
a, = 3.31 x cm (Ta); a, = 3.3 x cm (Nb). the sodium, and the value of us calculated from the ex- 
perimentally obtained value of &, we can estimate the 

Thus, the theoretical valug of 6 agree well with those 
broadening of the surface-state band: r(Na-Nb) 

obtained in experiment. The physical argument in favor = r(Na-T a )  = 3 eV. It should be noted that the quest ion 
Of the assumption that the conduction do not of the scattering mechanism calls for  further theoretical 
enter into the volume of the scatterer is the fact that 
otherwise E would depend on the relaxation time in the and experimental research. 

s catterer volume and would decrease with decreasing 
temperature. In our case, both the s i ze  dependence and 
the temperature dependence of the total line width a re  
well accounted for by temperature-independent values 
of c. 

One of the possible mechanisms of the scattering of 
the sodium conduction electrons by the interface may 
be resonant scattering by the d-orbitals of the first 
layer of the scatterer which form a band of surface 
states'' at the surface of the free scatterer crystal, 
this band being located near the Fermi level. In the 
case of the contact of the scatterer layer with sodium, 
the surface-state band should broaden. The situation 
recalls resonant scattering by virtual d states of the 
impurity atom. Comparing the known expression for 
the effective cross section for resonant scattering, 
with spin flip, by an impurity located in the volume of 
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Transport of polarized radiation in crystals in the excitonic 
region of the spectrum. Polariton effects 
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A theory is developed for radiation transport in crystals with allowance for polariton effects in elastic 
scattering of the polaritons by impurity centers. The frequency dependences of the intensity and of the degree 
of polarization of the resonant secondary emission upon excitation by polarized light are calculated and 
analyzed. It is shown that the analysis of polariton transport in the absence of spatial dispersion, when the 
exciton effective mass M-a,, reduces to the problem of radiation transport in a turbid medium. At a finite 
exciton effective mass, account was taken of the additional light waves. In the region below the longitudinal 
frequency a , ,  the presence of additional waves that attenutate in space at w < w, influences only the polariton 
reflection coefficients. In the frequency region above 0, an important role is played by scattering processes 
between two transverse-wave branches and between branches of transverse and longitudinal polaritons. 

8 1. INTRODUCTION creased in connection with the observation and investi- 

In our preceding paper' we developed a theory of res-  
onant transport of polarized radiation in crystals, with 
account taken of the reabsorption and reemission a s  
well a s  of multiple reflection of light from the surface. 
The analysis was carried out in the limiting case  of 
weak exciton-photon interaction, when the photons and 
excitons could be regarded a s  separate particles. The 
present article is devoted to a study of transport of res-  
onant radiation in crystals in the case of strong exciton- 
photon interaction, which leads to a restructuring of the 
energy spectrum of the photon and excitons, and to for- 
mation of collective modes-polaritons (opto-excitons). 

gation of resonant Brillouin scattering of polaritons in 
III-V semiconductors (GaAs) and II-VI semiconductors 
(CdS, ~ d S e ) . ~ - ~  In most theoretical work on resonant 
scattering of polaritons, only single scattering was tak- 
en into In the general case, however, be- 
fore a polariton is emitted into vacuum or  recombines 
nonradiatively, it undergoes multiple scattering. The 
Brillouin spectrum revealed therefore not only single- 
phonon but also two-phonon peaks, a s  well a s  a broad 
background corresponding to multiple scattering (the 
so-called polariton fluorescence).* As shown by exper- 
iment,' the distribution function of the polaritons is in- 
homogeneous in space and has greatly differing values 

Interest in the theory of polariton transport has in- near the boundary and in the interior of the sample. 
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In the present paper we develop a general method that 
makes it possible to take into account multiple scatter- 
ing of the polaritons. Just as  in Ref. 1, we consider di- 
pole-active exciton resonance with isotropic effective 
mass in a crystal of cubic symmetry, and take into ac- 
count only elastic scattering of polaritons by impuri- 
ties. The method developedallows us to take into account 
the additional light waves (in the presence of spatial 
dispersion), the polarization of the polariton waves, the 
inhomogeneity of the distribution of the polaritons in 
space, and the reflection of the polaritons from the in- 
ner boundary of the crystal. The results obtained in the 
present paper explain the main features of multiple res- 
onant scattering of light and uncover a possibility of 
task-oriented organization of experiments on the study 
of diffuse scattering of polaritons. 

92. GENERAL RELATIONS 

For a dipole-active exciton with isotropic effective 
mass in a cubic crystal, the polariton spectrum in the 
vicinity of the resonant frequency wo consists of two 
transverse-wave branches (branches 1 and 2 in Fig. I ) ,  
determined by the dispersion relation 

EoOrr 

(:)==&o +- (1 

and one longitudinal-exciton branch (branch 3 in Fig. 1) 

where c i s  the speed of light in vacuum, k is the wave 
vector, E ,J is the background dielectric constant, Ewo(k) 
=Eoo + lfi2k2/2~) i s  the energy of the mechanical exci- 
ton in a state with wave vector k, M i s  the effective 
mass of the exciton, wLT = ~ ~ ( 0 )  - coo is the longitudinal- 
transverse splitting. Here and elsewhere we assume 
that wLT << wo, and confine ourselves to the frequency 
region near wo: 

The intensity and the polarization state of the trans- 
verse polaritons propagating in the 0 direction will be 
described, as in the case of ordinary light [see Ref. 1, 
Eq. (2)] by the 4-vectors 

The intensity z " = z ~ ' + z ~ '  is connected with the pol- 
ariton distribution function N~(C&) by the relation 

I @ )  (Q) =/i~v~~(Q), (5) 

where us = aws(k)/ak is the group velocity. For longi- 
tudinal excitons propagating in the S3 direction, the 
matrix I '~'  has one component, namely the intensity z ' ~ '  
(a). The longitudinal-exciton velocity i s  then v, = H z / M .  

In analogy with Ref. 1, we assume that the crystal 
boundary i s  irradiated by a monochromatic light wave 
of frequency w with total flux nF per unit area perpen- 
dicular to the propagation direction, and take into ac- 
count only the elastic scattering of the polaritons by 
the impurity centers. Therefore the frequency of the 

FIG. 1. Dispersion curves of polaritons in the absence (a) and 
in the presence (b) of spatial dispersion (dashed-dispersion 
curve of mechanical exciton) . 

radiation emerging from the crystal coincides with the 
frequency of the exciting light. 

A generalization of the radiation transport equation 
[see Ref. 1,  Eq. (5)] i s  a system of equations for I" 
(2, n) (s = 1, 2, 3): 

where z i s  the coordinate in the direction of the inward 
normal to the crystal surface, IJ. =cos 8, 8 i s  the an- 
gle between 0 and'the (-2) axis, and i s  the absorp  
tion coefficient of the /3 wave. We have separated in 
(6) the term connected with the contribution of the (at- 
tenuated) primary fluxes a ~ @ '  that travel in the crys- 
tal in the directions. Therefore the quantities I@' 
(z ,  a) in (6) characterize the diffuse-radiation field. 
The total scattering matrix of the polariton from branch 
0' into /3 is written in (6) in the form of the product of 
the scalar coefficient %,. and the scattering matrix Pse. 
(a, a'), which has a dimensionality hix hi,, where he i s  
the degeneracy multiplicity of the polariton branch /3(hL2 
=2, h,= 1). We shall find it next to normalize P,.(Q, 
a') in such a way that 

hs dQ hs El, P , ~ . , < *  (Q, 8') = -. 
2 

(7) 
3-1 

At @,P'  = 1,2  the normalization (7) coincides with the 
normalization of the matrix P(a,  a) in Ref. 1,  [ E ~ .  (611. 

We consider hereafter the case of a short-range scat- 
tering potential V(r), when the q-dependence of the 
Fourier component V(q) = dr exp(-iq-r)V(r) can be neg- 
lected, and V(q) = Vo can be assumed. In this case the 
probability of scattering of the polariton with polariza- 
tion e' into a state with polarization e is proportional to 
[e*-e' 12. To determine the matrix P,,(Q, n') we change 
from the basis (4) to the basis d8'- ( E ? ' E ~ ' * ) .  We use 
here for the transverse branches 1 and 2 the indices i, 
j =1, r, where the I axis lies in the plane containing the 
vector and the z axis, while the r axis i s  perpendicu- 
lar to this plane; for the longitudinal branch 3 we have i 
= j  =a. The transition from the d-basis to the basis (4) 
is with the aid of the matrices 
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In scattering by a short-range potential we have in the 
d-basis 

(6). 
P ~ ~ . ~ ~ ~ , ( ~ ~ ~  (n,  n r )  =y2(ei (~ )e ! : ' '  (P') ) (e:') (Q) ejb"' (n,)  ) 

=v/, C e,:" (n)  e:,P1 (~ )e j t : '  (Q') ej.P,"' ( w ) ,  
+E-=.v.r 

(9 

where e f '  is a unit vector in the direction of the axis I 
or Y at 8 = 1, 2 and in the direction Ci at 8 = 3. The fact- 
or  3/2 in (9) ensures satisfaction of the normalization 
(7). We introduce the matrices 06(P) with components 

These matrices have dimensionality $ x 9. Then the ex- 
pression for the scattering matrix P,, (0,01) in the 
basis (4) can be written in factorized form 

The matrices P,,(Ci,O1) admit of an expansion simi- 
lar to Eq. (6) of Ref. I : 

X P;;: (R, 61') +P::! (R, a ' ) ,  (12) 

and the components of the matrices PE,,'(O, 0) contain 
cosmll, or sinmll, ($ = cp' - cp). We note that we have not 
separated in (12) the matrix Q as  an explicit factor [see 
Eq. (6) of Ref. 11. For 8,8' = 1, 2 we therefore have 

Pj0? (R, Q') =QP("' ( 8 ,  P') , 

where P'"' are  the matrices introduced in Eq. (6) of 
Ref. 1. 

P$' (P,Rr)  = 6 p ~ '  cos 9, P$' (0, P') -3/,(1-p2) ( ~ - ~ " ) c o s  29. 

We note that, just as  in ordinary radiation transport 
theory, i t  is impossible to obtain from (6) equations 
that contain only the intensities I @ ' ( Z ,  0). In fact, even 
in the simplest case of normal incidence of unpolarized 
light on a crystal boundary, Eqs. (6) constitute a coupl- 
ed system for the five quantities I:", I;", z;~',  1j2', and 

At the chosen normalization of the matrices P,, the 
expressions for the scattering coefficients and for the 
absorption coefficients take the form 

Here N ,  i s  the impurity density, ga(w) =k:/2n2~va i s  the 
state density of the polaritons of the branch 8 (without 
allowance for the double degeneracy of the transverse 
branches), kB is the wave vector of the polariton at the 
frequency w, and r0 i s  the nonradiative lifetime of the 
exciton. The strength function 

characterizes the fraction of the exciton component in 
the polariton.iO We note that if we neglect the opto-ex- 
citon interaction (wLT = 0) we have for the exciton branch 
sB = 1 and v6 = t i k / ~ ,  and the reciprocal momentum re- 
laxation time of the exciton i s  

1 2n --- r(0) A goVoLNi, 
P 

where go =~k/27?@. 

The matrices P&)(p, p ' ) ,  which do not depend on the 
In addition to the already indicated conditions for the 

azimuthal angles, can also be represented in factorized 
applicability of the transport equations (61, i t  was also 
assumed in the derivation of these equations that at w 

form 
>Wr 

(IL, PO =MI(~)MO,(P' ) ,  (13) k~*as (B-1, 2, 3). 

I k,-k,.l mue (B#Br), where 
and at w < WL p"'." (1 - ,LZ) 0 

, ( p  = [ ] , M3 (p) = (1 - pZ9 2"'~', 0,. k,Bai ,  

0 0 2')' P 1 kl,31 Bat. 

Here wL = ~ ~ ( 0 )  i s  the frequency of the longitudinal ex- 
To obtain the representation (13), it suffices to average citon at k =O. The first of the inequalities (17) or  (18) e6(n) in (11) over the azimuthal angle cp, bearing it in 

is the usual criterion for the applicability of the kinetic 
mind that eauation. uoon satisfaction of which the wave vector of -- -= - ~ -  , A 

p,:!'(p, pl)  =V/,P,,. ( 0 ,  ~ ' ) . = 2 ~ , 8 ~ ( ~ ) , 8 , ~ +  ( Q ~ ) , ~ U , . - ~ ,  the polariton i s  a well defined quantum number. This 

and recognizing that a number of columns of the matrix 
criterion leads, in particular to the inequality wLT 

[8(0)], consist of zeros, and that many nonzero corn- 
>> l/rjO', which is the opposite of the criterion proposed 

ponents of this matrix a re  linearly dependent. 
in Ref. 1. The second of the inequalities in (17) means 
that the correlation between the polaritons of the two 

We present also expressions for the matrices branches 6 =/3' vanishes over the mean free path a;' or 

(P,Pl) -$;;) P:;) (Q, 61, (m=i, 2; @=I ,  2) : a;!, and the monochromatic field of the radiation prop- 
agating in the Ci direction is described by the matrices - 2pp' cos 9 

['f;: 1 1@'(Ci) (8 = 1, 2, 3), i.e., by nine scalar quantities. If 
- asin 2q 7. the second of the inequalities in (17) were not satisfied, 

it would be necessary to introduce in addition compon- 
ents that characterize the correlation between polari- 

(14) tons from different branches. The second inequality of 
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(18) allows us to disregard, at frequencies below the 
longitudinal frequency w,, the spatially damped (even in 
the absence of exciton damping) waves 2 and 3 in the 
transport of the radiation in the crystal. This leaves in 
Eq. (6) only the quantity I"'. In the vicinity of the longi- 
tudinal frequency, the dispersion relation for the wave 
2 can be approximately written in the form 

In this case the second condition of (18) i s  transformed 
into 

Thus, the frequency region near w, i s  excluded from 
consideration. 

We introduce a matrix S that connects the parameters 
of the secondary and incident fluxes in the absence of 
reflection from the internal boundary of the crystal1': 

Generalizing the method used in Ref. 11 of deriving the 
equation for the S matrix from the invariance principle, 
we obtain, taking into account the presence of several 
branches, the system of equations 

GBP' (Q, 62') =ars.Pev (O,  2) 

We introduce next the matrix g, which connects the 
quantities I"'(o, 0 )  and I")(o, O) on the inner surface of 
the crystal (e = +O), with account taken of the reflection 
from the boundary. The system of equations for the G, 
matrices i s  a natural generalization of the equation [see 
(1 7) of Ref. I] 

where RB 82 (p') i s  the matrix of the reflection coeffi- 
cients, d1 and O1 are connected by the relation n&(1 
- bt2) - pr2), and $' = q'. 

In analogy with Ref. 1, we designate the unit vector in 
the direction of propagation of the wave incident in vac- 
uum on the crystal by at = (-pi, pi), in the direction of 
propagation of the initial wave refracted in the crystal 
by fiM = (-pM , (PC~), in the direction of propagation of 
the diffusely reflected wave incident on the inner bound- 
ary of the crystal by &&, = (p2, q2), and in the direction 
of propagation of the wave emerging from the crystal by 
O2 = (p2, q2). In this case q w  = ql ,  cps = q2, and CLM and 
pi or pe and pz are connected by ~ne l l ' s  relation 

The matrix #(&, GI), which determines the connection 
between the scattered radiation outside the crystal I(-0, 
$1 with the flux nF(-0, nl) incident on the crystal 

is connected with the matrix S& by the relation 

where TBo and TM are the transmission matrices from 
the vacuum into the crystal and from the crystal into 
the vacuum, and n8 =ckdw. Equation (24) is a general- 
ization of Eq. (48) of Ref. 1. 

We calculate first the frequency dependence of the in- 
tensity and of the degree of polarization of the scattered 
radiation in the absence of spatial dispersion, when M - +oo. We consider next the radiation transport at a 
finite effective mass of the exciton, when additional light 
waves must be taken into account. 

53. RADIATION TRANSPORT IN THE ABSENCE OF 
SPATIAL DISPERSION 

As M- 0 the frequency of the mechanical exciton is 
independent of the wave vector, i.e., wo(k)= wo, and each 
pair of values $2 =k/k and w in the frequency region 

corresponds, just as under nonresonant conditions, to 
two normal (transverse) waves (Fig. la). According to 
(1) and (21, the refractive index and the group velocity 
of these waves are  

where no = E ~ ~ ~ ~ .  In the region of the residual rays, wo 
< w < w,, the volume waves are not excited, and we 
shall not consider in the present section. We note that 
in the frequency range from coo to w,  = wL - [wLT/(cO 
+I)], the diffuse scattering can result from optical ex- 
citation and emission (with participation of the impuri- 
ties) of surface polaritons. In this case the problemre- 
duces to two-dimensional radiation transport by surface 
polaritons with wave vector 

and with coefficient of attenuation in the interior of the 
crystal (see, e.g., Ref. 12) 

At wo < w < w, the dielectric constant is c(w) =n2(w) < -1. 
Thus, in the absence of spatial dispersion, at any w 
from the region (25), the index P in the transport equa- 
tion runs through only one value (P = 1 at w < coo and P 
=2  at o > w,), and can therefore be omitted. sR is 
therefore a 4x4 matrix in this case, and is determined 
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completely by specifying two parameters: the refrac- 
tive index n, which determines the reflection coefficient 
R [see Eq. (8) of Ref. I], and the quantum yield Go in a 
single scattering act. The problem of finding this ma- 
trix reduces therefore to the problem solved in the pre- 
ceding paper.' The only difference lies in the allowance 
for the frequency dependence of the refractive index, 
which is determined by formula (26), and in the more 
complicated frequency dependence of the quantum yield 
for one scattering act 

Here 7 = (7;' +tgi)" i s  the total lifetime of the polariton 
in a state with a specified momentum, ?,= (vaM)'l is the 
polariton momentum relaxation time, to(w) =s-'(w)rO i s  
its lifetime, and 7 0  i s  the lifetime of the mechanical ex- 
citon, which we regard as a constant. Using (15) and 
(16) we obtain for the ratio t& that determines theval- 
ue of Go, 

where ko =wo/c. According to (28) and (29), the function 
Go(w) is completely specified if w, and wo a r e  given, 
provided that the value of 4 for some single value of w 
is known. In the calculation we have specified the value 
of Go at w = oo - (wL,/2), which we shall henceforth des- 
ignate by Gi. 

The matrix sR was calculated by the previously de- 
scribed method.' Figures 2 and 3 show the frequency 
dependences of the intensity and of the degree of linear 
polarization of the radiation scattered in the direction 
p2= 1 under normal excitation (pi = 1) by linearly polar- 
ized light; these dependences were calculated, without 
allowance for the spatial dispersion, for different val- 
ues of G; at to  =ni =8.3. 

The behavior of the plots in Figs. 2 and 3 can be un- 
derstood by determining the influence of a change of Go 
or of n on the intensity and polarization of the scattered 
radiation. With increasing Go, the probability of non- 
radiative recombination of the polariton decreases and 

FIG. 2. Frequency dependence of the intensity of the back- 
scattered radiation at normal excitation (in the absence of 
spatial dispersion). Curves 1-7 pertain to different values 
of the lifetime of the exciton, corresponding to the following 
values of the quantum yield for a unit act of polariton scatter- 
ing at the frequency w= wo-(wLT/t): 0.1 (curve 1); 0.2 (2); 
0.4 (3); 0.6 (4); 0.8 (5); 0.9 (6), and 0.95 (7); n$ = 8.3. 

FIG. 3. Dependence of qi,, (w) under normal excitation by lin- 
early polarized light in the absence of spatial dispersion. The 
parameters used in the calculation of curves 1-7 are the same 
a s  in Fig. 2. Curves 8-10 were calculated at  i;wto equal to 
0.975 (8). 0.99 (9), and 1.0 (10). 

the radiation intensity increases. The degree of polar- 
ization should in this case decrease, since an increase 
of Go leads to an increase in the average numbers  of 
the scattering acts experienced by a polariton that 
reaches the boundary and is emitted into the vacuum. 
With increasing In - 1 1 ,  the number of scattering acts 
due to specular reflection by the inner surface of the 
crystal also increases." This leads to a decrease of 
the degree of polarization of the radiation, and at Go 
# 1 also to a decrease of the intensity. 

According to (20) and to Eq. (21) of Ref. 1, under nor- 
mal excitation by linearly polarized light we have for 
the backscattered radiation 

9," ' (S,1R-S2,R)/(s,,R+s2,R), 

where T(1) = h / ( l  +nl2. 

. At Go<< 1 we have = ci:'G0 and = c$:'G~, inas- 
much a s  in single scattering we have gj- P ~ ~ , '  and 
ci!' =O. Consequently, at Go<< 1 we have 

We note that the coefficient c::' does not depend on the 
refractive index n. At n >> 1 o r  n << 1 the coefficient ci:' 
is likewise practically independent of n. 

The quantum yield Go at w < wo increases monotonical- 
ly with increasing w,  reaching unity as  w - wo. Since 
in the frequency region w 0 - w >> wzr we have Go- 0, 
we get with decreasing frequency I(-0, 1)-0 and 911, - 1. In the frequency region close to wg, such that n 
>> 1 but still Go<< 1, the intensity I(-0, 1)- two - w)-"~. 
As w- wo, saturation of Go sets in, the refractive index 
increases without limit, and T(1) 1 (w0 - w) ' '~ .  
Since T(~)(S:, +~;')/n', just as the total quantum yield, 
remains bounded, at sufficiently small values of WIJ- w 
the function I(-0, 1;w) reaches a maximum and begins 
to decrease. In the scale of Fig. 2, one cannot see the 
decrease of I(-0, I ) ,  and only a tendency to saturation 
is observed. The monotonic increase of Go and of n with 
increasing w in the region w < wo leads to a monotonic 
decrease of PI,,. As w - wo, for any value of G; at the 
frequency wo-  (wLT/2) the average number of scattering 
acts R- a and qli,- 0. 

At w w,, the quantum yield Go increases from zero 
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at  o = w,, reaches a maximum value Goy at wy = w~ zation of the medium. 
+ (wLT/4), and then again decreases to zero. The value 
of t& at the maximum point w, is smaller  by a factor 
25d%/4 than at  w =coo - (wLT/2). Therefore, whereas 
at  the frequency wo - (wLT/2) the ratio td7, G 1, i.e., 
w i s  1/2, at  w>w, we have Go=tg/r,<4 1. At w close to 
WL, the intensity I(-0, 1)-n/(l +n)4. Therefore a s  o - w, the function I(-0, 1) increases, reaches a maxi- 
mum at  the frequency w, + [w,,/(9~~ - I)], and then de- 
creases. The region of the decrease of I(-0, 1) a s  w 
-- w, cannot be seen in the scale of Fig. 2. 

Curve 10 of Fig. 3 was calculated for the case when 
Go = 1 in the entire considered frequency interval. In 
this case the function P,,,(w) has a maximum at  the 
point wi=w, + O ~ ~ / ( E ~ -  I ) ,  wheren = l .  When a devia- 
tion from this frequency takes place towards the right 
o r  towards the left, reflection by the boundary comes 
into play and PI,, decreases. In the case  when the 
quantum yield Oi differs from unity and therefore the 
function GO(w) depends strongly on the frequency, the 
frequency dependence of pl,,(w) has a more complicat- 
ed form. At w, < w < w, the increase of the frequency 
leads to an increase of Go and of n. Therefore, when w 
increases from w, to w, the degree of polarization PI,, 
decreases steeply and assumes a minimum value near 
w,. Near the frequency w, is located the inflection point 
of the q,(w) curve. The region of small values of w 
- w,, where PI,,-- 1,  cannot be seen in the scale of 
Fig. 3. The value 5; at  which the transitionfromcurves 
of type 10 to curves of type 1-9 in Fig. 3 takes place is 
close to unity. Thus, curve 9 corresponds to a value 1 
- 5; = 0.01, which corresponds to t d r ,  =99 at  the fre- 
quency oo- wLT/2. 

$4. RADIATION TRANSPORT IN THE PRESENCE OF 
SPATIAL DISPERSION 

The analysis of radiation transport in the regions w 
< w, and o > w, in the presence of spatial dispersion 
calls for a different approach. 

a) The case w < w ~  

Inasmuch a s  a t  w < w, we have I k2 I = (w/c)[-&(&, k,)]" 
and in the frequency region wo< w < w, we have ~ ( w ,  0) 
< - 1, the surface-polariton damping coefficient i s ,  ac- 
cording to (27), us (M -- -) > 1 kz 1. Therefore when the 
condition I k2 I >> 0 ,  is satisfied the principal contribution 
to the radiation is made by volume waves of the branch 
1,  and there is no need to include into consideration the 
energy transport by the surface  wave^.^' Thus, at  w 
< w, the transport equation takes the same form a s  in 
Ref. 1. In contrast to Ref. 1 o r  to the case  M =- con- 
sidered above, when calculating the reflection-coeffici- 
ent matrix Rii(p) for wave 1 i t  is necessary to take into 
account also waves 2 and 3, which have at  w < w, an 
imaginary wave vector (Fig. lb). It i s  known that in this 
case  i t  is necessary to specify, besides the Maxwell 
boundary conditions, also additional boundary conditions 
(ABC). We used the ABC proposed by pekar,I5 

where P(e, w) is the exciton contribution to the polari- 

The matrix Rii(p) can be  represented in the form [ ~ q .  
(8) of Ref. 11 

whereR, = I Y , ~ ~ ,  R 2 =  Irs12, R 3 = ~ e ( r , f l ) ,  and R4 
=Im(r ,e) .  Here r, and r, a r e  the maximum amplitudes 
of the reflection coefficients in the P and s components, 
respectively. It is convenient to express these coeffi- 
cients in terms of the effective refractive indices 6 and - 
n,: 

I-n, 1-n. 
rp - - r.=--. 

1+zp ' i+ns 
(34) 

Under the ABC (321, & and & take the form 

The wave refractive index is here ne = cke/w and n i p l p ,  
while the quantities no, and ne, (0 = 2, 3) a r e  obtained 
from the condition of conservation of the tangential 
components of the wave vector 

At w < w, both ni and ni  a r e  negative. We note that 
there i s  no need to take into account the exciton damping 
in the calculation of R,,(p), since this would be an exag- 
geration of the accuracy with respect to the small  pa- 
rameters corresponding to the conditions (18). Expres- 
sions (35) determine also the effective refractive in- 
dices n, and n, that describe the maximum amplitudes of 
the reflection coefficients of light from vacuum, and 
they can be reduced to the form obtained in Refs. 15-1 7. 
The fact that the corresponding "vacuum-crystal" and 
"crystal-vacuum" reflection coefficients coincide at  w 
< w, is the consequence of the time-reversal symme- 
try. Unlike in the Refs. 15-17, formulas (35) a r e  valid 
in the entire interval 0 < 8 < 1r/2 of the angle of incidence 
of the wave 1 on the crystal  boundary. 

According to (35), with allowance for the spatial dis- 
persion, a change of the linear polarization into circu- 
lar  and vice versa upon specular reflection takes place 
not only at  angles 8 larger than the total internal reflec- 
tion angle Bo =sin" (l/n,), but also a t  8 < 8,. 

The transmission-coefficient matrix Tl1(p) has like- 
wise a more complicated form than the matrix T in Eq. 
(11) of Ref. 1. If i t  is represented in a form similar to 
(33), introducing the quantities T,(p) (i =I-41, then we 
obtain 

Tl=l-R,,  T2=1-R2, 
no. w, T,= --. - no, wo 

Re(tpt.'), T,= - - Im (tpt.'), 
pn, w, fin, W, 

(37) 

where 
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& and < are  the effective refractive indices (351, and 

Taking into account the spatial dispersion, the frequen- 
cy dependence of the ratio of the polariton lifetime to, to 
i ts  momentum relaxation time rp1 becomes smoother 
and takes the form 

As M- -, Eq. (39) goes over into (29), a s  it should. 

The theoretical plots of I(-0, 1; w )  and q,,(w) in 
Figs. 4 and 5 in the frequency region w < wL were cal- 
culated for M =mo (mo is the mass of the free electron), 
tiwo =2.552 eV, RwLT = 2.0 meV, and zo = 8.3. In the 
calculation we used the same set  of values of v2fl,r0 a s  
in Fig. 2. However, when account is taken of the finite 
mass M < +-, the values of Gi a r e  somewhat decreased 
to 0.07 (curve I ) ,  0.14 (2), 0.32 (31, 0.50 (41, 0.73 (51, 
0.86 (61, and 0.93 (7). 

On the long-wave section of the spectrum, i.e., a t  w, 
- w < wLT, the spatially damped waves 2 and 3 have lit- 
tle effect on the reflection-coefficient matrix, and the 
functions I(-0, 1 ,  w) and ?li,(w) a r e  close to the anal- 
ogous functions calculated without allowance for spatial 
dispersions. 

The frequency dependences of Fig. 5 can be explained 
by using the results of Ref. 1. It was shown there that 
the degree of polarization of the radiation in the =1  
and g2= 1 geometry i s  practically independent of n i f  the 
following inequality holds 

FIG. 4. Frequency dependence of the intensity of secondary 
radiation in the presence of spatial dispersion. The effective 
exciton mass M was assumed equal to the mass of the free 
electron. In the calculation in the frequency region w < w 
(left-hand scale) we used the same values of T ~ ,  V;N,, ni, 
Aw0 = 2.552 eV, and ti wLT = 2 meV a s  in Fig. 2. The curves 
in the region w > wL (right-hand scale) were calculated with 
Zo having at  the frequency (wL + 0.15 WL =) the values 0.135 
(curves l', 1% 0.607 (2', ZX), 0.824 (3'), and 1.0 (43. The 
curves 1" and 2. describe the contribution of the polaritons of 
only the upper polariton branch 2. 

FIG. 5. Plot of fli, (w) under normal excitation by linearly 
polarized light with allowance for the spatial dispersion. The 
parameters a r e  the same a s  in Fig. 4. Curves 1'-'were 
calculated with allowance for thelongitudinal waves, and curves 
1"-4" without allowance for the longitudinal waves. 

where qo(Go, 1) is the total quantum yield, i.e., the ra- 
tio of the outgoing flux to the incident flux in the absence 
of reflection from the boundary (n = 1). This result is 
connected with the fact that the average number of re- 
flections of the radiation prior to the emergence into 
the vacuum does not depend under the condition (40) on 
i? and is close to [I - qo(Go, I)]". If it is assumed a p  
proximately that the radiation approaching again the in- 
ner boundary of the crystal after specular reflection is 
not polarized, and the inequality (40) holds, then the de- 
gree of polarization with allowance for reflection from 
the boundary is 

-where B,,,(Do, 1) is the degree of polarization a t  n = 1. 
Figure 6 shows curves 4 and 7 of Fig. 4, a s  well a s  
curves plotted in accordance with Eq. (41). This ap- 
proximate formula holds s o  long a s  Go 5 0.995. At larg- 
e r  values of i&, the approximations used in the deriva- 
tion of (41) a r e  no longer satisfied. Therefore the exact 
and approximate values of g,,, differ significantly for 
curve 7 a t  w = w0 + (wLT/2), where Go = 0.9977. 

Under the assumption indicated above, the expression 

FIG. 6. Comparison of the results of the exact and approxi- 
mate calculations for a , ( w ) .  Curve 3, 'I-the same as  in Fig. 
4, curves 4' and 7' were calculated from the approximate 
formula (41). 
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for the intensity takes the simple form 

where rF is the flux incident on the crystal. Formula 
(42) accounts well for the frequency dependence of 
I(-0, 1) in the region w < wL .. The maximum of I(-0, 1) 
in the region of the frequency coo (see Fig. 4) is due to 
the increase of Go with increasing frequency. In the re- 
gion of Lhe longitudinal- transverse splitting, the quanti- 
ty qo(Go, 1) increases with increasing frequency, and 
~ ' ( l ) /n :  goes through a gently sloping minimum and then 
increases smoothly, reaching at w = wL the value 16cU 
6z, +&,I4. It is this which causes the second growth of 
I(-0, 1; w) a s  w -  WL. 

At n2 >> 1 the solid angle An-- n/n2 in which the radia- 
tion can emerge from the crystal to the vacuum is very 
small, and within this solid angle one can certainly neg- 
lect the angular dependence of the intensity. Therefore 
the angular dependence of the outgoing radiation dupli- 
cates with high accuracy the angular dependence of the 
transmission coefficient 

In the present paper we assume that the boundkry is 
ideal and do not take into account the scattering of the 
light by the surface roughnesses. Since in scattering of 
light by surface roughnesses the angular dependence of 
the intensity of the scattered radiation differs in general 
from (431, i t  becomes possible to distinguish experi- 
mentally between diffuse scattering effects in the volume 
and on the boundary. 

b) Case w > w~ 

Under the assumptions made above, the total quantum 
yield for one polariton scattering act 

does not depend on the number of the polariton branch. 
The ratio of the lifetime of the polariton to the momen- 
tum relaxation time is in this case 

The scattering coefficients satisfy the relation 

which follows from the expression (15) for %,,. This 
property of the scattering coefficients, together with the 
possibility of factorizing the matrices P,,(n, 0') [see 
( l l ) ]  allow us to write down the general solution of the 
system of equations for the ha, matrices in the form 

Spp, ( P ,  211') =app, (ap /p+aB. /pr )  - I U , ~ ~ ( P ) H , ( ~ ) & .  (p')@gr+ (Q')I.Jp,-', (46) 

where B,(p) a r e  9 x 9  matrices. 

Substituting (46) in (21), we obtain after simple trans- 
formations the equation that the matrix B, (p) satisfies, 

i 

H p ( ~ ) = 1 + P H ~ ( p ) ) : J d p '  aW' HP, - ( P O  Y B .  ( - P O ,  (47) . appl+ae+ 

where 

The matrix is determined only by the multiplicity 
of the degeneracy of the branch P .  By the unitary trans- 
formation D"*8(p)~ with 

rzl o o o 01 

the matrix * B ( f i )  reduces to a quasidiagonal matrix con- 
taining one 2 X 2 block 

and four different functions 

On the diagonal, the function is contained once, 
and the remaining three functions twice. The matrix 
m8(p) has the dimensionality h, x 2 and coincides with the 
upper left-handblock h,x 2of the matrixM8 in (13). We 
note that the matrix 

['"R'" "o 
0 ~ : : ' B ( P )  

coincides at = 1 or 2 with the matrix *'''(I) of Eq. (31) 
of Ref. 1,  while the functions *ii'(p), *,!!i(p), and 
*i2'(p) with 0 = 1 o r  2 go over into the * functions of Eq. 
(32a) of Ref. 1. 

Thus, to determine the S,. matrices in the general 
case we must solve a system of three equations (47) for 
2 x 2  matrices ~ iO ' (p ) ,  two systems of two equations (47) 
for the functions H::',(p) and H,!!i(p) with the functions 
*iOi(p) and *,!!i(p), and two systems of three equations 
(47) for the functions H;"(p) and Hi2'(p) with the func- 
tions *ii'(p) and G2' (p)  in the integrand of (47). As a 
result we obtain for the S matrices 

The matrices P$! and P,$! a r e  defined here in accord- 
ance with (1 41, 

At p, 0' = 1, 2 the matrix ,I$;!, just a s  the matrix s"' in 
Ref. 1 ,  is determined by two linearly independent func- 
tions 

636 Sov. Phys. JETP 53(3), March 1981 lvchenko et aL 636 



At 8 = 3 or 8' = 3 we have @! =s~,&)E, where E i s  a unit 
3x3  matrix if S = l  or 2 and a 1 x 1  matrix at 8=3.  The 
functions s,$!, s&)~,, and s$! are  connected by the re- 
lation 

with the functions H;", H,!!:, and H;~', respectively. 

The general solution of Eqs. (22) for G,  matrices i s  
a linear combination of the functions cosm4 and sinm$ 
with na =0, 1, 2, while the matrix &,(a, a') can be 
represented in the form of the expansion (12) by intro- 
ducing the corresponding matrices sA:~)B.(O, Of). Substi- 
tuting this expansion in (22) and integrating with respect 
to cp' we obtain three independent systems of equations 
that connect the matrices s $ $ ~  and sE,) with identical 
m. For the sake of brevity, we shall not write out these 
equations here. Thus, the problem of determining the 
&, matrices can be reduced to integral equations of one 
variable. These equations can be solved exactly with a 
computer. They a re  also very convenient in a calcula- 
tion by the iteration method, when account i s  taken of 
the finite number of the processes of polariton scatter- 
ing in the volume and their reflection by the boundary. 

The reflection and transmission coefficients R8,, and 
T,, were calculated under the ABC (32). In this case 
the matrices RI,(p) and T,,(p) a re  determined by formu- 
las (33)-(38), in which all three refractive indices n8 
are real. In the calculation of the reflection coeffici- 
ents RBB,(p) with f l +  8' it must be recognized that 

npwp dQg. (E(b)E(O")r 
R ~ B * , ~ , ( P )  - -- w dQp (E(P ' )E(P ' ) . ) ,  ' (53) 

Here d%,/dn8 = 61, /n~ , )~p~/p~, ;  and p8, satisfy the 
relation n:(l - pi) =ni, (1 - pi,). The symbol (EY'E" k)t 
stands for one of the quantities I EY'I2, I E ? ' { ~ ,  2Re 
(E?'E:)*), and ~ I ~ ( E ~ ' E ~ ' * ) ,  corresponding to the in- 
dex i=1-4 at p = l  and 2, or for the quantity I E " ' ~ ~  at 
j3 = 3, where E"' i s  the amplitude of the electric field of 
the wave 0. The coefficients w8 relate the energy flux 
J8 of a plane monochromatic opto-exciton wave 8 with 
vector E"' (Ref. 18) 

In spectral reflection of one wave 8 from the boundary, 
there are excited in the general case waves of all three 
branches. We note that if  n6 >n8, and < 1 - (n,,./n8)', 
then the reflected wave 8' attenuates in the interior of 
the crystal: n8,. =in,,[l - (n8,/nd)2 - When the in- 
equalities (17) are  satisfied, it suffices to take these 
damped waves into account only when the reflection co- 
efficients are calculated, and their contribution to the 
energy transport can be disregarded. 

The matrices &, at w > w, were calculated in second 
order in Go, i.e., scattering processes of order not 
higher than the second were taken into account. In the 

calculation of the matrices $@ we took into account only 
single reflections of the light, for which purpose it was 
sufficient to substitute in the integrand of (22) the ap- 
proximate matrix b, in place of g,. Thus, the results 
of the calculation at w > w,, shown in the right-hand side 
of Figs. 4 and 5, are  valid only if Go << 1. 

On the short-wave edge of the spectrum, the quantity 
~ ( l ) / n ~  for the wave 1 becomes very small, and the pre- 
dominant contribution to the radiation i s  made by polar- 
itons of the branch 2. In 11-N crystals, the inequality 
Mo<< M is satisfied. In this case the state densities of 
branches 2 differ greatly from those of 1 and 3: g2(w) 
<<gl(w), g3(w). Therefore on the short-wave section of 
the emission spectra, allowance for the scattering of the 
polaritons between the branches, compared with the 
case M- -, leads to a decrease of the radiation intensi- 
ty. 

In the region of the longitudinal frequency w,, the pre- 
dominant contribution to the radiation i s  made by polar- 
itons of branch 1. The increase of I(-0, 1) with de- 
creasing frequency is due to the increase of the coeffi- 
cient ~ ( l ) / n ~  in the vicinity of the frequency w,. Thus, 
the I(-0, 1; w) emission spectrum has two maxima: a 
broad one near the frequency wo, and a narrower one at 
the frequency w,. It i s  of interest to note that the fre- 
quency dependence of the "branch I-branch 1 " Brillouin 
scattering efficiency, measured in Refs. 3 and 8, also 
has two maxima in the region of the longitudinal-trans- 
verse splitting. To illustrate the role of the longitudin- 
al waves, Fig. 5 shows two sets of curves 1'-4' and 1"- 
4", calculated respectively with and without allowance 
for the states of the longitudinal waves in the kinetic 
equation for the polaritons. 

. We note in conclusion that the general method devel- 
oped above for solving problems of transport theory in 
the presence of several branches of normal waves can 
be used also for problems connected with dragging of pho- 
nons, which likewise have longitudinal and transverse 
oscillation branches. 

')we note that in contrast to Ref. 1 we do not separate the fac- 
tor Go. Therefore the S matrices in the present article 
correspond to the GS matrices of Ref. 1. 

 or example, if unpolarized radiation is incident on the 
inner boundary, with an intensity independent of the pr* 
pagation direction: I (  + 0, p >0,  q) = const, then at n  <<I 
or n << 1 the effective transmission coefficient F, which is  
equal to the ratio of the radiation-energy fluxes passing 
into the vacuum and incident on the boundary, is given by 
the expressions 

Thus, at  n >> 1 or n e 1 the effective reflection coefficient 
ii = 1 -T differs only insignificiantly from unity. At equil- 
ibrium, the ratio of the total fluxes incident on the inner 
and outer boundary of the crystals is  equal to nZ and the en- 
engy fluxes from the vacuum into the crystal and from the 
crystal into the vacuum coincide, so that T ( l / n )  = n%). 

3, The contribution of the surface polaritons to the exciton 
luminescence in the opposite limiting case of strongly ab- 
sorbing crystals is analyzed in Refs. 13 and 14. 
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