, let u s  find the rotational autoionization 
rate in the Beutler region of the spectrum, 

[where E, is the corresponding root of the equation 
Do(E) = 01, in the zeroth approximation with respect 
to Fol(E) - y2 << 1. With this aim in view, let  us se t  voo 
= iy,,, v ~ ~ =  v::) - i  xi:), where yo,>> 1. Separating in the 
equation 

the real and imaginary parts, and solving the corre- 
sponding system of equations, we finally obtain 

where 
a=xr-zox,'/(i+z~'), b=x,'/(i+xo2). 

The autoionization rate is given by the expression 

It follows from (38) that in the limit of small adiabatic 
quantum shifts, i. e . ,  for np, << 1, xi:) = x ? / n ,  and the 
autoionization rate is equal to 

i. e . ,  we obtain the result presented in Ref. 1. 

FIG. 1. Schematic arrangement of the Rydberg k v e l s  of a 
diatomic moleculeX2. 

We limit ourselves to the consideration of the auto- 
ionization states belonging to the region 0 <E, < w + 6B 
(w is the vibration frequency of the ion core). The 
following situations a r e  possible here (see Fig. 1): 

a) one channel is closed and three a re  open, i . e . ,  
w<EA<w+6B;  
b) two channels a r e  closed and two a r e  open, i. e . ,  

6B<E,<w; 
c) three channels a r e  closed and one is open, i. e. , 

O<E,<6B. 

Let us f i rs t  analyze the case a). In this case the E, 
a re  a se t  of roots of the equation, D,(E) = 0, corre- 
sponding to  the nP2(v = 1) level ser ies .  Setting in (35) 
vNo = iy,,, vO1 = iyOl, and v,, = ~ $ 7 '  + 6 ~ , v i 7 ) ~ ,  and taking 
into account the fact that 6 ~ ,  V;:'~ << 1, while y,, >> 1, we 
have 

Fol (EL) cos' rv::' 
6Eh=-'nvy,)*~o(i700, iyzo) (zo-i) ' 

Using the relation 

we finally obtain 

where xi?' is given by the formula (38) with the matrix 
elements x i  replaced by the 2,. The f i rs t  term in (41) 
describes the rotational autoionization, while the 
second gives the additional contribution to the autoioni- 
zation rate due to the nonadiabatic coupling to the states 
of the vibrationally unexcited molecules [i.e., the 
nPN(v = 0) states]. Notice that the formula (41) gives 
the total autoionization-level width. 

Next, let us  investigate the case b), in which E, de- 
notes the se t  of roots of the equation D,(E) = O  per- 
taining to  the nPN(v = 1) series.  Setting VNo 

, , and also taking = iyNo(yNo >> 1) and vN1 = + 6E vv'0)3 
into account the fact that ~E,v?;~ << 1, we obtain 

Let us now consider the case c). If E, belongs to  the 
nP2(v=O) series,  then the autoionization width is de- 
termined by the formulas (38) and (39), i. e . ,  the de- 
tachment of the electron is realized through a rotational 
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transition. For  the nPN(v= 1) series,  however, the 
autoionization ra te  is given by the formula (42) with 
iy,, replaced by v,,(E,). 

5. THE AUTOIONIZATION OF MOLECULAR 
HYDROGEN 

Let us  use the formulas obtained to compute the 
autoionization ra te  for the Rydberg states of the H, 
molecule. The consideration of this case is of special 
interest both in view of the practical importance of the 
hydrogen molecule in a variety of physical processes 
and a s  a result of the fact that these molecules a r e  the 
simplest, best studied molecular object on which the 
various theoretical approaches can be tested. We shall  
be guided by the case of the para-states of H, [i.e., 
the case of the R(0)-type serieslv2], in which the non- 
adiabatic effects couple the greatest number of chan- 
nels, and which a r e  the most complicated for a theoret- 
ical investigation. 

Using the data given in Ref. 1 for p,,(R), we find from 
the formulas (29), (31), and (33) the following numerical 
values for the parameters xi, ,yip and 2,: 

In the case a)  of three open channels, a computation 
with the formula (41) and the parameter values given in 
(43) yields xi:' = 0.067 and A(E,) = 0.008 [here  A(E,) i s  
practically independent of the level energy]. For  ex- 
ample, for the 26P2(v = l)R(O) level we find r=  1.9 
cm-'. The theoretical value computed in Ref. 1 from 
the formula (40) is equal to r =  1 . 7  cm", while exper- 
iment' gives the value r = 2.3 cm-l. Thus, the possi- 
bility of autoionization with a change in the vibrational 
state of the core leads to an increase in the decay rate. 

In Table I we present the autoionization widths of the 
low-lying Rydberg levels of H, in the region 6B < E < w ,  
a s  computed from the formula (42) with the initial data 
(43). The results a r e  compared with those of other 
authors' approximate computations, performed either 
in the two-channel approximation without allowance for 
the electron-rotational motion c ~ u p l i n g , ~ ' ~ ~  o r  with al- 
lowance for this coupling, but without allowance for the 
combined effect of the vibrational-rotational transitions 
and under the implicit assumption that the adiabatic 
Rydberg level shifts a r e  small. Our results differ 

TABLE I. Autoionization widths (in cm-') of the low-lying 
Rydberg levels of the Hz molecule (v = 1) for the optical R ( 0 )  
series (the state of theory and experiment). 

*a)-c) Results respectively obtained inRefs. 9-11 in the simplest 
two-channel approximation; d) Dehmer and Chupka' s computed 

Level Theoretrcal data* Expenmental data (;')I a I b I C I d I ~ - / R e f . l I R e f . ; R d . 3 ~ ~ e f 4  

TABLE 11. Autoionization widths of high-lying Rydberg levels 
of the Hz molecule for the optical R(0) series (v = 1). 

*a) Results of calculation with the formula (42) and effective 
quankm numbers Poi and vzi taken from Ref. 2. 
**b) Results of Dehmer and Chupka's ~alculat ion.~ 

2.1 
- 
- 
- 
- 
- 
- 

from the results  obtained in Refs. 2,9-11. Moreover, 
a s  follows from Table I, there is a t  present no clear- 
cut quantitative agreement among the experimental data 
of the various authors. This circumstance, a s  well a s  
the paucity of experimental data, indicates definite dif- 
ficulties in measuring the autoionization rates. There- 
fore, the theoretical computation clearly assumes pri- 
mary significance here. 

8PO 
8P2 
9PO 
9P2 

1OPO 
top2 
11PO 

4.0 
3.0 - 
- 
- 
- 
- 

In Table I1 we present the autoionization widths of all 
the experimentally observed high-lying levels, a s  com- 
puted from the formula (42) with the initial data (43). 
For  the majority of levels, this is the f i r s t  time that 
the r ( E )  values have been given. Allowance for the 
finite level shift in the formula (41) is equivalent to 
allowance for the interaction of the level in question 
with the surrounding levels. Such an interaction sta- 
bilizes the states against any external influence, in 
general, and decay, in particular. For  this reason, 
the autoionization-width calculations performed within 
the framework of the simplified model of Ref. 2 yield 
overestimated results. The r ( E )  values given in Tables 
I and I1 can be used directly in calculations connected 
with resonance photoionization, i. e . ,  the process un- 
derlying the new physical method of detecting vibra- 
tionally excited H, molecules. 

3.7 
1.0 
4 9  
7.6 
2.3 
6.5 - 

2.1 
1.9 
1 5  
1 4  - - 
- 

3.7 
2.7 
1.7 
2.9 
0.6 
2.7 
0.1 

In conclusion, let us note that the method, developed 
in the present paper, of investigating the Rydberg 
states of molecules admits of further generalizations. 
Of great  interest a re ,  in particular, polyatomic mole- 
cules, in considering which we can neglect the rota- 
tional motion, but should take into account the multi- 
mode character of the vibrational motion. Also of 
specific interest a r e  the predissociation Rydberg states 
of molecules in which the nuclear motion i s  character- 
ized by a continuous spectrum. It should, however, be 
borne in mind that the proposed approach requires the 
knowledge of the adiabatic reaction matrix (5), which 
makes the development of the MQD method dependent 
on the experimental spectroscopic investigation of the 
f i rs t  t e rms  of the Rydberg series.  

1.1 
1.1 - 
8.0 - 
- - 

2.14 
1.48 
1.17 
189 
0.43 
1.33 
0.09 

5.8 - 
- 
- 
- 
- 
- 

' k e t  us note that, generally speaking, the potential V also 
depends on the azimuthal angle (p of the internal rotation in 

5.1 
2 8 
2.4 
2.3 
0.9 
- 
1.3 

data2; e) our results. 
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a way that duplicates the axial symmetry of the molecule. 
Therefore, in principle, the scattering of the electron by the 
core is accompanied by a change in K, which can be incorpor- 
ated without any difficulty into the above-expounded compu- 
tational scheme. However, the deviations of V from the q- 
averaged value P a r e ,  a s  a rule,  small ,  and can, in the f i r s t  
approximation, be neglected. 

2 ) ~ o r  J = O ,  there will be two such pairs of s e r i e s ,  corres- 
ponding to A"= 0 and K = 1. 
w e  can, by setting vo = n -pa, easily verify directly that Eq. 
(28) coincides with Eq. (32) of Ref. 8. 

')For the case  in which the a diabatic Rydberg shifts a r e  small  
(i.e., q,, <c I), Eq. (30) goes over into Eqs. (25) and (28) of 
Ref. 12, which a r e  derived through a direct expansion of the 
two-channel equations describing the nonadiabatic coupling of 
the electron motion to the molecule's rotational motion in 
terms of the vibrational states of Het. This procedure can- 
not, however, be considered to be consistent enough, since 
the result  depends on the way the basic two-channel equations 
a r e  written. Our method, on the other hand, precludes any 
ambiguity In the solution of the problem, and leads to equa- 
tions that, for nw,, - l, differ from those formulated in Ref. 
12. 
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