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A theory of the interaction of a quantum electromagnetic field in a cavity with a classical gravitational wave is 
developed. It is shown that the interaction of the electromagnetic oscillator with the gravitational radiation is 
described by a Hamiltonian which contains not only an external force but also a parametric variation of the 
mass and frequency of the oscillator. The explicit form of the evolution operator of such a system is found. 
The probabilities of various processes that take place due to the parametric action of the gravitational signal 
are found. The concept of a parametric quantum nondemolition operator is introduced. A general algorithm 
for constructing such operators is indicated and their explicit form is found. 
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8 1. INTRODUCTION 

Weak gravitational waves from cosmic o r  laboratory 
sources can be detected only be means of instruments 
with very high sensitivity. In all  probability, feasible 
methods of raising the sensitivity of gravitational an- 
tennas will require the creation of physical conditions 
under which i t  is important to take into allowance the 
quantum nature of the sensitive elements of the antenna. 
A quantum oscillator may be an adequate model of a 
(macroscopic) gravitational antenna-mechanical or  
electromagnetic-and, possibly, a sensor of small 
displacements, for which a parametrically excited 
electric circuit is usually employed. 

The first  studies in this direction led to the concept 
of the so-called quantum sensitivity limit, and then to 
the concept of quantum nondemolition measurements, 
which a re  designed to overcome this limit. ' Many pa- 
pers on this subject2-' then followed. In particular, 
the actual concept of quantum nondemolition measure- 
ments was made more precise. 

From the formal point of view, the crux of the prob- 
lem of nondemolition measurements consists of finding 
operators (observables) with the following property. If 
the system at  the initial time is in one of the eigenstates 
of this operator, then i t  will remain in an eigenstate of 
this operator a t  subsequent times. Operators for which 
this is true at a l l  times a r e  particularly convenient, 
and they a re  called continuous quantum nondemolition 
operators (the abbreviation QND operators is used). 
Integrals of the motion a re  examples of such operators 
but not the only ones. A necessary and sufficient con- 
dition for an operator Z(t) in the Heisenberg represen- 
tation to be a continuous QND operator is takenK4 to be 

t Z ( t ) ,  Z ( t l )  1=o, (1) 

where t and t' in the commutator a re  arbitrary times. 
If an external force acts on the system, the eigenvalue 
of a QND opera tor must vary continuously and thus 
permit precise measurement of the acting force without 
the introduction of disturbances into the system by the 

measurement process. Such operators a r e  called con- 
tinuous force QND operators (abbreviated QNDF, where 
F stands for force). 

The actual sensitivity of the force detection will be 
determined by the properties of the materials, the nu- 
merical values of the coupling constants, etc.., but not 
by limitations imposed by the quantum-mechanical un- 
certainty principle. 

In all the cited studies, a harmonic oscillator excited 
by an external classical force was considered. The 
equations for an oscillator with a Hamiltonian containing 
an external force ar ise  naturally when one considers 
the simplest mechanical antennas. It has been shown in 
a number of papers (see, for example, Refs. 7 and 8) 
that electromagnetic systems can also be used a s  gra- 
vitational-wave detectors. They have some distinctive 
features and potential advantages compared with me- 
chanical detectors. In the present paper, we develop 
a quantum theory of the interaction of the electromag- 
netic field in a cavity with a classical gravitational 
wave. In 882 and 3, we show that the interaction of the 
electromagnetic oscillator with the gravitational wave 
is described by a Hamiltonian containing not only an ex- 
ternal force but also a parametric variation of the 
mass and frequency of the oscillator. (See Refs. 9 and 
10 for other approaches to describing the interaction of 
a quantum oscillator with a gravitational field. ) Thus, 
the quantum description of the interaction of the oscil- 
lator with the wave becomes much more informative. 
We find the probabilities of various processes induced 
by the parametric action of the gravitational signal. 
The different nature of the interaction Hamiltonian 
makes it necessary to extend the analysis of quantum 
nondemolition measurements (84) to the case of an 
oscillator excited not only by a force but also para- 
metrically. In this paper, we introduce the concept of 
a parameteric quantum nondemolition operator (abbre- 
viated QNDP operator) a s  an Hermitian operator which 
satisfies Eq. (1) in the presence of parametric exci- 
tation of the oscillator. Prescriptions for the construc- 
tion of such operators a re  given. 
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$2. THE CLASSICAL MAXWELL EQUATIONS IN 
HAMlLTONlAN FORM 

We write the Maxwell equations in an external gravi- 
tational field in the form 

( ( -g )"Pb)  , ,=-4nc-'(-g)"'j", (2) 

Fa@, r+Fm, s+Fn. 5-0. (3) 

As the gravitational field, we take 
g=s-q=~+hae.; 

Ik,~i<1, h,=O, d,,-0, q,haP=O, 'Jke=O. 

In the considered linear approximation (-g)'12 = 1, and 
Eq. (%).simplifies 

P ,s=-4nc-ija. (4) 

Maxwell's equations in the form (3) and (4) a re  con- 
venient in that they can be interpreted a s  differential 
equations for the functions Fu6 and Fa, in flat space- 
time and in Cartesian coordinates. The metric of the 
curved space-time (the gravitational field) occurs in the 
expressions that establish the connection between these 
functions: 

PP-F,. (q"q*-q"heV-qhLaC). (5) 

We assume that the electromagnetic field is confined 
to a cavity with perfectly conducting walls. In the field 
of the gravitational wave, the elements of the walls be- 
have a s  test particles. " Boundary conditions must be 
formulated on their worldlines. We consider f i rs t  a 
cavity in flat space-time, i. e. , outside the gravitational 
field. We expand the field in the cavity in the cavity 
wave functions u,(x ', 2,xS): 

where the subscript in the brackets denotes the set  of 
numbers labeling the cavity modes; in what follows, if 
no confusion is possible, we shall omit the brackets. 
On the boundaries of the cavity the following boundary 
conditions a re  satisfied for each mode: 

The Maxwell equations (without sources) reduce to the 
equations 

In a gravitational field, we seek a solution for Foi and 
F,, a s  before in the form (6), retaining the conditions 
(7) and (8). Equations (3) with index a = i and Eq. (4) 
with index a = 0 a re  satisfied identically. The remain- 
ing equations, in which (5) and (6) a r e  used, contain the 
functions h,,. To eliminate the spatial dependence in 
these equations, we multiply by u,,,, and sum over i 
the left- and right-hand sides of Eqs. (4) with index 
a = i ,  and we then integrate over the volume of the 
cavity. We obtain the equation 

If besides the variable electromagnetic field the 
cavity contains a constant magnetic fieldH,, FI;' a eihlHr , 
then Fik must be sought in the form 

Ftr mz q m ( ~ ~ m ) ~ ~ - % m , r , < ) + e ~ k ~ H ' ~  

m 

and then Eq. (10) is augmented by a further term: 

-p.-e'kmsqm+c' z k . ' q . ~ ~ + ~ ~ ,  (11) . 
-B, ( t )  = ? ~ ' j  dszu,m,le,~~'~k.  

Equations 43) with the indices u =O, @ = i, y = k must 
f i rs t  be differentiated and summed over the index k, 
then multiplied by uf,, and summed over i, and, finally, 
integrated over the cavity volume. This yields the 
equation 

We make two comments. First ,  Eqs. (11) and (12) 
a re  integral consequences of the Maxwell equations. 
They a re  sufficient fo r  our purposes. However, to 
show that the Maxwell equations a r e  satisfied a t  each 
point within the cavity, we should also have to expand 
the components of the gravitional field in eigenfunctions. 
Second, the employed representation (6), in which all 
the components FO' (and a l l  the components Fik) contain 
the same function of the time, is not the most general. 
In general, one should introduce a corresponding func- 
tion for each component FO', i. e. , one should intro- 
duce pf,,(t). For  sufficiently arbitrary hi,, there would 
be a coupling between not only P, and q, (as in the 
present equations) but also between the different com- 
ponents pi and qi of the same mode. For  simplicity, 
we assume that the configuration of the electromagnetic 
field in the resonator and the structure of hi, a r e  such 
that this type of coupling is absent, i. e . ,  a s  in the ab- 
sence of a gravitational field, we regard each mode a s  
an oscillator with a single degree of freedom. 

Equations (11) and (12) generalize Eq. (9) and have 
the form of Hamiltonian equations of motion. They a r e  
obtained in accordance with the usual rules 

-dpmldt=OHlaqm, dqmldt=aHlapm 

from the Hamiltonian 

the coefficients A,, and C,, in (11) and (12) must be 
redenoted a s  follows: 

In what follows, we assume that q, and p, a r e  gener- 
alized coordinates and momenta, and we establish 
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canonical commutation relations between them. The 
choice of quantities taken to be the coordinate and 
momentum operators and subject to the usual commu- 
tation relations is not unique. The solution of the Max- 
well equations could also be sought in the form 

and the remaining components obtained for the pairs 
of variables n,, q, and p,, x,; one would then obtain 
equations different from (10) and (12). 

In principle, one could call n, and q,, o r  p, and x,, 
or, finally, r, and x, canonical variables. We choose 
p, and q, for the following reasons. It is possible to 
choose the Hamiltonian in such a way that Eqs. (11) and 
(12) follow from it in accordance with the rules (13), 
whereas it is impossible to choose a Hamiltonian from 
which the equations for the other pairs of variables 
follow in accordance with the rules (13). 

53. QUANTIZATION OF THE ELECTROMAGNETIC 
FIELD AND TRANSITIONS UNDER THE INFLUENCE 
OF A GRAVITATIONAL WAVE 

We take p, and q, to be operators and make them 
satisfy the commutation relations 

In accordance with the usual rules, we introduce crea- 
tion and annihilation operators: 

In terms of a and a+, the Hamiltonian (14) takes the 
form 

~ = h x  (a,,+a.+l/t) ~ , , + ~ / ~ i l  (omon)"* [ Ymn ( t )  (amco.++ama.) 

+x, , ( t )  (ama.++am+a,) ]+fix ~ , ( t )  (a.++a.), (15) 

Y,,,. ( t )  -Amn ( t )  -Cmn ( t )  , Xmn ( t )  = A m .  ( t )  +Cmn ( t ) .  

For  a single-mode system, the Hamiltonian, ex- 
pressed by means of the operators p and q, has the 
form 

It can be seen from this expression that the action of 
the gravitational wave on a constant electric field in the 
cavity has the nature of an external force [the term 
B(t)q], while the effect of the wave on an eigenmode re- 
duces to the appearance of a variable frequency and 
variable mass of the oscillator. In a many-mode sys- 
tem, the gravitational wave also establishes a coupling 
between the different modes. 

The solutions of the Heisenberg equations of motion 
for  an and a: can be written in the form 

where U(t), the evolution operator of the system, satis- 
fies the equation 

ihdU/dt=HU. 

We shall solve this equation by the usual methods of 

perturbation theory, making a ser ies  expansion in the 
small quantities X,, Y,, B,. Then the evolution oper- 
ator corresponding to the Hamiltonian (15) has the form 

U ( t )  =Uco)(t) ( I - i W ( t ) } .  

Here, U(O'(t) is the operator which describes the evolu- 
tion of the free oscillator, and W(t) is a small correc- 
tion due to the wave: 

(the Hermitian-conjugate terms a re  denoted by the let- 
t e r s  h. cJ. 

Knowing the evolution operator, we can find the 
change in the state vector ( $(t)) = U ( t ) (  +(O)) of the sys- 
tem and the probabilities of transitions between.the 
different states. The time dependence of the operator 
U(t) is determined by the functions A,(t), C,(t), B,(t). 
In their turn, they repeat the time dependence of the 
components hi, .  We write 

where x,, y,, b, do not depend on the time, and G(t) 
is determined by the time dependence of the gravi- 
tational signal. We shall be interested in the effect of 
a monochromatic wave on the oscillator, and we retain 
only the resonance terms. Analysis of the effect of a 
short pulse also presents no difficulties. 

It is convenient to distinguish two different situations, 
which differ in the relationship between the frequencies 
52 of the wave and of the oscillator modes: 

1) i2 = om + w,. Using the terminology adopted in 
quantum electronics, we shall call this the case of a 
parametric amplifier.12 Then 

Suppose that a single-mode (w ,  = w, = w) oscillator is 
initially in a state with definite number of quanta: 
1 ~ 0 ) )  = 1 n). The selection rules a r e  n - n i 2. The 
probabilities of remaining in the level n or  going 
over to the levels n i 2 a r e  

p., .=I-02t'y2(n2+n+l)/32, P., ,-,=-oat2y2n(n-1)/64, 
P,, .+2=-o'tzyz(n+ i) (n+2) /64. 

These formulas illustrate the advantage of electromag- 
netic detectors, which interact parametrically with the 
gravitational wave, over mechanical detectors, on which 
the wave acts a s  a classical force. In the first  case, 
the probability of changing level a t  large n is propor- 
tional to n2, whereas in the second case it i s  propor- 
tional to only the first  power of n. The mean num- 
ber of quanta a t  the time t is 7i = n + An, where 
An= 1/8w2t2y2(n+ 1/2), SO that a t  large n we have An/n 
- ( ~ t ) ~ y '  in accordance with the equations of the classi- 
cal theory for the change in the energy of an oscillator 
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with undetermined phase of the oscillations. The 
variance of the number of quanta is 

For  nonequal frequencies, w, * w,, the selection rules 
aremodified: n, m - n i l ,  m i l ,  s o t h a t n + m - n + m  
* 2. The mean number of quanta in the modes w, and 
w, is increased. 

We now assume that the initial state is coherent. The 
state vector is determined by the formula 

I rp)=exp (Bma,+--Bm'a) exp (B.a,+-p,*a.) 10,) 10,). 

The mean number of quanta in the initial state is 

In the final state, the mean number of quanta is 

where we have used the notation 

Equation (17) agrees with the classical formula An/n - wty cos cp for the increment in the energy of an oscil- 
lator with definite and constant phase of the oscillations. 

2) &I= w, - w,. This case corresponds to a para- 
metric frequency converter. The operator W(t) has 
the form 

w ( t )  - ( O ~ O ~ )  'tzmn[exp (icp,,)a,a,+--exp (-kq,)~+a,,]18i. 

Suppose the initial state is a In, m)-quantum state. 
The transitions satisfy the selection rules n, m -- n 
* 1, m r 1. The probabilities for remaining in the n, m 
level and of transitions to the levels n + 1, m - 1 o r  
n -1 ,  m + l  a r e  

P.m=l--omo~t2x,.z(2mn+m+n)/84, 

P.+,, m-I=omo,trzm.rm (n+1)/64, 
P ,-,, ,+,=omo.tazm.2n(m+l)164. 

At the time t, the mean numbers of quanta in the 
modes w, and w, are,  respectively, 

ii=n+omo,trzm2(m-n) 164, 

iii=m+omo,tzzm.r(n-m) 164. 

Thus, there is an increase in the population of one 
mode and a decrease in the other. The number of 
quanta in the system remains the same, but the total 
energy of the system changes. 

54. QUANTUM NONDEMOLITION MEASUREMENTS 
OF A PARAMETRICALLY EXCITED OSCILLATOR 

We consider a single-mode oscillator with Hamiltonian 
that is a special case of the Hamiltonian (15): 

H = A ~  (a+a+'Ir) +ha[  y ( t )  (a+'+aZ) + z ( t )  (aa++a+a) 1/4+W(t) (a++a). 

The solution of the Heisenberg equations of motion (16) 
in the linear approximation in the small functions x(t) 
and y(t) has the form 

a ( t )  =ebimt [ a o ( l + & )  + u , + ~ + ~ ] ,  

a+ ( t )  =el"' [ao+ (14-r) +aoq'+x*] ; 

We find an Hermitian operator Z(t) composed of li- 
near and quadratic combinations of the operators a(t) 
and a+(t)  and satisfying Eq. (1). For  5 = 0, q = 0, x = 0 
such an operator will be a QND operator of the free 
oscillator; for x + 0, 5 = 0, q = 0 it  will be a QNDF 
operator; and for x = 0  and a t  least one of the functions 
5 or  q nonvanishing i t  will be a QNDP operator. If the 
functions that describe both the force and the parame- 
tric action a r e  nonzero, the operator will be simul- 
taneously a QNDF operator and QNDP operator. We 
stipulate that in the construction of Z(t) at a given in- 
stant of time we use only a and a+ taken a t  the same 
time. Such an operator may be called instantaneous, 
in contrast to the shift operator considered below, in 
which we permit the use of a and a+ taken a t  preceding 
instants of time. 

The general form of the required operator is 

Z ( t )  =R,I+R,ei"'a(t) +R,*e-'"'ac ( t )  +R,e".a(t) a ( t )  
+R,.e-~mt a + ( t )  a+ ( t )  +R, ( t )  a+ ( t )  a ( t ) ,  

where I is the identity operator, R,, R,, R,, R, a r e  a s  
yet arbitrary c-number functions of the time, and R, 
and R, a r e  real  functions. Using (18) and taking into 
account only the terms linear in 5, q, X, we rewrite 
Z(t) in the form 

where Z,, Z,, Z,, Z, can be readily expressed in terms 
of R,, R,, R3, R, ZInd 5, v, X. 

Substituting (19) in Eq. (I) ,  we find that (1) will be 
satisfied if 

2, (1) Z;'(P) - Z , ' ( l ) z j r )  =o, z j ( t ) Z , ( t r )  -2, (tf)Z' (6) =o, (20) 

Since these equations must be satisfied for arbitrary 
t and t', they must, in particular, be satisfied a t  times 
separated by an infinitesimal amount: t' = t + dt. Then 
the functions ~ ( t ' )  in Eqs. (20)-(22) can be replaced by 
Z ( t )  and Eqs. (20)-(22) can be solved for R,(t), R3(t), 
R4(t). 

We begin the investigation of Eqs. (20)-(22) with the 
case of the free oscillator: 5=0, q=0 ,  x = O .  F r ~ n  
Eqs. (20) and (22), we find 

Here, I Rz(t) 1 and (R3(t) ( a r e  arbitrary real  functions of 
the time, and cp, +, C, a re  arbitrary real  constants. It 
remains to satisfy Eq. (21). It decomposes into a pro- 
duct of two factors, and requires for i t s  fulfillment 
either the equations C, =i, cp = 2J, (first  variant) o r  the 
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equation R,(t) = C&,(t)ei(V*', where C, is an arbitrary 
real  constant (second variant). 

In the f i rs t  variant, the general form of the QND 
operator of the free oscillator is 

Z ( t )  =R, ( t )  I+ I R, ( t )  I (e""'-*'a(t) +e-'1"'-*' a + ( t ) )  

+] R,  ( t )  I {ez'(mt-*Ja ( t )  a ( t )  +e-zx(mf-*J a + ( t ) a c ( t ) + 2 a + ( t ) a ( t ) } .  (24) 

In i ts  terms linear in a and a' (the expression in the 
first  curly brackets), i t  is, a s  noted in Ref. 4, a linear 
combination (with constant coefficients) of the operators 
X,(t) and X,(t), where 

XI ( t )  = (h/2o)"(e-'"'a+(t) +e'"'a(t) ) , 

X , ( t )  = i  (hl2o)  " (e-'"'a' ( t )  -ei*'a ( t )  ) . 
In the terms quadratic in a and a+ [the second curly 
brackets in (24)]. the operator Z( t )  contains the square 
of a linear combination of ~ , ( t )  and X,(t). It is easy to 
show that an arbitrary function of the expression 

can also serve a s  a QND operator of the free oscilla- 
tor. 

In the second variant, the general form of a QND 
operator of the free oscillator is 

Z ( t )  =R,  (t)I+C,C2Rl ( t )  {eUY'-"a ( t )  +e-"mi-*' a + 0 ) )  
+C,R , ( t )  (e"2Ut-"a(t )a( t )  +e-"2"'-'Ja+(t)a+(t))+R,(t)a+(t)a(t). (26) 

The last term of this operator is the particle-number 
operator N(t), which is obviously a QND operator of 
the free oscillator. 

Thus, a l l  (instantaneous) QND operators of the free 
oscillator in the class of operators containing a(t) and 
a+(t) to not higher than the second power a r e  exhausted 
by the expressions (24) and (26). We now turn to the 
construction of QNDF and QNDP operators, i. e., we 
assume x # 0, 5 # 0, q # 0. It is convenient to add to the 
functions R,(t), R3(t), R,(t) found above for the free 
oscillator small corrections of the same order a s  the 
functions X, 5, q. We write 

where f i  and y a re  arbitrary real  functions of the time. 
In the zeroth approximation, we use formulas (23). In 
the linear approximation, the system of equations (20)- 
(22) leads to the following restrictions. In the f i rs t  
variant (i. e . ,  for C, =$, cp = 2$) the real  part of the 
function r,(t) remains arbitrary, and the remaining 
functions a r e  connected by the equations 

r,=r,/2+y(Y-f-q'e*+qe-*), 

r,-r,'=b(f'-E-q'ew+qe-*). 
(27) 

In the second variant (i. e . ,  for 2, = C,Z,ei("-"), we 
obtain from (20)-(22) the equations 

The first  of equations (28) i s  identical with the f i rs t  of 
equations (27) if C,=$. The second of equations (27) 
is a consequence of the second equation of the system 
(28) if we make the substitution = C,y, C, =$, cp = 2$. 

Equations (27) and (28) establish the required restric- 
tions on the c-number functions R,(t), R3(t), R,(t). The 
operators Z(t) constructed by means of them a r e  QND 
operators for x # 0, 5 #0, # 0. 

Suppose f i rs t  x 20, 5 = q = 0. Since the function x does 
not occur in Eq. (27), i t  follows that the operator (24) 
is not only a QND operator of the free oscillator but 
also a QNDF operator; moreover, i t  is obvious that 
i t s  construction does not require knowledge of the func- 
tion X. In particular, X,(t) and X,(t) a re  operators of 
this kind. In accordance with Eqs. (28), we can also 
construct a QNDF operator, this being the energy oper- 
ator in the first  approximation; however, in this case 
we need to know ~ ( t ) .  Indeed, a s  follows from (28), 
for y/C, = l(y - 0, C, - 0) the operator N(t) is augmented 
in the linear approximation by the operators a(t) and 
a+(t) with coefficient r, that depends on X. For  the 
QNDF operator 

constructed in this manner, the eigenvalue no does not 
change in the linear approximation, while in the quadra- 
tic approximation i t  is equal to no - (X 1'. Operators of 
this kind could be helpful in the detection of gravita- 
tional signals with shape known in advance, which 
could be the case in a laboratory experiment or  in the 
observation of astronomical sources like binary stars.  

Now suppose x = 0 and a t  least one of the functions 5 
and q is nonzero. The prescription for constructing 
QNDP operators using a priori  knowledge of the func- 
tions 5 and q i s  indicated by Eqs. (27) and (28). Such 
operators may be helpful when one is detecting signals 
from the class of sources having a previously known 
signal shape. However, a s  can be seen from Eqs. (27) 
and (28), there a re  no instantaneous QNDP operators 
that do not depend on the signal functions 5 and q even 
if one of them is zero. A fortiori there a r e  no opera- 
tors of this type that a re  simultaneously QNDP and 
QNDF operators and do not depend on X, 5 , ~ .  

We now consider shift operators, i. e . ,  in construct- 
ing Z(t)  we permit the use of a and a+ taken a t  preced- 
ing instants. As an example of operators of this class, 
we can take the operator proposed in Ref. 5: 

y ( t )  = q ( t ) - q ( t - T )  =(h/2a)'h[a+(t)+a(t)-a+(t-r)-a(t-~) 1, (29) 

where T =  2n/w is the period of the oscillator. This 
operator i s  a QNDF operator, since 

and in the given case I ~ t ) )  can be an arbitrary state 
vector. In other words, y ( t )  has the form of the first  
term in the expansion (19), Z(t) =R,(t) I, but R, is not 
determined from the condition (1) (this condition does 
not impose any restrictions on R,) but arises auto- 
matically a s  a consequence of the time shift. It is clear 
that any other operator which is transformed after the 
shift into a constant operator (not necessarily I) multi- 
plied by a c-number function will satisfy the condition 
(1) and thus be a QND operator. 

Below, we shall not restrict  ourselves to a shift T 
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equal to an integral number of periods of the oscillator, 
and we shall regard T a s  an arbitrary fixed parameter. 
In particular, we may have T = 2n/o. Simple generali- 
zations of the operator (29) are  the following shift 
QNDF operators: 

x , ( t )  -Xl(t-7) = (h/2o)'"[ (x+x') ( t )  -(x+x') ( t - r )  11, 
XZ(t )  -x, ( t -z )  --l (h1.h) "[ (x-x') ( t )  - (x-x*) ( t-z)II.  

We now find shift QNDP operators. Their construc- 
tion requires partial knowledge of the functions 5 and q, 
namely, the assumption that either 5 =0, q# 0 or  5 *0, 
q =O.  Such assumptions are not excessively restrictive. 
For example, if the components h,, of the gravitational 
wave are concentrated near the frequency 2w, then 
after Q periods have elapsed lql will be Q times greater 
than 1 5 1 and, therefore, i t  may be assumed that 5 =0, 
q#0. On the other hand, if the functions hi, vary slow- 
ly, then after a definite time 151 and we can as- 
sume approximately 5 #0, q=0.  Thus, we consider 
two cases: 1) 5=0 ,  q#0; 2) 5#0, q=0.  

We first introduce the notation 

For 5=0, q#O 
K( t )  -K(t-7) =Ao-'[ (q+q') ( t )  - (q+q') ( t-T) ] (ao+ao+aoao+), 
L(t)  -L(t-7) =iho-I[ (q'-q) ( t )  - (q'-q) ( t -T)  ] (ao+ao-taoaa+) 

are shift QNDP operators. 

We note a curious analogy between the operators K(t) 
and L(t) and the invariants of the electromagnetic field. 
Since the operator q(t) is associated with the magnetic 
field, and p(t)/w with the electric field, the invariants 
of the electromagnetic field, Ha - Ez and E. H, should 
be associated with the operators 

Together with the operator n(t) = q2(t) + pa(t)/oz, they 
satisfy the commutation relations 

[k ,  1 ]  = 4 i h / o ,  [k ,  n] =4ihl/w, [n ,  11 -4itiklo. 

The connection of the operators k(t ) and l(t) to K(t) 
and L(t) is 

Thus, a shift through an arbitrary time interval T in 
the operators K(t) and L(t) o r  a shift through T =  n/w 
in the operators k(t) and l(t) leads to QNDP operators 

for any function q(t) and 5 = O .  

If we also know that the function q(t) can be repre- 
sented in the form q(t) = I q(t) 1 ela, where CY does not 
depend on the time and I q(t) I is an arbitrary function 
of the time, then we can find other QNDP operators. 
For example, 

. - - - 
a+(t )a( t ) -ac( t -z )a( t -r )  =[ l q ( t )  1-lq(t-7) 1 ][ao%e-l'+(ao+)ze"], 

X,(t)  -Xr(t-T) - (h/2o)%[ I q ( t )  1 -  1 q ( t -z )  1 ] (aoe-b+ao+e"), 
X,(t) -Xz(t-r)  ==i(hl%w)%[ 1 q ( t )  I - 1 q( t -z )  I I (aOe-@-aO+ek) . 

In the second case, i. e . ,  for 5+0, q=0,  

a re  shift QNDP operators. 

Thus, the QNDP operators (observables) found here 
can be used to avoid completely the quantum-mechanical 
limitations on the sensitivity of a detector whose model 
i s  a parametrically excited oscillator. 
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