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The superconducting properties are investigated of a structure consisting of a random mixture of metal 
granules and an insulator. The dependence of the shift of T, on the concentration of the insulator and the 
temperature dependences of the magnetization, fluctuation heat capacity, and the conductivity are obtained. 

PACS numbers: 74.30. - e, 74.40. + k, 74.70.Dg 

Results of experiments on metal-insulator mixtures to the conductivity: 
have been recently published.' They report observa- 

D=2cpo/dneZ. 
tion of the dependence of the resistance on the insulator 
concentration a t  temperatures much higher than the It corresponds to the same exponent t a s  0. 
superconducting-transition temperature T,; this de- 
pendence agrees with the predictions of percolation 
theory (see the review by Stauffer2 and the references 
therein). A shift of T ,  near the percolation threshold 
was also observed in these experiments. The purpose 
of the present paper is to explain this shift and to pre- 
dict other superconducting properties of such a struc- 
ture. We assume that the structure of interest to us 
consists of minute granules of metal randomly inter- 
connected with one another and imbedded in an in- 
sulator. 

The properties of such a structure far  from the 
superconducting-transition point a r e  described by per- 
colation theory. This theory shows that the resistance 
vanishes a t  a finite insulator concentration 1 -PC. This 
phenomenon is similar to a second-order phase transi- 
tion. Near PC the dependences of the resistance, of the 
thickness Po of the infinite cluster (the cluster i s  defined 
a s  the connected region of the conductor) and of the 

Let the characteristic microscopic dimension of the 
granule be much smaller than <(T) .  Here < ( T )  is the 
average correlation radius of the superconducting order 
parameter and i s  defined for clusters with dimensions 
much larger than < ( T ) .  This assumption allows us r e -  
gard the order parameter a s  constant over the granule 
dimension. In this case the superconducting properties 
of the system a r e  determined by percolation theory. 
The essential assumptions needed for this purpose are :  
neglect of the Coulomb interaction of the electrons3 and 
of the Josephson tunneling of the electrons through the 
insulator. The unusual superconducting properties a r e  
due to the small diffusion coefficient at large distances, 
which leads to a considerable broadening of the region 
of the order-parameter fluctuation and to a shift of T , ,  
a s  well a s  to the dependence of D on the distance at 
r <  L, from which follow the unusual dependences of 
the magnetization at <<  L and of the fluctuation conduct- 
ivity and of the heat capacity. 

percolation length L (a quantity equivalent to the cor- 
relation radius in the theory of phase transitions) on p 2. We write down the Ginzburg-Landau Hamiltonian 

for an individual cluster. In this case the influence of a r e  of the form 
the proximity to the percolation point influences the low 

0- (P-P.)', PO- (P-pdP, L- (p-P,) -'. (3) density of the cluster and the small nonlocal diffusion 
coefficient : 

The exponents t ,  P ,  and v a r e  analogous to the critical 
exponents of the theory of phase transitions; they do H = - j d  i xi  r'D(x,, x~)p(x , )p(x~)  (V$(xl)) (V$(XZ) )+  
not depend on the concrete microscopic structure. The 
values of the exponents a r e  known2: they can be ob- +-(dx[a~l$(=) I ~ + - ~ I $ ( X ) I '  p b ) ,  
tained, in particular, by numerical calculations. In a 2 I I (2) 

three-dimensional system we have t = 1.7, P = 0.4, and where p ( x )  is  the density of the cluster at the point x, 
v=0.9. In a two-dimensional system t = 1.3,P =0.14, and a, 6, and y' a r e  expressed in terms of the micro- 
and v = 1.35. The diffusion coefficient is  proportional scopic quantities a s  usual: 

614 SOV. Phys. JETP 53(3), March 1981 0038-5646181 10306 14-04$02.40 Q 1981 American Institute of Physics 614 



n N(O) 75(3) N(O) a=N(O); r'=---. 6 - - -  T-T. 
T = - 

4 T '  1 6 n V z  ' T.  . 
We calculate now the shift of T,. To this end, we 

consider the unperturbed Green's function Go(x,, q) of 
the Hamiltonian.' We introduce the Fourier transform 
Go(q, x, T) of Go(xl, x,) with respect to x, - x,: 

Go (q,  x, T )  = 5 dr e-'q'Go (x+r, x-r) , 

d d 
Go-I=-7' - p(x )D(x ,  x f ) p  (x ' )  --T + 2arp ( x )  azi dzi 

[(3) i s  the operator equation that defines Go]. 

It is natural to take T, in such a system to mean the 
superconducting-transition point of an infinite cluster, 
since it i s  precisely this point which is  determined 
from the conductivity measurements. The shift of T, 
(compared with a region f a r  from the percolation thres- 
hold) is due to the increase of the fluctuation of $. 

We estimate 67, in the three-dimensional problem in 
first-order perturbation theory in the term 1$14: 

where (. . .) denotes averaging over x, and G i s  taken 
for an infinite cluster. G (q, x, 0) can be determined 
from similarity considerations in percolation theory. 
At small q (qL<< 1) the fluctuations of D and p a r e  
small, therefore p(x) D(x, xl)p(x') can be replaced by 
the function x - x' . This i s  the same quantity that enters 
in the macroscopic definition of the diffusion coefficient, 
therefore at qL<< 1 we have 

<Go)=(7'DaqZ)-'. 

We write down Go for all  q in the form (T = 0) 

( G o ) = ( ~ ' D o q Y ( q L ) ) - ' ,  f (0)=1, (5) 

where f (qL) is  a dimensionless function. If qL>> 1, 
then (Gd should not depend on P -PC, hence 

therefore the integral in (4) can be estimated: 
6 6 

6T,=T- = A(p-pa)-Ii-'1, A=Tc-. 
ay'D,L a y  'D'L' 

Here L' is the dimension of the granule and D' i s  the 
coefficient of diffusion in it. This formula is  valid also 
for large 67," 1. In this case it can be inverted and we 

obtain 

To estimate (((T)) it i s  necessary to compare the 
second term of (3) with the first. At qL<< 1 the second 
term fluctuates little and coincides with ~ T P ;  at qL>> 1, 
from similarity considerations, it is proportional to 
q4'". Therefore at (<  L (this the only case of interest 
to us from now on) 

r'E-'Do (L ip )  "WCT ( L i t )  o f v ~ ' p , ,  
(7) 

We can now estimate (Go) also at T # 0. If 95 >> 1, 
then (Go(q, 7)) =(Go(q)) and is given by formulas (5) and 
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(6). At q5<< 1 we can retain in (3) only the second 
term and 

(Go(q ,  T )  ) - - ( i l a ~ p ( x ) ) ~ ,  

where (. . .), means that the averaging over x must be, 
carried out over distances "q-'; from similarity con- 
siderations 

1 
G ( ~ , T ) = - .  U T P ( ~ L )  (8) 

Here P(qL) i s  the density of a cluster of size q-'. 

The fluctuation correction to the heat capacity is  
determined in t e rms  of a four-particle Green's func- 
tion, whose value in the zeroth approximation is 

d'F a' 6e- -T-=- -  
dTZ 

T J  ( j p ( x i )  Gz (x i ,  xd  p  (x2 )  d x z )  . 

We consider the Fourier transform of 

g = ~ ( x , ) G o ( x ~ ,  xa)p(xz) 

with respect to x, -&. We obtain the quantity 
(gq(x, T)), in analogy with (Gd: 

g,- (p-p , )  -t+Zbq-P (!?LC 1) ; 
gq.S.q-ll-lb)/~-2 ( q L B 1 , q f , l )  

gq-qPfV ( q E K l ) .  

We rewrite the fluctuation correction in the form 

6c.,= -- a' ( j ~ ~ ( q , x ) g ~ ( z ) d q )  . 
T' 

For an estimate we can represent the mean value in 
(9) by a product of four mean values and obtain 

~ e c I ~ g ( 2 1 - 2 0 ) l v + l ~ T - ~ 2 t - z b + ~ ) / ~ 2 ~ + 1 - B 1  

~ c , 1 - z - ~ " - z P + z 1 ) / ( 2 ~ + i - P )  

(10) 

for three- and two-dimensional problems, respectively. 

Formula (10) determines the contribution made to the 
heat capacity by one cluster of size larger than 5 .  The 
total fluctuation heat capacity is obtained by multiplying 
this contribution by the fraction of matter belonging 
to clusters with dimensions larger than 5, i.e., P ( ( )  
- 5-'". This formula follows from similarity con- 
siderations and P(L)  = Po" ( p  -#,)'. The final answer 
for the fluctuation correction to the heat capacity is 

The condition that allows us to use in the derivation 
of (11) the zeroth approximation i s  the smallness of the 
fluctuations. Let T, and TI. be respectively the transi- 
tion temperatures without and with allowance for the 
fluctuations. Then a t  TI. < T < T, the fluctuations a r e  
certainly large. We estimate the temperature above 
which one can regard the fluctuations a s  small. To 
this end, we compare the fluctuations of the order para- 
meter in the volume td with i ts  equilibrium value: 

We obtain 

L. 0.  loffe 



3.  The fluctuation correction to the conductivity, in 
the lowest order in the fluctuations, is determined by a 
sum of ~ a k i - ~ h o m s o n ~  and Aslamazov-Larkin5 dia- 
grams. We calculate the latter (which is of importance 
in a three-dimensional system). It i s  more convenient 
to calculate it by using the time-dependent Ginzburg- 
Landau equations, in which it i s  given by diagram a of 
Fig. 1, and is equal to 

By way of estimate we note that aG;(x,, %)/a7 decreases 
rapidly at x, -x,> f ,  therefore the characteristic dis- 
tances in the integral (12) a r e  of the order of 5. We re- 
place all  the quantities in (12) by their values averaged 
over these distances. We obtain 

The Maki-Thomson diagram makes in a three-dimen- 
sional system a contribution of the same order of mag- 
nitude, but with different coefficients. 

In a two-dimensional system, the main contribution 
i s  made by the Maki-Thomson diagram (b of Fig. I) ,  
which is the determined by the distance region Ix, -%I 
" 5. The four-pole K(x, x,, x,, x,) in diagram b can be 
estimated. At distances exceeding L, the value of K 
depends only on the coordinate difference and 

K do dx, dx, dx,  e'q(xl-x~)= 
D d o  - 1 -- 

( D q Z + i  qz 

does not depend on p -PC. Consequently, at distances 
less than L, the dependence of K on the distance does 
not have an additional exponent, so  that the fluctuation 
correction is 

Here T,, is a cutoff at small momenta on account of the 
energy relaxation o r  of the fluctuations of $.6 The 
latter quantity i s  also anomalously large and i s  deter- 
mined in a homogeneous system by the formula 

The significant values of q in this formula a r e  "t-', 
therefore 

4. To determine the magnetic properties of the system 
we consider f irst  the behavior of clusters with small  
dimensions 1< & ( T )  in a magnetic field. In such clusters, 
the modulus of the order parameter i s  constant. To 
estimate the f ree  energy of a small cluster in a mag- 
netic field it is important to ascertain what fraction of 
i ts  volume belongs to rings of a given size. We shall 

denote it by dR,/dl; R, i s  the volume fraction belonging 
to rings with radii larger than 1. In similarity theory, 
R, " I-"" (1 < L). We now obtain upper and lower-bound 
estimates of P ' .  It must be larger than the "transport" 
P t  introduced by Kirkpatrick7, which describes the 
density of the nodes belonging to the "core" of the 
cluster. The core is defined a s  the aggregate (accord- 
ing to Ref. 7) of the nodes that can be interconnected 
by at least two paths. Nodes that do not belong to the 
core certainly do not contribute to the conductivity and 
do not belong to rings - L. Numerically, P t  =0.5 to 0.6 
in a two-dimensional system and 0' = 0.9* 0.1 in a 
three-dimensional one. 

On the other hand, the conductivity of an infinite 
cluster cannot exceed the conductivity due to the matter 
contained in the rings of size L in an infinite cluster. 
The density of matter i s  ( p  -p,)&", consequently 
t -p > P ' > o t .  Numerically 1.0>P1>0.6 in a two-dimen- 
sional system and 1.3 >P' > 0.9 in a three-dimensional 
one. 

If the flux of the magnetic field through the super- 
conducting ring is less than the flux quantum, then in 
the estimate of the energy of this ring the phase can be 
regarded a s  constant, andA can be replaced by HR. 
We express the density of the f ree  energy in the cluster 
in the form of an integral over the dimensions of its 
constituent rings: 

The integrand is proportional to I - ( ~ - ~ + ~ ' ) ' ' ~ ~ - ' .  In a 
two-dimensional percolation structure this exponent i s  
larger than -1, and the integral is  determined by the 
upper limit: 

The condition (16) determines the maximum size of the 
cluster that is superconducting in the given magnetic 
field. The field is  assumed here to be strong enough, 
s o  that this size i s  less than 5 and the fluxH through the 
cluster is less  than the quantum flux. The magnetiza- 
tion of the entire sample i s  

With decreasing field, I, increases until HI; becomes 
equal to 1 o r  1," 5 .  In weaker fields the f ree  energy 
of the cluster per unit volume ceases to depend on the 
cluster size, since rings of size L>H-'" do not contri- 
bute to the integral (15). This means that a super- 
conducting transition of an infinite cluster will take 
place in such magnetic fields, i.e., this field equals to 
,Ha. We estimate now the field in whichH1;" 1, and 
then show that this field is  indeedHc2, i.e., 1,< 5: 

a 

FIG. 1. 
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1, i s  then determined by the expression 
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We divide this equation by the equation for 5: 

We obtain 

In the three-dimensional case the integral in (15) is 
determined by i ts  lower limit and the properties of 
such a system a r e  equivalent to a system of small  
(- L') unconnected spheres whose magnetization in such 
magnetic fields is proportional to H. 

5. When comparing the model with experiment, we 
must verify that Josephson tunneling through the insula- 
tor, which might also increase the role of the fluctua- 
tions, is of no importance in a rea l  system. The effect 
of the tunneling can be described for the case of minute 
granules (of size much less  than .$, i.e., $ i s  constant 
in each granule) by adding to the Hamiltonian (2) the 
term 

The value of (18) should be small  compared with the 
first term in (2). This i s  equivalent to a resistance 
(at high temperatures) due to the contacts between 
granules much lower than the resistance due to tunnel- 
ing through the insulator. This yields for the wall 
thickness the estimate L' >>a [-ln(# -PC)]. It i s  possible 
that a more convenient experimental criterion i s  that 
the sample resistance at high temperatures satisfy the 
relations of percolation theory. 

The system experimentally investigated in Ref. 1 was 
Hg-Xe. The resistance above the superconducting 
transition point was described by an exponent that 
coincided with the prediction of percolation theory for a 
three-dimensional system. In addition, the authors 

observed a decrease of T ,  with approach to the per- 
colation threshold. The dependence of T, on P -#, 
agrees qualitatively with Eq. (6) (exponent t - v =0.8). 
From the data of Ref. 1 we can also estimate A =  5 x  
which is in reasonable agreement with formula (6), the 
latter being more convenient for estimates when recast 
in the form 

A m l l ( p ~ l )  (paL'). 

Here pF is the Fermi momentum and 1 i s  the mean 
f ree  path in the granule. 

Unfortunately, the accuracy of the published experi- 
mental data is  insufficient for a good quantitative com- 
parison. It would be of interest to measure the fluc- 
tuation conductivity and the heat capacity of the same 
sample and compare them with (11) and (13). For such 
measurements, a stronger restriction on p -PC is need- 
ed than the condition p -PC << 1 which i s  sufficient for  
the applicability of (6). It is necessary to have 5 << L, 
i.e., L'(p -p,)-'>> 5(7), or,  expressed in terms of ex- 
perimentally measurable quantities: 
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