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The emission of bosons and fermions by a naked Kerr singularity is investigated. It occurs because of pair 
production in the gravitational field near the singularity. This process leads to "dressing" of the singularity, 
which is thus transformed into a black hole. 

PACS numbers: 95.30.Sf, 95.30.Cq, 97.60.Lf 

1. INTRODUCTION 2. STATES WITH NEGATIVE ENERGY 

If the Universe contains any naked singularities, i. e. ,  We consider the quantum emission of massless scalar 
singularities that a r e  not hidden from a distant ob- particles from a Kerr naked singularity described by 
server by an event horizon, then in the strong gravita- the metric 
tional fields surrounding them the quantum effect may A sinz 8 

dsz - - (dt-a sinVdq)' - - P' [ (?+a') ckp-adt]' - - dr'-p'd13~, 
be so strong a s  to play an important part in the forma- P' P' A (1 ) 
tion and evolution of the singularity. The strength of pa-?+az cos2 8, A - - +  a2>M,  

the effects depends strongly on the type of singularity. 
where the source has mass M  and angular momentum 

For the quantum emission the J = M a .  It has a singularity at r=O, A suitable coor- 
contraction of a charged spherical shell is large and dinate transformation makes i t  possible to recognize 
prevents formation of a ~ e i s s n e r - ~ o r d s t r b ' m  singu- the topological form of this ~ ingu la r i ty .~  It i s  found 
larity,' whereas there is little such emission when a that the singularity has the form of a ring, and through 
long tube contracts into a filament, and the emission i t s  interior one can continue the metric to an asymptoti- 
does not prevent the formation of a naked singularity cally flat space with negative values of the radius vec- 
of Kasner type. In the present paper, we investigate tor r .  
the quantum emission of Kerr-type naked singularities, 
which again does not prevent their formation. How- This structure of the Kerr singularity leads to a 
ever, the steady production of pairs in the field of such qualitative difference between the quantum emission 
a singularity leads to a flux of quantum radiation from resulting from the formation of Kerr  and Reissner- 
the singularity. As a result, the singularity loses NordstrGm singularities. Thus, if we compress a 
mass and angular momentum. charged shell with charge greater than i ts  mass, then 

because of the emission of scalar particles the energy 
Naturally, the singularity may emit particles of any needed to compress i t  to Planck dimensions appreciably 

species. However, if particle-antiparticle pairs a re  
exceeds the mass  of the shell. ' However, a s  is readily 

to be produced, there must be levels with negative en- shown by the method used in Refs. 1 and 2, the com- 
ergy for  particles rotating around the singularity. For pression of a rotating shell with angular momentum 
singularities with masses on the astronomical scale, greater than the square of the mass leads only to weak 
such levels exist only for massless particles. There- emission of massless scalar particles, this decreasing 
fore, we shall be primarily interested in such particles. to zero when a naked singularity is formed. 

In this paper, to estimate the intensity of the radia- 
tion and the variation in time of the parameters of the 
singularity due to the emission of actually existing 
massless particles, for example, photons, we consider 
the model problem of the emission of massless scalar 
particles. We also consider the variant in which these 
particles satisfy Fermi-Dirac statistics in order to 
estimate the emission of massless fermions, and also 
neutrinos, which according to the latest data may have 
a mass but one s o  small a s  to be ignorable in the 
present context. In fact, the emission of fermions 
becomes much weaker than the emission of bosons, 
which plays the principal part. In a later paper, I in- 
tend to investigate the quantum emission of photons and 
gravitons by a Kerr singularity, but there a r e  grounds 
for hoping that the result obtained for massless scalar 
particles will be a good estimate for such emission, 
repeating the situation established in the calculation of 
the superradiance intensity. 

Therefore, we must consider other mechanisnis of 
quantum emission. If - 1 a1 < M  <O, then the metric has 
two event horizons situated a t  r<O. The superradiance 
associated with them can be calculated in virtually the 
same way a s  in Refs. 4 and 5. Therefore, we shall not 
consider this case. 

The emission of quanta of a massless scalar field 
investigated in the present paper is associated with the 
population of the levels investigated in Ref. 6. What 
kind of levels a r e  these? 

The wave equation for the massless scalar field 

in the Kerr  metric admits separation of the variables. 
The eigenfunctions can therefore be sought in the form 

cp,,,,. ( r )  =N (o) A-'"Rl,,,. ( r )  Sf, (ae, cos 8) ei'"'e-'", (3) 
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where N is a normalization constant, and S,, a re  
spheroidal harmonics satisfying the equation 

d ma [-i (I-?) - - -+ 2me- (ae)a(i-%a) +~.(.r) ~,.(ae, E) =o. 
dE 1-Et I 

(4) 
The eigenvalues h,,(a~) depend in a complicated manner 
on the quantum numbers I and m and the argument a& 
and have boundary value A,,(O) = l(1 + 1). 

Substituting (3) and (1) in (2), we obtain an equation 
for the radial function R, ,,,,(r): 

States with E >  &+describe particles, and with E<E, the 
"Dirac sea" (see Fig. 1). At 6. <E<E+, there is a po- 
tential barrier,  through which a particle can tunnel. 
For  large I ,  i. e . ,  large h, &,<O (for ma<O) and&,>O 
(for ma >0) in a certain range of distances from the 
singularity. 

Thus, there exist particle states with negative en- 
ergy. One can have the process of formation of a pair 
consisting of a particle in such a state and an antipar- 
ticle with positive energy, which may also be in the 
asymptotically flat region and travel to r = m or  r = -m. 
In Fig. 1, this will be described by the tunneling of 
particles from the Dirac sea  a t  large r into the poten- 
tial well, the particles leaving behind them a hole-an 
antiparticle. Accordingly, the particles in the sea for 
LBO can tunnel to infinity, leaving behind an antiparti- 
cle rotating around the naked singularity. Thus, the 
singularity will emit a flux of massless scalar particles 
and antiparticles, losing mass and angular momentum. 
The present paper is devoted to study of this emission. 

3. INTENSITY OF THE EMISSION 

In this section, we investigate emission from a Kerr 
singularity. We shall follow the ideas of Ref. 7. First ,  
we find the energy spectrum of a massless scalar par- 
ticle in the potential well shown in the figure. For  this, 
we use the quasiclassical approximation 

where the integral is taken in the region where V<O. 
We introduce a new variable and the notation 

a=a/M, Bz=a'-l, A-eM, cp-(l+a-ma/A)l$, (9) 
r=r/pM-p-', 

and then formula (8) takes the form 

As will be shown below, A  is small in all  the cases of 
interest to us, and i t  can be regarded a s  a small para- 
meter. Accordingly, q is a large quantity. Since the 
region ~f integration in (10) is a t  small z, i t  is easy to 
show that we can ignore the terms pz2 and 22 in the 
f i rs t  term in the radical, which gives 

Levels with negative energy can exist only if the radi- 
cand is positive a t  z = 0, i. e .  , when 

Here, we have used the fact that A q  = -ma. 

We can now determine the classical boundaries of the 
motion. A particle in the well i s  in the interval from 
-z, to z,, where 

Calculating the integral (11) by means of the substitution 
y2 = xlzl + 1, we obtain 

Hence 

This result differs from the one given in Ref. 6. It 
was obtained there for the special case when the po- 
tential well can be approximated by a harmonic oscil- 
lator. As a result, the energy spectrum was found 
under a number of assumptions, one of which (in the 
notation of the author, i t  takes the form a, <<K '1 ' )  im- 
poses a very stringent restriction on the parameters of 
the particle. This condition is not satisfied in the 
states that a re  populated in the first  place in the case 
of emission. 

The obtained energy spectrum can be used only when 
the condition of applicability of the quasiclassical ap- 
proximation holds; in the present case, i t  has the form 

At small p, we have x, -p" and this condition is satis- 
fied. At large P, we have x, - h'lI2, and the condition 
is also satisfied. 

We can now calculate the lifetime of quasidiscrete 
levels in the well: 
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(the integral i s  taken over the barrier,  i. e . ,  in the re- 
gion where V>O). It should be noted that scalar parti- 
cles a r e  bosons, and for them the time r-' is negative 
(see Ref. 7) and characterizes the time of exponential 
growth of the number of quanta in the level. However, 
we shall also consider below a situation for which the 
quanta of the scalar  field a r e  taken to be fermions, do- 
ing this, of course, only with a view to estimating the 
influence of genuine Fermi particles. In this case, r'' 
is positive and can be interpreted a s  the decay time of 

, the quasidiscrete level. 

Finding r,,,,, we can find the number of field quanta 
in the potential well: 

where the upper sign corresponds to fermions, the 
lower to bosons. For the fermions, we have also in- 
troduced summation over the spin index a. 

Note also that in our problem it  is possible to have 
production of pairs with one of the particles rotating 
around the singularity and the other moving in the 
asymptotically flat region with rcO. In Fig. 1, this 
corresponds to tunneling through the left-hand potential 
barrier.  Therefore, in what follows we shall place an 
arrow above the symbol to indicate the transition corre- 
sponding to the given lifetime. 

In the quasiclassical approximation, we have 

We shall not yet determine the upper limit of integra- 
tion z,. To obtain z, i t  is necessary to integrate the 
same function F(z) from z, = - z, to z, = -2,. If we re -  
gard z a s  a complex variable and describe on the real  
axis cuts from z,  to z, and from z, to z,, then f will be 
equal to the integral when one passes around the first  
cut, and to the integral when one passes around the 
second. But if we deform the contour surrounding the 
first  cut, i t  can be transformed into a sum of contours 
surrounding the second cut and the singularities a t  
z = i ,  z = -i, and z = a. Hence, we have 

F -.- 
ln7=6-b=Zni[resF(z-i)+ resF(z=- i )  + res F ( z = m ) ]  r 

Thus, we see that there is a more frequent production 
of pairs having one of their particles "within the singu- 
larity" with rcO. However, since A is small, the ra- 
tio of the lifetimes is virtualJy %qua1 to unity. There- 
fore, we shall assume that r= r= r and omit the tran- 
sition arrows. 

Let us find I?. For  this, we note that we can ignore 
the term 22 in F(z). It gives only a small  correctionio 
the expression, ensuring a small difference between r 
and f. Omitting it, we obtain 

where 

Going over to the variable x = z2, dividing the region of 
integration into the two intervals (x,, 6) and (6, z:), 
where (1, x,)  << 6 <<A-'p-', and making the substitution 
y2 = 1 - x,xq in the integral over the first  interval and 
y =xA2p2 in the integral over the second interval, we 
obtain 

where e is the base of natural logarithms, and 

r,-l ' 8  

QW= (=) , r l= ( l+z l ) th ,  

Q ( x i )  -- e-', Q ( x A  -+ z l / 4 .  *,-- in-0 

Substituting (26) and (15) in (19), we obtain 

Hence, using (21), we can find the intensity of pair 
production a s  a function of the parameters of the pairs. 

4. BACK REACTION OF THE EMISSION ON THE 
PARAMETERS OF THE NAKED SINGULARITY 

Emitting quanta of the massless scalar field, the 
singularity loses mass and angular momentum. It 
can readily be seen from Eq. (21) that 

d ~ / d t = -  z e..lr,lexp{-2rn ,,,, t ) ,  (29) 
n . w  

d ~ / d t = -  z mlrn te~p( -2rn , , . l t ) .  (30) 
I.II.1 

The 2 in front of r, in the exponential appears because 
the quanta a re  emitted into both the region r >O and the 
region r<O. Although emission of the latter does not 
change the parameters of the naked singularity for a 
distant observer, it nevertheless changes the popula- 
tion numbers of the levels. From (29) and (30), we 
have 

d a / d t = - ~ - ' z  ( m - % d m )  Irmlexp (-2r.t) .  (31) 
..-.I 

Using the inequality 

which was obtained from the condition A,<&- for r = M ,  
we have 

It can be seen from this that da/dt<O, i .e . ,  the reac- 
tion of the emission can only decrease the parameter a. 
When it  has decreased to unity, the singularity acquires 
a horizon, and is transformed into a black hole with 
a =M. It is also necessary to show that this transition 
occurs before the mass  of the sillgularity has decreased 
to zero. 

We consider the case when only the level with para- 
meters A and m is populated. Then from (29) and (31), 
we have 
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whence 

M-Me exp [ A  (a-ao) /m].  (35) 

We see that when a decreases to unity, M is still posi- 
tive. Moreover, the change in the mass is slight. The 
ratio M/Mo is minimal for  values (2, = 1.25 (we took the 
ratio A/m, which is different for different levels, equal 
to this value for the level with the minimal r ) ,  for  
which i t  is of order 0.98. Therefore, in the following 
calculations we shall ignore the variation of the mass. 

We now consider what levels will be populated fastest. 
It can be seen from (28) that the characteristic popula- 
tion times r-' increase exponentially fast with increas- 
ing I. Therefore, we must consider in the f i rs t  place 
the levels with the minimal value of 1 that is possible 
for the given a. We consider f i rs t  the case B << 1. For  
0 ~ 0 . 7 ,  there exists a level with 1 = 1, and this will be 
populated first. In this limit, Eq. (28) becomes 

We see from (17) that for levels with the smallest 1 the 
values of A, a re  bounded above: A,, , , , < A ~ ~ ~ , ,  , where 
A::' = 0.12, A::) r 0.23, A::) = 0.3. This confirms for the 
case fi << 1 the assumption that A in the cases in which 
we a re  interested can be regarded a s  a small parame- 
ter. Bearing this in mind, we can expand the expres- 
sion for A in powers of the small parameter a&= aA. 
Since the coefficient of the linear term is small (note 
that all the coefficients of the powers of the parameter 
a A  obtained in Ref. 8 for the case of a vector field did 
not exceed unity), we can restrict  ourselves to the 
zeroth term, setting A =  l(l+ 1). Hence, using (36), we 
can find the coefficient K for any level. For  example, 
K-7000 for l = m = l ,  K-8000 for l = m = 2 ,  and K - 5  
X lo4 for l = 2, m = 1. In the well, there a r e  then about 
mp" levels with the given I, rn, which can be seen from 
(17). However, the levels with 1 = rn and small 1 are  
filled first, since they have a much shorter lifetime r-I 
than the others. Therefore, we shall consider only 
them. 

In considering times shorter than r-' for  these levels, 
we can expand the exponential in a ser ies  and retain the 
f i rs t  two terms. Then for both bosons and fermions we 
find that in levels with I = 1 rn 1 there a re  n( t )  particles: 

From this, we readily find that the parameters of the 
singularity vary with time a s  follows: 

Finding the sum by means of (36), we obtain the esti- 
mate 

If Po -M1I3 o r  a smaller quantity, the singularity can 

become a black note before the population numbers of 
the levels become comparable with unity. But if this 
is not so, we must consider separately the case of 
bosons and fermions. 

Bosons occupy the levels for t > r;:, ,, with expon- 
entially increasing rate. Therefore, the main part is 
played by levels with the smallest I?-', i. e . ,  with 
1 = m = 1. We shall consider only these levels. As- 
suming, a s  before, that @ is small, we obtain 

Bearing in mind that the rate of decrease of P increases 
all the time, we can replace on the right-hand side all  
the /3 by Po, because when P begins to differ appreciably 
from Po the process has virtually ended-its duration is 
determined basically in the stage in which @ hardly 
changes. Therefore, the time of "dressingm of the 
naked singularity can be estimated a s  

The quantum emission of bosons can also transform 
a singularity with j3 >> 1 into a black hole. In this case, 
the well contains only states with angular momenta 
greater than some minimal I -2a2. Because of the ex- 
ponential growth of the number of particles in the level, 
we should consider only population of levels with I = m  - 2a2. In this case x, - m-', and the quasiclassical 
treatment is also correct. In the limit j3 >> 1, the ex- 
pression (28) reduces to 

1 r-1,- 80Ma' exp(2a') - 100Ma9 exp ( 2 4 .  
(m-2a2) ' 

Here, we assume that m - 2a2 - 1. This quantity ap- 
peared in the expression (17) from the expression fo r  
A,: 

~,,<A~==(m--2a~)/2a~<~. (43) 

Thus, in this case too A << 1 for the levels in which we 
a r e  interested. Due to the emission of bosons in the 
case a >> 1, this parameter of the singularity changes 
by 

Aac-aZM-2e2rl (44) 

Therefore, the dressing time of the singularity is of 
order 

td,,-50Maoe exp (2a02) In ( w l a o ) .  (45) 

To estimate the time in which the singularity becomes 
a black hole through the emission of massless scalar 
particles behaving like fermions (to estimate such a 
time for neutrinos, for example), we use the following 
device. We assume that a t  a certain time all  levels a re  
populated that have a definite se t  of quantum numbers 1 
and m and all  values of n that a r e  then possible, the 
remaining levels being completely empty. We denote by 
P = C m 2  the sum taken over all pairs ( I ,  m) for the 
filled levels. Then we have 

p2~p,~-p~-~p-*. (46) 

The value of p decreases to zero when P reaches the 
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value 

For an estimate, we assume that all levels with 1 c l , ,  
and all  possible values of m a re  populated. We shall 
also assume that l , ,  >> 1, since otherwise the singu- 
larity would be transformed into a black hole in a time 
of order r-'. Then we obtain the estimate 

Hence 

Therefore, the singularity '6dressesw in a time of order 

Note that this estimate i s  very rough and certainly an 
underestimation, since levels with I m 1 < 1 have much 
longer population times. However, i t  is needed only 
to estimate the results of a different problem, and 
therefore we shall not consider this case more accu- 
rately, being content if the estimate gives us the 
correct order of magnitude of t,,,. This quantity 
could be found more accurately, but there is no point 
in doing so,  since in real  processes the population of 
the levels with negative energy is due to photons and 
gravitons, fermions playing an insignificant part. It 
was to estimate the smallness of their contribution to 
the 'Ldressingfl of the singularity that we found the ap- 
proximate expression for t,,,. 

It is helpful to find the values of the parameters of a 
naked singularity for which the time of i ts  transition in- 
to a black hole does not exceed the time of existence 
of the Universe, which is estimated a t  loe2 Planck units. 
Taking the mass of the singularity equal to the solar 
mass (lo3' Planck units), we find that during the time 
of existence of the Universe singularities with para- 
meters 0 < loq8 can "dress themselvesv through the 
emission of massless scalar particles; here, the par- 
ticles can be assumed to be either bosons o r  fermions. 
In addition, for  bosons, which true scalar particles are ,  
we obtain one further interval of parameters in which a 
singularity can "dress itselfv through exponential in- 
crease in the number of particles in the levels. It ex- 
tends from l3 - to a = 4. Thus, we see that the 
quantum emission can also have astronomical consequen- 
ces. At the same time, the fermion emission is vir- 
tually negligible. For  example, a singularity with 

p = O .  1, i. e., a = 1.005, can become a black hole 
during the lifetime of the Universe only provided i ts  
mass  does not exceed 2g. 

We also note that, through the emission of bosons, 
naked singularities with a = 3 can "dress themselvesv 
during the lifetime of the Universe if their mass does 
not exceed 6 X  lo7 solar masses, while singularities 
with a = 5 can do s o  if their mass does not exceed 
3 x loz5 g,  which is appreciably less than the mass of 
the moon. For a = 6, we obtain M < 2 X loi5 g, and for 
a = 7 the limiting mass i s  7 kg. Since real Kerr sin- 
gularities, if they exist, will hardly have large values 
of the parameter m, the dressing process i s  impor- 
tant for them. 

5. CONCLUSIONS 

Thus, for the model with scalar bosons and fermions 
we have found that the quantum emission from Kerr sin- 
gularities is important. Naturally, the bosons play the 
main part. This emission leads to a decrease in the 
ratio a / M ,  which continues until the ratio reaches unity 
and the singularity is transformed into a black hole. 
During the time of this process, i ts  mass  hardly 
changes. An estimate shows that for reasonable para- 
meters of Kerr singularities that could exist in nature 
the "dressingw time is shorter than the time of exis- 
tence of the Universe, so  that the dressing process can 
actually take place. 

I should like to thank I. M. Khalatnikov and A. A. 
~tarobinski i  for valuable discussions. 

IS. ~arnovski?,  Preprint [in Russian], L. D. Landau Institute 
of Theoretical Physics. 

's. Parnovsky, Phys. Lett. 73A, 153 (1979). 
3 ~ .  W. Hawking and G .  F. R. Ellis, The Large Scale Struc- 

ture of Space-Time, CUP (1973) [ ~ u s s i a n  translation pub- 
lished by Mir, Moscow (1977)J. 

'A.  tarob bin ski:. Zh. Eksp. Teor. FB. 64, 48 (1973) [Sov. 
Phys, JETP37, 28 (1973)l; A.  tarob bin ski rand S. Churilw, 
Zh. Eksp. Teor. Fiz. 65. 3 (1973) [Sov. Phys. JETP 38. 1 
(1 974)l. 

5 ~ .  DeWitt, Phys. Rep. 19C, 295 (1975); in: Chernyedyry 
(Black Holes; Russian translation), Mir, Moscow (1978). 

DeFelice, Phys. Rev. D 19, 451 (1979). 
'T. Damour and N. Deruelle. Phys. Lett. 72B. 471 (1978). 
*s. Teukolsky and W. Press,  Astron. J. 193, 443 (1974). 

Translated by Julian B.  Barbour 

849 Sov. Phys. JETP 53(4), April 1981 


