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The mass shift of an accelerated electron and of a scalar (field) charge (source) is investigated in the classical 
limit. The shift is produced by the inertia of the self-field of the particle, is analogous to reactive energy (in a 
circuit), and is accompanied by a logarithmic singularity in the emission probability and in the spectrum of 
radiation. The mass shift appears as a result of sufficiently long acceleration of the charge by a constant field 
which does work on the charge as a consequence of the 4-current structure of the interaction (the vector 
character of the self-field). For an accelerated scalar charge there is no mass shift, but the inertia of the scalar 
field as well as that of the electromagnetic field manifests itself in the aperiodic oscillation of the self-field 
mass, i. e., as a variable shift which is an odd function of the longitudinal speed of the charge. As the speed v 
tends to c ,  for the electron this function has the limit - a2iwd2c3, determined by the acceleration w,, 
whereas for a scalar charge the limit is zero. The sign of the mass change as the particle traverses the turning 
point is related to the causality of the theory. The excitation spectra of the variable mass shifts of the 
electromagnetic and scalar charges coincide respectively with Bose and Fermi distributions corresponding to 
a temperature kT = 2fiw,J~rc. It is shown that the limiting mass shift of an electron for arbitrary motion in 
an electric field does not depend on the transverse momentum, whereas the emission probability depends on 
it, and for p,>mc tends to the emission probability in a crossed field, retaining however its logarithmic 
singularity. 

PACS numbers: 03.50. - z 

1. INTRODUCTION and then the mass shift increases and for 8 >> 1 is de- 
termined by the expression 

In a previous paper' the shift of the electron mass in 
a constant electromagnetic field was determined, a 
shift due to the change of the electron radiative self- 
interaction caused by the external field. This shift de- 
pends on the strengths of the electric and magnetic 
fields and on the quantum numbers which determine the 
state of the electron in the field. In the special case of 
a purely electric field E and a state of the electron char- 
acterized by vanishing transverse momentum p, = 0 (so- 
called hyperbolic motion), the mass shift depends only 
on the dimensionless constant 0 = ec/m2 and for 0 << 1 is 
determined by the expansioni' 

Here p is the photon mass introduced to remove the in- 
frared divergence caused by the infinite character of the 
motion, and y = 1.781. . . . The f i rs t  terms of this ex- 
pansion for the real  and imaginary parts of the mass 
shift turn out to be purely classical-they do not depend 
on E, if one takes into account the fact that in  the class- 
ical theory one should use in place of the photon mass 
the smallest wave number kgin = pc/6. 

Although in principle an investigation of quantum elec- 
trodynamics in the region near the critical field c-m4/ 
e is of interest, the expression obtained for the mass 
shift exhibits quite intriguing properties of the electron 
even in relatively weak fields E << m2/e .  

In this paper two methods a r e  used to investigate the 
classical part  of the mass shift. The first ,  "integral," 
method s tar ts  from the expression (3) for the change of 
the self-interaction of the electron under acceleration, 
an expression that determines the real  and imaginary 
par ts  of the shift in the final state. This expression al- 
lows one to indicate those accelerated motions of the 
charge which lead to the real  part of the mass shift and 
the accompanying logarithmic singularity in the imagi- 
nary part  of the shift, and consequently to an infrared 
singularity d w / o  of the emission probability spectrum. 
These motions a r e  characterized by a definite relation 
between the natural parameters of the 4-trajectory (its 
curvature and the two torsions), and by means of ex- 
ternal forces  o r  fields acting on the charge they a r e  
characterized by a sufficiently lengthy action on the 

Thus, according to the classical term, Re Am de- charge of the constant electric field which does the 
creases linearly with the increase of the electric field work. 
strength, and for P = 2/a, i.e., E = 2mzc4/e3 the electron In order that a mass shift should appear i t  is essen- 
mass should vanish. Thus the inapplicability of classi- 
cal electrodynamics manifests itself visibly for fields 

tial that the spin of the self-field should equal to one. 

of the order of m2cd/e3 (the field a t  "the edge of the 
For  a scalar  charge, i. e., the source of a scalar field, 
no accelerated motion leads to a mass shift o r  to a sin- 

electron"), cf. Ref. 2, $75. However, a s  can be seen gularity in the emission spectrum. 
from Ea. (1). auantum effects become important al- - - , -  

ready for 0- 1, and these effects lead to a cessation of We have determined the mass shift of the electron in 
the decrease of the mass, so  that in the region p - 1  the a motion in an electric field.with arbitrary transverse 
quantity Re Am attains a minimum of the order of -om, momentum. I t s  rea l  part  does not depend on p,, and 
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twice the imaginary part for p, >> m tends to the speed 
of emission of a charge in a crossed field. 

In the more sensitive "differential" method the mass 
shift is determined by the change of the Lagrange func- 
tion of the self-field of the charge under acceleration, 
i. e. ,  by the state of the self-field at  the instant of time 
under consideration. The mass shift turns out to be an 
odd function of the velocity of the charge, changing sign 
a t  the turning point and tending to the limit determined 
in the "integral" method a s  v - 1. A variable mass 
shift is also exhibited by the scalar charge, but i ts  
limit a s  v - 1 vanishes. 

The expression of the variable mass shift in terms of 
the Lagrange function of the field makes it possible to 
interpret it a s  a reactive energy of aperiodic oscilla- 
tions of the self-field a s  the charge is accelerated. 

The spectral functions of the variable mass shifts of 
electromagnetic and scalar charges coincide respec- 
tively with the one-dimensional Bose and Fermi distri- 
butions corresponding to an effective temperature T 
= 2wo/n determined by the acceleration wo. The en- 
hancement of low-frequency mass excitations of the 
electromagnetic field is due to the current-vector 
structure of the electromagnetic interaction. The ef- 
fective temperature coincides with the one obtained by 
interpreting pair production by the electric field a s  a 
thermal excitation. This coincidence is produced by a 
common cause: both the mass shift and the pair pro- 
duction occur only if the constant electric field acts on 
the charge for a sufficiently long time, doing work on it 
which exceeds 2m.  

2. THE CHANGE OF THE SELF-INTERACTION OF THE 
ELECTRON UNDER ACCELERATION 

The classical part of the mass shift follows directly 
from the expression for the change of the self-interac- 
tion of the electron in the external field': 

It is thus determined by the square of the interval 
(x - X I ) ¶  between the emission and absorption of the pho- 
ton, and the relative Lorentz factor iaial. For any 4- 
trajectory X ,  ( 7 )  these quantities a re  subject to the rela- 
tion 

We shall consider 4-trajectories for which the dis- 
tance between any two points is a function only of the 
length of the path between them, i. e. , such that (x (T )  
- X ( T I ) ) ~  = 2f(7- T I ) ,  and consequently iaiar =f' (T -  $1. 
Such 4-trajectories have constant curvature (accelera- 
tion) a = @t)"2, since xi = -f'4'(~). As a result of this 
the mass shift will be a functional of f .  All other local 
invariants of the trajectory,3n4 such a s  the first  and sec- 
ond t ~ r s i o n , ~ '  a re  also constant, and a re  determined by 
the derivatives of even order of the function f (u) at the 
origin. 
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For a charge in hyperbolic motion the squared inter- 
val (x - x f ) ¶  and the relative Lorentz factor ;,&' have 
the expressions 

Therefore, if one uses in the expression ( 3 )  for the 
self-interaction the propagator 

corresponding to p = 0, then the mass shift 

will have an infrared divergence, since the relative 
Lorentz factor increases a s  u = w ~ ( T -  T ' )  - just a s  
rapidly a s  the squared interval. 

In order to remove the infrared divergence we use a 
photon propagator with p # 0. We then obtain for the 
mass shift3' (cf. Ref. 1 )  

the . . . denote terms which vanish for X = (p / w ~ ) ~  - 0. 
In addition to a finite Im Am, which increases logarith- 
mically fo r  X - 0 there appeared a term Re Amd 
= -(2w0/2 which does not depend on X<< 1. The integra- 
tion interval X sa  s l is important for the formation of 
both parts of Am,, , hence 

i. e., the proper time of formation of these terms is of 
the order of, o r  much larger than, the reciprocal of 
the acceleration-exhibiting the characteristic infrared 
extension of the formation region. 

The spectrum of the total probability of classical 
emission 

at dSk 
- 

dwp--IjD(k)Iz- ja (k) =e d ~ &  (T) e-'k('), (8) 
o 16n50 ' - - 

obtained for a uniformly accelerated (UA) electron by 
Nikishov and the author; 

exhibits the characteristic infrared singularity dk/ktw. 
Integrating the spectrum with respect to k,,, account be- 
ing taken of the relation k,, = k, sinhw, between the longi- 
tudinal component k,, of the wave vector and the proper 
time T of emission on the electron trajectory:' yields, 
upon dividing by the total emission time AT, the spec- 
trum of the emission probability per unit proper time: 

This spectrum maintains i ts  infrared singularity dk,/k,. 
Further integration with respect to k,, cp leads to a 
probability of emission per unit proper time 

in agreement with the general formula ti, = -2  Im Am, 
see Eq. (1). 

V. I. Ritus 



3. THE CONDITION FOR THE APPEARANCE OF A 
MASS SHIFT AND OFdAN INFRARED SINGULARITY 
IN THE EMISSION SPECTRUM 

The infrared behavior of the emission probability and 
of the spectrum of a UA charge is unique to this kind of 
motion. Usually an infrared singularity appears in a 
spectrum of total probability of emission when the ac- 
celeration occurs on a finite portion of the 4-trajectory 
of the charge, and outside this portion the motion is 
considered to be f ree  (see Ref. 6, 89, and Ref. 7, 89). 
If the accelerated motion of the charge takes place on 
an unbounded interval of the 4-trajectory, the spectrum 
of the total probability may o r  may not have an infrared 
singularity, although the probability itself increases 
without bound on account of the proportionality between 
the proper time and the acceleration, and in this case 
it makes sense to talk about the probability of emission 
per unit proper time. We consider two examples. 

For a charge moving uniformly on a circumference in 
a magnetic field with a 4-acceleration of constant mag- 
nitude 

we have 

The interval (x - x')' increases sufficiently rapidly com- 
pared to i,x', ', there is no infrared singularity, and 
Eq. (3) yields - 

au m 1+2(p,/m) a sin' u  1 
Amd--i--j d u [  

2n Pa 
(13) 

i. e., Re Am,, = 0, and the rate of emission 
= -2 Im Am ,, is a function of p,/m and equals 2oap,/3m 
for  p, <<m and 5oa/2dJ for p,>> m. 

The spectrum of total probability has the form dwk 
  AT^%; the spectrum of the rate of emission is dis- 
crete: 

a 
dck, = - 70,[ctg2 0.f: (z) +VZ1,'-)l(z) 1 dQ, 

2n 
o=o,=seq/my, z=k,p,/eq=sv sin 8, s= l ,  2 , .  . . , (14) 

does not contain infrared singularities and is related to 
intensity spectrum of radiation2 of Schott by means of 

For a charge executing infinite motion in a crossed 
field with constant magnitude of the 4-acceleration 

we have 

In spite of the strong growth of the Lorentz factor, 
there is no infrared divergence, since the interval 
grows even faster. In this case 

We have again Re Am, = 0 and the rate of radiation ti 
=-2ImAm, coincides, a s  i t  shouldJ8 with the limiting 

ra te  of emission in a magnetic field for p,>> m, if one 
considers the magnitudes of the 4-accelerations in both 
cases  to be equal. 

The spectrum of the total emission probability has 
the form5*' 

a 2 '  2 z/, d'k 
" k e F ( ; )  * [ 'm' ( y )+ (b )  @ " ( Y ) ] ~ .  

where *(y) is the Airy function, and 

If one uses the representation @k/w =dkidk2dkJk, and 
integrates the spectrum (17) over the "dummy" variable 
kt, taking into account the relation T=pki/mak. 
between kt and the proper time T of e m i ~ s i o n , ~ * ~  then, 
upon dividing by the emission time ~ ~ = p ~ k ~ / m a k -  we 
obtain the spectrum of the radiation rate 

Integration with respect to k, yields the radiation rate 
spectrum in the variable k: 

The integration with respect to u leads to the rate h 
= -2ImAm, in agreement with Eq. (16). 

The spectra (17)- (19) exhibit a low-frequency singu- 
larity of the integrable type. For  example, the spec- 
trum (19) has a singularity of the type k?"dk-. 

In distinction from the extended formation region for 
Am of a UA charge, the proper time of formation in 
the las t  two examples is smaller o r  of the order of the 
reciprocal acceleration: T - T' - a"v for (13) and T - 7' - a-' for (16). Thus, the infrared singularity is deter- 
mined by the behavior (integrability) of the quantity 
i,i;(x-x')'l for large relative proper times r -  T'. In 
this connection i t  is essential that the source of electro- 
magnetic field of the particle is a 4-current, i. e., that 
the spin of the self-field is unity. 

4. THE ROLE OF THE SPIN OF THE SELF-FIELD 

For  a scalar field, for instance, the source is not a 
4-vector current density, but rather a scalar charge 
density, and in this case the quantity ?,?,' should be 
replaced by one. 5 '  This decreases the rate of emission 
of radiation, and softens the singularity of the spectrum 
of the probability of emission in the low-frequency re- 
gion. We list  the results  for  the mass shift and spec- 
trum of emission probability of a scalar charge (i. e., 
the source of a scalar field) for different motions with 
constant acceleration a = (j2i)i'2. 

For  hyperbolic motion 
aa a dJk Am =-i- dWk=-&'( f )-. 
2n ' n2az o 

(21) 

In distinction from Eqs. (7), (9), and (lo), there a r e  no 
infrared singularities in the probability and spectrum of 
the scalar radiation, Re Amcl = 0, the proper time of 
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formation of Am, is of the order of the reciprocal ac- 
celeration: T-  7'-a". The expression (21) for Am, 
has been obtained by Zel'nikov and Frolov." 

For  uniform motion on a circle 

Amc,=i-- " j d u [  1 
2% P l o  ua+ (p,/m) a (d- sin2 u) 

(22) 

For  the nonrelativistic and ultrarelativistic limits the 
ra te  of emission w equals respectively aap,/3m and a a /  
243. 

In the motion along a 4-trajectory of an electromag- 
netic charge in a crossed field: 

- 
Am, =-iaa/473, 

In the last two examples the proper time of formation 
of Am,, is smaller o r  of the order of the reciprocal ac- 
celeration: T-  7'- a"v for Eq. (22) and T -  7'- a-' for 
Eq. (23), i. e. , the same a s  for the electromagnetic 
charge. Therefore Am2 is of the same order a s  ~m:?, 
but the spectra of the scalar and electromagnetic radia- 
tions a r e  substantially different in the low-f requency 
region w 5 a, where the role of the relative Lorentz 
factor ia3, ', i. e. , of the structure of the interaction 
due to the spin of the self-field, has the most influence. 
For  another manifestation of the spin of the self-field, 
see the book by Lightman et a l . ,  Ref. 10 (Problem 
12.5). 

Zel'nikov and Frolov" have utilized an equation of the 
type (3) for the self-interaction of a UA source of a 
field of spin s (see the book by schwingeri2) and have 
obtained an expression for the mass shift differing from 
Eq. (7) by replacing the index 1 in  the Macdonald func- 
tion by the index s and a common factor (-I)~-'. It fol- 
lows from this expression that Re Am, =(-l)'scua/2 and 
does not depend on X -- 0, and Imam, for s Z 2 grows 
according to a power law a s  x'~". This is caused by 
the appearance in the self-interaction of the Lorentz 
factor ;,;,I raised to the power s. The author has 
shown that for uniform motion around a circle of a 
source of a field of spin 2 Re Am, = 0, and Im Am,, is 
finite for X -0, but is positive, which violates unitar- 
ity. Apparently the indicated shortcomings in the be- 
havior of Im Amd for s e 2 a r e  caused by the fact that 
the tensor sources used for a field with s = 2 do not 
satisfy a conservation law for Z,(T)# 0, in distinction 
from the always conserved 4-current source of a field 
of spin 1. 

5. THE MASS SHIFT FOR AN ARBITRARY MOTION OF 
A CHARGE IN  AN ELECTROMAGNETIC FIELD 

Here c and q a r e  the magnitudes of the electric and 
magnetic fields in the reference frame in which they a r e  
parallel; p, is the conserved magnitude of the momen- 
tum perpendicular to the field in this frame. The inter- 
val and the Lorentz factor increase a t  the same rate as 
T -  7'-* and therefore Amd has an infrared singular- 
ity. As can be seen from Eq. (24), i t  is important for 
the infrared singularity that the charge be subjected to 
the action of a constant electric field e during a proper 
time span not smaller than m / e & .  

We note that the curvature (acceleration) a, and the 
f i rs t  and second torsions TI and T2 of the 4-trajectory 
a r e  given in this general case by the formulas 

where u and y = (1 - v2)-'I2 a r e  the velocity and the Lor- 
entz factor corresponding to the transverse momentum 
p, = mvy. The inverse relations which express the 
fields e and q and the transverse velocity v in terms of 
the natural parameters of the world line a r e  also im- 
portant: 

where 21 =a2 - 4 - 4. As we have seen, a necessary 
and sufficient condition for infrared divergence of Am,, 
is that c #  0. In the language of the natural parameters 
of the world line this means that either the second tor- 
sion is nonzero r2 f 0, o r  the curvature exceeds the first  
torsion, aZ > 4 if T2 = 0. 

Since the expression for the mass  shift in this general 
case is rather complicated, we l i s t  it for the general 
motion of a charge in a purely electric field (q = 0, E 

# 0, p,+ 0): 

Here, again, v and y = (1 - v2)-"2 a r e  respectively the 
velocity and Lorentz factor corresponding to the trans- 
verse momentum p, = mvy. This formula generalizes 
Eq. (7) to the case of a nonvanishing transverse mo- 
mentum if q = 0 [as can be seen from Eq. (24), a t  p, 
= 0 the shift is not sensitive to the magnetic field, and 
Eq. (7) remains in force if in addition to the electric 
field c there is a magnetic field q # 01. 

In the case Xy2 << 1 the equation (27) takes the form of 
the right-hand side of Eq. (7): 

Here y, = 1.781. . . is Euler's constant, y = (1 - v ~ ) ~ " ~ ,  
and the function 

For a charge moving in an electromagnetic field of a - I - ~ + v ~ u ~ D  -1) 
general form (when both field invariants a r e  not zero) J (v2 )=  jdu ( cJ,u-i-u'u./2 uz 

we have and has the following asymptotic properties: 
PI= (z-z1)'=2- [ I  - C ~ ~ ~ ( T - ~ ' ) ]  -1+ (*& +2n2/9) v2+. . . , v2<1 , 

eaq' m nr/2y7-3.89$+. . . , l - v2a1  ' (30) 

i~~t=p-LICOSetl(T-T~)-mlfpIt chEE(T-T~) .  (24) 
ma m m m Thus, Ream,, = -aee/2m and does not depend on v. 
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As regards Im A m , ,  a s  v -- 1 the term involving the J 
function becomes leading, and the ra te  of radiation 
tends to that of a charge in a crossed field, provided 
one identifies the corresponding accelerations, see  Eq. 
(16): 

We also l ist  the spectrum of emission probabilities, 
determined from the general formula (8) by Nikishov 
and the author5: 

where z = klmy/e&, v =  kg,cos p/e, and cp is the angle 
between the vectors k, and p,. 

We make two remarks. 1) A nontrivial integration of 
this spectrum with respect to k, must yield -2ImAm, 
a s  given by Eq. (28). The infrared singularity appears 
on account of the behavior K;(z) - -2" as k, - 0, and the 
integration with respect to kL from kbtn to infinity leads 
to the logarithmic term in (28), with the photon mass p 
replaced by the lower limit khin. This i s  essential for 
a physical interpretation of the emission probability. 
2) The spectrum (8), and in particular (32), does not 
involve an ultraviolet singularity, in distinction from 
the expression (3) for A m , ,  where such a singularity 
leads to the need of a subtraction, essential for both 
the real  and imaginary parts of Am,. 

6. THE MASS SHIFT DETERMINED BY THE STATE OF 
THE SELF-FIELD 

Another method of determining the mass shift consists 
in finding the correction AL to the Lagrange function L 
of a charge in the external field A?' 

correction which takes into account the interaction of 
the charge with i t s  proper field 

AL- [ J ~ v A J .  + I d v -  Ezi"]:, 
Here A,, E, and H a r e  the four-potential and the field 
strengths of the self-field of the charge. Since for uni- 
form motion of the charge the interaction with the self- 
field is already taken into account and included in the 
observable mass of the charge, the correction to the 
Lagrange function takes into account only the change 
produced by the external field of the interaction with the 
self-field, and therefore represents the difference be- 
tween the quantity in brackets in the external field and 
in the vacuum, for identical positions and velocities of 
the charge a t  the instant of time under consideration 
(the indices F and 0 on the bracket denote this). I t  can 
be seen from the expression for  L that if one considers 
AL a s  a correction for a given coordinate and velocity, 
i. e. , AL = (AL) ,,, then i t  can be interpreted a s  a 
change of L on account of a change of the mass of the 
charged particle: 

The expression 

m =- 
1 [ j  dv~. i .+-- j  2  ~ V ( E ~ - B )  ] (37) 

could be called the electromagnetic mass of the charge. 
Making use of the relation 

which follows from the Maxwell equations, one can 
represent me, in the form 

me,,,=, [+I d V ( E z - f f )  + l d ~ a . ( ~ ~ d ~ )  ] (39) 

or, alternatively, in the form 

For  a charge a t  r e s t  o r  in  uniform motion the diver- 
gence term vanishes, and in this case the electromag- 
netic mass  is given by the expressions 

The first  of these expressions coincides with the result 
of ~ u t l e r , "  who proposed for the 4- momentum of the 
self-field of a uniformly moving charge the expression 

where u, is the 4-velocity of the charge. Earlier, Eq. 
(41) had been used by ~ s ~ t o v i c h ' ~  for macroscopic re- 
normalization of the mass of a uniformly moving elec- 
tron in a medium. For a UA charge the divergence 
term does no longer vanish, and one must use one of 
the equations (37), (39), (40) for the electromagnetic 
mass. 

In cylindrical coordinates the retarded field of a UA 
charge moving along the z axis according to the law z 
= z, = ( w a  + tz)'" is determined by 

E,=-n-'ew,-z(wo-a+t'-z2+p2) 9-'8 ( z+ t )  , 
E , = 2 n - ' e ~ ~ - ~ z p E - ~ 0  ( z f t )  + (2n)  -'ep ( ~ ~ - ~ + p ' ) - ' 6  (z+t)  , 

H , = 2 n - ' e ~ , - ~ t ~ g - %  ( z t t )  - (2n)  - 'ep(wo-' ipy- '6(z+t) ,  (42) 

E.=H.=II,=O, E= [ ( W ~ - ~ + ~ ~ - Z ~ - ~ ~ ) ~ + ~ W / ~ ' ] ~ ,  

and the retarded potential is 

The solution obtained by ~ o r n ' ~  differs from the one 
above by the absence of the delta-function terms and the 
replacement of the theta-function by one. It coincides 
with the retarded solution of the Maxwell equations only 
in the region z > -t. The retarded solution of schotti6 
differs from the one given here only by the absence of 
the delta-function terms, which where proposed by 
Bondi and   old," in order that the solutions should sat- 
isfy Maxwell's equations also on the plane z = -t; cf. al- 
so  the paper by Fulton and Rohrlich. '* 

(AL)x,o=-Am(i-u2)6.  (35) Thus, the field of a UA charge differs from zero only 
Thus, in the half-space z 3 -t, and is singular on the boundary 

1 I ' 
plane z = -t. The field lines of the electric and magnet- 

Am=-y(AL),.=-7 [ I  dvA,i.+-I ~ V ( E Z - H Z )  . 
2 

(36) ic fields and the flow lines of the energy flux a r e  mutu- 
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ally orthogonal and in the region z > -t they a r e  along 
the circles which form the coordinate lines of a bi- 
spherical coordinate system. If one denotes ri and r2 
the distances from an arbitrary field point to the charge 
z  =z ,  and its mirror image z  = -2, in the z  = 0 plane, 
and defines $ =ln(r2/ri) and x as the angle between the 
two segments 71, y2, there $ and x together with the 
azimuthal angle cp of the cylindrical coordinates form a 
bispherical coordinate system, being related with the 
cylindrical coordinates of a point by the relations 

2-2. sh $/(ch p-cos x), p=z. sin xl(ch Ip-eos x). 

In terms-of these coordinates the electric and-magnetic 
field strengths at  any point with z  > -t a re  given by the 
expression 

The lines of the electric field E a re  along a rcs  of circle 
passing through the charge and i ts  mirror image in-the 
plane z  = 0, i. e., along circles with constant X, p, and 
variable $. When they reach the plane z  = -t the E- 
lines suffer a break and go out radially in the z =-t 
plane to infinity. The lines of the magnetic field H a r e  
latitude circles with variable cp (and I), x = const). Fi- 
nally, the energy flux lines of the Poynting vector ExH 
form the X-circles ($, cp = const). 

At the boundary z  = -t the field energy becomes in- 
finite and flows with constant power 2ffwi/3 into the vol- 
ume z  > - t .  The energy excess in the volume z  > -t 
over the energy of a uniformly moving charge increases 
linearly in time: 

A similar behavior is exhibited by the z-component of 
the field momentum. In particular, 

so  that the excess of energy-momentum of the field in 
the volume z  > -t over the energy momentum of the field 
of a uniformly moving charge forms an isotropic 4-vec- 
tor (a 4-vector of zero length, or null-vector). 

It follows from Eq. (44) that the field becomes light- 
like only for v sinx close to one, i. e. ,  only near the 
spherical surface x = n/2 passing through the charge and 
centered at  the coordinate origin, and only in this case 
is the electron ultrarelativistic. 

Making use of the field (42) and carrying out an inte- 
gration over all  space, we obtain 

with the Bondi-Gold terms not contributing to the inte- 
gral. 

The computation of the divergence term is convenient- 
ly carried out separately for the spatial and temporal 
parts of the divergence of the 4-vector F a d ,  = (AxH 

The integration is over the half-space occupied by the 
field -t  + 6 S z  5 6 - 0, excluding a thin layer of 
thickness 6 near the plane z = -t; the dots . . . denote 
terms which vanish a s  6 -0. If one extends the inte- 
gration to the plane z  = -t, the Bondi-Gold terms lead 

the appearance in the integrands on the left-hand 
sides of the above equations of singular derivatives 

respectively, which in sum yield zero, on account of 
the fact that 

depends only on t? - z2 and is not singular on the line 
z2-tZ=O. 

Thus the sum, i. e. ,  the divergence term a s  a whole, 
does not depend on the Bondi-Gold terms and of the 
limit 6 - 0: 

We also s t ress  the fact that the divergence term does 
not require subtraction, since it already vanishes for a 
uniformly moving charge. 

It is striking that the divergence term is twice a s  
large a s  the change in the Lagrange function of the field 
and has the opposite sign. On account of the relation 
(38) this means that 

This fact is no accident. If one substitutes into the 
left-hand side of Eq. (50) the solution 

A ~ " ( z )  - j ~ ? ) Z ' D ~ ~ Y Z - Z * )  ja(zr) ,  

then the resulting integrand D"' (x - x')j, (x)j,(x') differs 
from zero only for x=xl ,  since Dm' has support on the 
light cone (x - x')' = 0, and the product of the currents 
has support on the timelike trajectory of the charge h 
- x ' ) ~  < 0. But at  the point x =x' the quantity D'"'j, j ,  
coincides with i ts  expression in the absence of the field, 
and therefore the difference (F, 0) vanishes. This rea- 
soning is not applicable to the uniform motion of a 
charge in a medium, since the propagators in the medi- 
um and in vacuum are  different. 

Thus, the mass shiit of a UA charge is given by the 
formula' 

I t  is an odd function of the velocity of the electron and 
varies rapidly near the turning p in t6 '  from the value 
awo/2 to the value -(uwo/2. Since w, =ez /m ,  one may 
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say that the accelerated electron has an electric dipole 
moment equal to a(eE/2mc)fi directed along the veloc- 
ity, such that the interaction energy with the electric 
field a s  the charge goes through the turning point de- 
creases  from the maximal value to the minimal value. 

7. THE MASS DENSITY AND THE MAXWELL STRESSES 
OF THE SELF-FIELD 

We note that ( E ~  - H2)/2 is the mass  density of the 
electromagnetic field of the electron. Indeed, a t  each 
point of space the electromagnetic field moves like a 
compressible fluid in the direction of the Poynting vec- 
tor with a velocity u determined by the relation 

For the field of an electron we always have E . H = 0, 
E2 > HZ, and therefore u = H / E .  In particular, for the 
field of a UA electron u = v sinx [cf. Eq. (44)]. In a 
Lorentz frame moving with velocity u relative to the 
original frame the fields E' and H' a r e  parallel, their 
Poynting vector vanishes, and the field energy density 
coincides with the mass density. It can be written in 
terms of the fields E and H in the original frame: 

(52) 
For the field of an electron the right-hand side equals 
(E2 - H2)/2. 

The mass density (52) of the field is an eigenvalue of 
the energy-momentum tensor of the field, which, in the 
frame where the Poynting vector vanishes, has the di- 
agonal form 

Tm,'='12(E'Z+H'2) diag ( 1 ,  1, -1,  - I ) ,  (53) 

if the third space axis is chosen along the common di- 
rection of the fields E' and H'. The pressure along this 
distinguished direction is negative (i. e . ,  a tensile 
stress). In the original coordinate frame the energy- 
momentum tensor is not diagonal, on account of EX H 
+ 0, but an appropriate choice of the spatial axes allows 
one to diagonalize i t s  spatial part, the maxwellian 
s t ress  tensor T i , .  Then two of the principal s t resses  
will have opposite signs and be equal in magnitude to 
Lorentz-invariant mass density (52). The third princi- 
pal s t r e s s  equals the energy density of the field and is 
not Lorentz invariant. 

For the field of a UA charge the Maxwell s t r e s s  ten- 
sor  is diagonal in the bispherical coordinate system 

Ti,=diag (Tvv, T,, T , , ) ;  (54) 

the principal s t resses  a r e  along the electric and mag- 
netic field vectors and along the Poynting vector: 

T,,=-Tw=- ( E Z - I I Z ) / 2 ,  T,,= ( E P + H Z ) / 2 .  (55) 

The s t ress  along the electric field is negative, i. e . ,  is 
a tension. The volume integral of this tension for an 
accelerated electron and v > 0 is larger than for a uni- 
formly moving electron, which indicates a stronger 
coupling of the charge to the field and explains why the 
mass shift is negative, cf. Eq. (51). 

The mass  density of a UA electron 

in addition to the singularity a t  the location of the 
charge, will exhibit for  v - 1 a maximum a t  the point z 
- - -t, p = 0 with a transverse width Ap-  w$ and a longi- 

tudinal width A ~ - w i ~ ~ - ' .  This maximum gives the 
main contribution to the integral (47), since the contri- 
bution from the region near the charge coincides with 
the field mass of a uniformly moving charge and is can- 
celled in the subtraction. In general, on account of the 
symmetry of the field a t  any time t > 0, the following 
relation holds between the contributions of the regions 
- t s z s O ,  O S z s t ,  andt.sz<": 

the whole subtraction term is referred to the integral 
over the third region. The energy of the field, (45), has 
has a similar volume distribution. 

The relation (57) does not change under a Lorentz 
transformation with velocity k along the z axis which 
transforms the hyperplane t = C into the inclined hyper- 
plane 

which, a s  before, is tangent to the hyperbolic cylinder 
t2 - z2 = c2 with the boundaries of the region again given 
by i t s  intersection with the invariant planes t = r z  and 
the tangency with hyperbolic cylinder t2 - z2 = c2. For 
k = v the charge is at  r e s t  in the transformed frame, 
and the integral (51) accumulates i ts  value -aw,f,(v)/2 
on the hyperplane t = v(wil - z), so  that the dependence 
of the mass  shift on the velocity is equivalent to i t s  de- 
pendence on the slope of the integration 3-hyperplane. 

8. THE OSCILLATION OF THE PROPER MASS OF A 
SCALAR CHARGE DURING ACCELERATION 

Although the real  part of the mass shift of a UA scalar 
charge vanishes according to Eq. (21), in distinction 
from the case of an electromagnetic charge, we derive 
more physical information by considering the mass 
shift of a scalar charge in terms of the field, i. e., in 
terms of the Lagrange function of the field, a s  we did 
in Sec. 6 for the electromagnetic charge, since this ap- 
proach yields the time dependence of the mass shift. 

It is obvious that for the source of a scalar field the 
analog of Eq. (34) will have the form 

[ I 1 2 F 
A - d v o p + ~ ~ a v ( ~ )  ax= ] . (58) 

On the basis of the considerations expounded in Sec. 6, 
the contribution of the f i rs t  term vanishes, so that one 
needs to take into account only the volume integral of 
the Lagrange density of the scalar field. For an arbi- 
trary motion of the source the potential rp of the scalar 
field is connected with the zero component A. of the 
electromagnetic potential by. means of the relation rp 
=Ao(l - ~ ~ ( t ' ) ) " ~ ,  where v(tr) is the 3-velocity of the 
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source a t  the retarded instant of time. Determining for 
the UA motion of the charge the factor (1 - a s  a 
function of the coordinates of the field point at time t, 
and using the expression (43) for Ao, we obtain 

On account of the jump in cp a t  the boundary z =-t the 
energy is infinite there and flows in with constant power 
cuw!/3 into the volume z > -t. Therefore the excess of 
the field energy in the volume z > -t over the field ener- 
gy of a charge in uniform motion grows linearly with 
time: 

For  the density of the Lagrange function for the field 
we obtain 

This expression is finite a t  the boundary z = -t, in dis- 
tinction from the energy density. The integration of 
this function over the 3-volume is facilitated consider- 
ably if one takes into account the fact that for a charge 
in uniform mot ion(8p/a~,)~ = E' - If2, and for a UA 
charge 

Therefore 

i. e., the change of the Lagrange function of the scalar 
field is equal to the already determined variation of the 
Lagrange function of the electromagnetic field, (47), 
minus a simple term which does not require subtrac- 
tions, which is equal to 

where v and y = (1 - a re  the velocity and the Lor- 
entz factor of the charge a t  the time t, and y =war 
= Artanh v.  

As a result of this the change in the Lagrange function 
of the scalar field has the form 

where x = 2w07 = 2 Artanh v, a s  in Eq. (47). We call at- 
tention to the fact that the functions of proper time fo 
and f1 a re  related by 

We note that the expression (58) for a L  can be trans- 
formed by means of the relation 

which follows from the wave equation for cp, cf. Eq. 
(38). The resulting equations differ from the electro- 
magnetic ones by the substitution 

The expression for the shift can again be reduced to a 
divergence term, which does not require subtractions. 
The spatial and temporal parts of the divergence term 
do not contain singular contributions, owing to the fin- 
iteness of cp at  the boundary t =-e, and their terms lin- 
e a r  in t a r e  half a s  large a s  in electrodynamics, since 
the energy flux through the boundary z =-t into the vol- 
ume z > -t, is half as large [cf. Eq. (6011. 

Thus, the mass shifts Am = -yAL of the scalar and 
electromagnetic field a r e  described by the simple odd 
functions of the velocity o r  proper time 

where x = 2w0s= 2 Artanh v.  Near the turning point 
they a r e  both linear in v or  in 7: 

IC 
Amem=-2aw,%rt+ .. ., Am =-awp2r/3+. . ., (68) 

and the ra tes  of mass  change at T =  0 coincide with the 
intensities of the emission of the charges 

An important distinction a r i ses  for v -*I: whereas the 
mass shift of the electromagnetic charge tends mono- 
tonically to the nonzero value a w 0 / 2 ,  that of the scalar 
field attains a t  wor-- *0.8 the extremum TO. 3098mo/2 
and then tends to zero. The limiting values of the shift 
for v - +1 a r e  given by the formulas of Secs. 2 and 4. 

Thus, the scalar field, just a s  the electromagnetic 
field, exhibits inertia: as the charge passes near the 
turning point the mass of the self-field suffers an oscil- 
lation around i t s  value which corresponds to no accel- 
eration. The sign of this oscillation, cf. Eq. (681, is 
closely related to causality and can be changed only if  
one replaces retarded solutions by advanced ones. 

9. MASS SHIFT, REACTIVE ENERGY, AND THE 
SPECTRUM 

This oscillation of the mass is analogous to the oscil- 
lations of the reactive energy in an AC circuit. Indeed, 
the instantaneous power of an alternating current con- 
s i s t s  of the active and reactive parts: 

JU=~/,J,'R ( I + G O S  2wt) - t J,'X sin 2ot, (70) 

where Jo is the amplitude of the current J ,  R,  and X 
a r e  the active and reactive parts of the impedance, re- 
spectively. One usually characterizes the active power 
through i t s  mean value %J~R, and the reactive power 
through i t s  peak value +J&. If one replaces the real  
current and voltage by their complex representations 

then the so-called complex power 

'/,.JU ='/,J,z(R+iX) (71) 

characterizes both the active and reactive parts. 

We represent the active power a s  the mean density of 
the rate of radiation multiplied by Ew: 

i/2Jo'R=hw<dw/dt), (72) 

and the peak value of the reactive power a s  w times the 
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difference between the amplitudes of the electric and 
magnetic energies of the field, o r  a s  -2w times the 
mean Lagrange function of the field: 

1 a,'-E,t - J,,=X=o dV- = -2o  
C-H? 

2 J 2 ( v )  . (73) 

The complex power of the current will have the form 

i. e . ,  up to the factor 2iwy-' (y is the Lorentz factor, 
introduced artificially via the relation dt = ydr) it coin- 
cides with the shift of the self-mass. I t  i s  clear that 
ReAm o r  the mean Lagrange function i s  the amplitude 
of the oscillations of the reactive energy [cf. Eq. (73)]. 
The relation (74) is a special case of the theorem about 
the complex Poynting vector (cf. Ref. 19, 82.20). 

In the case considered here, however, the mass os- 
cillation is essentially aperiodic. In this connection we 
recall the famous Heaviside theorem," which refers  to 
the other extreme case-the work done by suddenly 
switched on electromotive forces during the transient 
period. " 

The total work performed by suddenly switched on 
electromotive forces  till the end of the transient regime 
differs from the work i t  would do during the same time 
for a steady-state power corresponding to the final val- 
ue of the current density by twice the excess of the 
steady-state electric energy over the magnetic energy: 

. - 

EZ- ff A ( t )  =I,, t+2Lst ,  L= j dV----- 
2  ' 

(75 

It i s  essential that, independent of the complicated 
character of the transient period, the work done to the 
end of it, i. e. ,  over a sufficiently long time interval t, 
i s  determined by two quantities: the steady-state power 
loss and the steady-state Lagrange function of the field, 
cf. Eq. (72) and (73). The transient period is caused 
by the inertia of the system: if there is no transient 
period the system exhibits no inertia, and then A(t) 
= I,,t for all t > 0. Therefore, if L,, # 0 the system is 
manifestly inertial and during the transient regime the 
source must give up the additional energy 2L,, over and 
above the noninertial energy production I,,t. If L,, = 0, 
then integrally, from the energy point of view, the sys- 
tem behaves like an inertia-free system, although i t  
may exhibit a transient period, only after which the lin- 
ea r  energy-production A (t) = I,,t becomes valid. There 
is a close analogy between these two cases  and the man- 
ifestation of the inertia of the fields of electromagnetic 
and scalar charges. It is striking that the inertial 
properties of the field, characterized in macroscopic 
electrodynamics by the inductance and capacitance of 
the system, manifest themselves for such an elemen- 
tary system a s  a point charge. 

The reactive oscillations of the self-field which exist 
during the acceleration of the charges a r e  an important 
physical concept in the understanding of transient pro- 
cesses  in electrodynamics and in chromodynamics. 

In conclusion we l ist  the interesting spectral repre- 
sentations for the variable mass  shifts (67) of the elec- 
tromagnetic and scalar charges (cf. the integrals 

3.911.1-2 in Ref. 22): 

a dm sin or Amem* ( T ) - - , T + ~  e.,TFi . 
0 

These spectral functions coincide with the derivatives 
of the one-dimensional Bose- and Fermi-distributions 
corresponding to a temperature T = 2wo/n determined by 
the acceleration, and being four times a s  large a s  the 
Davies-Unruh temperature (cf. Refs. 23, 24). The 
same temperature T = Pe&/mr a r i se s  if one interprets 
the production of pairs by an  electric field in the vacu- 
um with probability e ~ ~ ( - n r n ~ / t ~ ) , ~ ~  a s  a thermal excita- 
tion of the lowest state of the pair with energy 2m and 
probability e4"' T. This coincidence of temperature is 
not accidental, since both phenomena (the pair produc- 
tion and the reactive mass  oscillations) a r e  produced by 
the same cause: a sufficiently lengthy action of an elec- 
tr ic field on the charge, doing work 2 2m. 

The author is grateful to V. L. Ginzburg, D. A. Kirzh- 
nits, A. I. Nikishov, and V. P. Frolov for discussions 
and valuable remarks. 

Note added in proof (3 February 1981): The integral 

(A. 1) 

which according to Eq. (7) determines the mass  shift of 
a UA source of a massive vector field, can be expressed 
in terms of products of modified cylinder functions 
K,(x),  L ,h) :  

~e ~,(b)=-xz31;(z)~~(z) + ' I ~ I ~ ( ~ ) K ~ ( ~ ) +  ) .Iz(z)K~(z)l+n? 
-- 

Im S,(h) =zZ[Kia(z)-KO(z)K1(z)]. r = ) i h = p / m o  
(A. 2) 

The expression for the integral 

(A. 3) 

which determines the classical shift of the mass  of a 
UA source of the massive vector field differs from 
(A. 2) by decreasing all the indices by one unit (V - v 
- 1) and changing the sign of the real  part. According 
to these formulas for d x >  0, not only the imaginary 
par ts  but also the rea l  parts  of the mass  shifts a r e  non- 
vanishing and negative. 

"we use a natural system of units with Fi=c= 1, and Heaviside 
units for the electromagnetic quantities, so that a =e2/4rlic 
= 1 A 3 7 ,  P =Fie&/m2c3, etc. The magnitude of the 4-accele- 
ration for uniformity accelerated (UA) motion will be denoted 
by wo. 

2 ) ~ o r  the squares of the first and second torsions we have the 
expressions: $ =2a-' +a2, = ( 7 2  - 24a-2)~i2a-2. We note that 
a2$ coincides, up to a factor, with the square of the 4-force 
of radiation damping. 

3 ) ~ h e  integral containing the Macdonald function Kt contains 
traces of the proper-time representation of the Ac-function: 
the variable z i s  related to the proper time t of the photon 
by means of the relation z" = 2w$. 

4 ) ~ h i s  relation leads to dk,, /w = w&r. 
5 ) ~ o r  the scalar self-interaction and spectrum of emission 

scalar quanta one must replace in Eqs. (3). (8 )  the 4-current 
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density j,k) by the scalar charge density p(x ) :  

and j,@) - p(k), denoting the total charge a t  res t  by the 
letter e, in order that the force of interaction of slow charges 
should coincide with the Coulomb force e 2 / 4 ~ P  apart from the 
sign. 

" ~ t  the instants t equal to 0, wi' ,  2w2,  when v equals respec- 
tively 0. 2-'I2. 2/5'12, the mass shift in units of its limiting 
value - w o h  equals respectively 0. 0.841, 0.970. 

 he Heaviside theorem is mentioned on the last  page of 
Stratton's book:' but has without good reasons been for- 
gotten in other textbooks; its proof was rederived by 
Lorentz in Ref. 21. 
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