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Electron localization with disorder in the phases of the transport integrals is considered in the Anderson 
model. It is shown with the aid of Anderson's method that a disorder of this type leads in the general case to 
an effective decrease of the lattice connectivity constant, and contributes to the localization. Total localization 
of the band on account of the phase disorder alone, however, is impossible. The influence of an external 
magnetic field and the positions of the mobility edge is considered (neglecting the spin effects). It is shown that 
the result of the action of the magnetic field is determined by the distribution function of the areas of the self- 
avoiding walks on the lattice. In the genreal case, the magnetic field contributes to the localization, and its 
action is similar to the effect of random phases of the transport integrals. The results are valid in the region of 
sufficiently strong fields, in which the effects connected with the Langer-Neal diagrams are suppressed. 

PACS numbers: 71.50. + t 

INTRODUCTION 

Interest in the localization of electrons in disordered 
systems has increased This is due both to  
the importance of this phenomenon to the theory of dis- 
ordered systems, and to  the reports of new experi- 
ments in which the localization manifests itself in 
unusual manner.' At the same time, the level of the 
theoretical understanding of the localization is still 
too low; this is manifest, in particular, in the fact that 
the roles of different external fields (primarily mag- 
netic) and of different types of disorder have not yet 
been investigated. Until recently most papers were 
devoted to the study of localization in the Anderson 

with diagonal (site) disorder of the electron 
in the lattice. What was mainly discussed was the 
critical disorder that leads to  complete localization 
of all states in a band. Only recently has serious in- 
terest  been evinced in the role of off-diagonal dis- 
order (transport integrals), and this led immediately 
to conclusions concerning the unusual role of this dis- 
order in the phenomenon considered, especially to the 
conclusion that complete localization in a band on 
account of only a disorder of this type is impossible.' 
Finally, a paper by Abrahams el al.7 increased sharply 
the interest in the critical behavior at the mobility edge 
and in the interesting predictions made concerning 
localization in two-dimensional (see the 
revie$). 

In this paper we consider the localization phenomenon 
in a specific model of off-diagonal disorder (the random- 
phase model), whose interesting distinguishing feature 
is the presence of local gauge invariance. Generaliza- 
tion of the results obtained with this model make it 
possible to examine the effect of an external magnetic 
field in the positions of the mobility edges in terms of i ts  
influence on the orbital motion (neglecting spin effects). 
The analysis is carried out within the framework of 
Anderson's standard approach.4-' The relation between 
our results and those obtained within the framework of 
another approachg.10 will be discussed in the Conclusion. 

1. LOCAL GAUGE INVARIANCE IN THE 
ANDERSON MODEL 

We consider the Hamiltonian of the Anderson model 

where a; and a, a re  the electron creation and annihila- 
tionoperatorson thei-thand j-thlatticesites. The ener- 
gies E ,  at the si tes a r e  assumed to be random, and 
their distribution is specified in the usual form 

The transport integrals J,,, which a r e  assumed do differ 
from zero only between nearest neighbors, also take on 
random values. 

We consider a specific disorder model, in which the 
random quantity is the phase rather than the modulus of 
the transport integral, a s  considered by Antoniou.and 
~ c o n o m o u . ~  We thus assume ( the random-phase model) 

l U = I  e ~ p ( i @ , ~ )  -JUu, 

Ju-Jji, @ij=-O,t, 
(3) 

where a,, is a random quantity whose distribution in 
the lattice is assumed to be factorizable in the bonds: 

and we consider for P(%,,) different cases: 

etc. Case (7) corresponds to random introduction (with 
density c) of "antiferromagnetic" bonds : 
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It is easily seen that the Anderson Hamiltonian (1) has 
local gauge symmetry. It is invariant to a transforma- 
tion of the type 

{GI: ai+-+exp(lQ;)af ,  aj+exp(-imj)aj,  

Jij+exp(-iQi) Jij exp( lQj ) .  
(10) 

This  the analog of the local gauge transformation in 
the  Yang-Mills theory on a lattice, a transformation 
actively used of late in the theory of random spin sys-  
t ems  (spin glasses)."." This  invariance is known to  
lead to  a number of nontrivial conclusions for  magnetic 
systems,"'12 some of which can be directly crossed over 
a l so  t o  the model considered. In  particular, if in (3) 

where a, and a, a r e  random quantities, then this dis- 
order is tr ivial  and can be eliminated by a suitable local 
gauge transformation. This  c rosses  over t o  the case (8) 
if A,, =cicj ,  where c, = i1  in random fashion (the analog 
of the Mattis model in spin-glass theory). Interest 
attaches t o  the nontrivial (gauge-invarient) disorder 
determined"." by distribution of the frustrations on the 
considered lattice. The  definition of the frustration" 
(or of the frustration angle1') can be formulated in the 
considered electronic model in complete analogy with 
the definitions in the theory of random spin systems. 
The  frustration distributions investigated in spin lat- 
t i c e ~ ' ~ ~ ' ~  can tu rn  out t o  be useful also in localization 
theory. 

Proceeding to  consideration of the electron Green's 
function in the Anderson lattice, we note that the single- 
electron Green's function 

(12) 

is not gauge- invar iant : 

The  only gauge invariant element in this  function is  
G,,(E), which is diagonal in the  s i tes  and is cus- 
tomarily used in the study of localization in the stan- 
dard Anderson appr~ach.~' '  It is obvious from the fore- 
going that in the random-phase model the averaged 
single-electron Green's function is diagonal in the 
s i te  indices: 

a reflection of the vanishing of the gauge-noninvariant 
off-diagonal elements upon averaging over the gauge- 
invariant distribution of the frustrations. It is there-  
fore meaningless t o  use (14) for  the investigation of 
the localization. For the averaged two-particle Green's 
function we have 

A similar  situation (in another model) was dealt with in 
Refs. 14 and 15. 

We can introduce the gauge-invariant electron Green's 
functions 

9,1r(E)=(Olai An U ~ ~ ~ ~ + I O ) ,  
E-H 

where II,Uk, determines the product of the elements 

U,, from (3) [or  A,, from (9)] along an  arb i t ra ry  walk 
r that connects the s i t e s  i and j of the lattice. Expres-  
s ion (16) is obviously gauge invariant, and (14) does not 
hold for  it. Corre la tors  of the type (16) a r e  therefore 
capable of containing definite information on the local- 
ization, but they have an  explicit dependence on the 
walk r ,  and their  behavior after  the averaging has not 
been investigated. 

At the s ame  t ime,  a s  noted above, Anderson's stan- 
dard approach4-' is perfectly suited for the analysis of 
problems of this  type, in view of the local gauge in- 
variance of G ,  ,(E). 

2. LOCALIZATION IN THE RANDOM PHASE MODEL 

Following Anderson's method, we investigate the 
convergence of the renormalized perturbation-theory 
s e r i e s  for  the self-energy part A,(E) that enters  in the 
matrix element, diagonal in the si tes ,  of the non- 
averaged Green's function: 

where A:"."(E) is  determined by a s e r i e s  such a s  (18), 
but corresponding to  the Hamiltonian ( I ) ,  in which we 
put E, = E, = E, = . . . = -3.' We have excluded f rom (18) the 
repeated indices of the s i t e s ,  i.e., in (N + 1)-st order  in 
J,, the summation proceeds along a self-avoiding walk 
r, consisting of N steps on the lattice, s tart ing with the 
i- th s i te  and returning to the i-th s i te  [ ~ i g .  l(a)]. Multi- 
ple scattering processes { ~ i g .  l(b)] with return a r e  
implicitly taken into account here  by introducing 
h:jk. . (E) in the denominators of .5 and it is this  
which allows us t o  consider self-avoiding walks on the 
lattice. The  representation (8) is exact. An electron of 
energy E is localized if the s e r i e s  A,(E) converges in 
the sense of convergence with respect  t o  pr~babi l i ty .~ . '  

T o  investigate the convergence of the s e r i e s  ( la ) ,  we 
consider the modulus of the t e r m  of (N + 1)-st order  in 
Jfl: 

r~ 

where denotes summation over self-avoiding walks 
consisting of N steps start ing and ending a t  the s i te  i, 
and T,,(E) is the contribution of one such walk. Accord- 
ing to  Economou and C ~ h e n , ~  it can be shown that 

I A ! ~ )  ( E )  I =LW(E)  
(20) - I x J e ~ p ( i l D , ~ ) C ~ ~ ( E ) J e r p  (iQjk)G."(E) . . . Jexp (a,,) 1, 

m 

where the angle brackets denote averaging over the dia- 
gonal disorder (2). The  quantity L ~ ( E )  is obviously 
gauge-invariant, since the walks rN on the lattice a r e  
closed. Then L(E)< 1 is the condition for  the conver- 
gence of the s e r i e s  (18) (Ref. 5) and can be regarded as 
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FIG. I .  

a criterion of the localization. The delocalized states 
correspond to the condition L(E) > 1. 

Expression (21) is too complicated for actual calcula- 
tions, owing to  the need for taking the contribution 
A:j. . . '(E) into account. There a r e  several  ways of 

getting around this but we shall use the 
simplest one-we neglect completely the contributions 
of these quantities5*"? 

G:''.' ( E )  = exp {-(lnl E-E,I >). (22) 

This approximation facilitates all the calculations, and 
its result for the positions of the mobility edges and 
for the critical disorder do not differ greatly from those 
of the more accurate a n a l y ~ i s . ~ . ~ ~ ' ~  It is therefore 
usually assumed that a more consistent account of . . ' ( E )  in (21) leads simply to a quantitative refine- 

ment of the localization condition5 (see, however, the 
discussion in the Conclusion). 

We then have 

where 

is the phase advance along the walk rN. Equation (24) 
has only N terms, CrN contains -KN terms,  where K is 
the so-called lattice connectivity constant 18: 

1 
In K-  lim -In ZN, 

N.., N 
where Z, is the total number of self-avoiding walks of 
N steps. 

We consider now 

x,= E exp ( i Q r N ) .  

If all the phase shifts in (24) a r e  zero (or fixed), then 
obviously I XN ( - KN and we obtain correspondingly the 
usual answer5.'" 

LN(E)=JN+'KN exp(-N(ln [E-E,I )), 

Here a! = Z / K  (2 is the number of nearest neighbors) 
is a correction factor5 that makes it possible to  des- 
cribe correctly the limit of the regular lattice. The 
condition ~ ( 0 )  = 1 then yields for the critical disorder 
need for complete localization 

In the random phase model, I x,I is the length of the 
walk on a plane as a result of random KN steps of unit 
length. The most substantial effect is reached for fully 
random phases, when a,, have a distribution (6), with 

= 2 m  (n = 1, 2, ... ). We a r e  then dealing with Brownian 
motion on a plane, and 1 XN 1 has the Rayleigh distribu- 
tionlg a0 

The most probable value is IxNI - ((x, (2)112 -KIT". Then 
L N ( E )  =JN+iKN1z exp{-N< In (E-E,I )), 

L ( E )  =aK'" exp F ( E ,  WlJ) . (3 1) 

The stochastization of the phases leads thus to  a de- 
crease  of the effective connectivity constant of the lattice 
The condition for complete localization when the phases 
a r e  completely random takes then the form 

It is obvious that 

(W/J)'fm< ( W / l )  =, 

i.e., the localization condition is less stringent. 

In the absence of diagonal disorder, E, =E,  for all  
L. Then, if nondiagonal disorder is also absent, we 
have5 

J 
L ( E )  -aK- 

J 
IE-EoI -'IE--E,I' (33) 

and when the phases a re  completely randomized 
J L ( E )  - a K ' h  = --. Z J  

IE-EoI R" IE-E,I 

Then at L(E) > 1 we obtain the width of the band of 
extended states in the model of completely random 
phases: 

B R P M - K - ' " B ,  
.rt (35) 

where B=2ZJ is the usual width of the band in the 
regular case. 

Thus, in the absence of diagonal disorder complete 
localization in the enitre band is impossible, and a 
region of extended states,  of widths B::~, always re- 
mains around the center of the band. Table I shows the 
values of K and K-lF for different lattices.'' It is seen 
that the phase disorder can localize in all  cases ap- 
proximately to  4 of the initial band. 

In the general case, obviously, K~~ S ( ~ " 1  S K ~ .  
The problem of calculating the statistical distribution 
of sums of the type (25) was investigated in detail in 
connection with various problems of statistical radio 
e ~ ~ g i n e e r i n g . ' ~ - ~ ~  This distribution is relatively easy 
t o  obtain when the distribution of the a, is such that 
the central limit theorem is satisfied.21J2 In particular, 
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TABLEI. . 

FIG. 2 .  
the so-called Nakagami distribution." Here Im(x) is a 
modified Bessel  function of order  m ,  co = 1, and &,=2 
a t  m+O, 

Lattice 

T M  
Quldratic 
Diamond 
PC 
BCC 

where P(arN) is the distribution function of ary. It is 
easily seen  here  thatz1"' 

K ~ I *  

0.4908 
0.6156 
0.5896 
0.4621 
0.3914 
0.3157 

i.e., it is determined completely by the mean values a! 
and p and by the variances s, and s, from (38). The 
Rayleigh distribution (29) is obtained from (36) at  a =,4 
= 0 and s, = s, = KN/2. 

Z 

6 
4 
4 
6 
8 

12 

In K 

1.4235 
0.9704 
1.0571 
1.5438 
1.8762 
2.3061 

We consider now several  examples. We begin with 
the Gaussian case (5). It is then easily seen that 

K 

41515 
2.6390 
2.878 
48826 
6.5288 

10.035 

From (38) and (39) we easily obtain 

In the general case we get from (23) 

Z ( E )  = a ~  exp S ( E ,  w/J),  (43) 

where the effective connectivity constant %is defined 
a s  

2- lim < lXNIa>"N. 
N-- 

For the case (40)-(42) it is correspondingly easy to  
show that 

K exp ( - a z / % ) ,  0% ln K 
I= {k,,, ( D 5 l n K  ' (45) 

The  "effective connectivity" of the lattice as a function 
of the phase disorder is shown in Fig. 2. x f i r s t  increa- 
s e s  with increasing a', and at  > 1nK the phases be- 
come completely randomized and x t a k e s  the asymp- 
totic form K'". 

We consider now the case  of the distribution (6) with 
9 + 2 m  (n = 1,2 , .  . . ). Then, obviously, 

We then obtain 

Thus, in this  case there  is  not even partial randomiza- 
tion of the phases. A nondiagonal disorder of this type 
does not influence the localization. It is seen  from (47) 
that a t  = nn (N = 1,2 , .  . . ) we return to the full stochas- 
tization considered above. 

The  cases (7)-(9) can be treated similarly. Let n be 
the number of negative bonds along a given walk r,. 
The probability of realization of such a bond distribution 
is given by the binomial distribution 

PN (nrN) = ? : N ~ n r ~  (1 - c P - ~ ~ N .  (48) 

Using the limiting behavior of (48) a s  N -  .o and the fact 
that in this  case arN =inrNn, we obtain directly 

The appearance of two t e r m s  in (49) is due to the fact 
that the walk r, can follow two circuit directions, and 
the phase advance is inrNn by virtue of a,, =-9,, (3). 
From (49) we get 

where cf, is obtained by solving the equation c(1- c ) ~ ?  
= 1nK. 

Thus, the inclusion of a sufficient number of anti- 
ferromagnetic bonds (with c > c:) leads to complete 
stochastization of the phases and brings %to  the level 
K"~. The  values of cf, for different lattices a r e  given 
in Table 11. We note that the cri t ical  concentrations 
obtained in this  manner a r e  very close t o  the cri t ical  
antiferromagnetic-bond concentrations a t  which fer ro-  
magnetism vanishes in the corresponding Ising lat- 
t i ~ e s . ~ ' ' ~  

Lattice --- 1 iriangula~ / Quadratic 1 Iliamond 1 FC I BCC I FCC 

n* I 0.1748 I O.llO6 1 0.4220 1 O.t%i 1 0.2445 / 0.3722 
cz* 0.8252 0.8894 0.8780 0.8059 0.7455 0.6278 
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3. LOCALIZATION IN A MAGNETIC FIELD 

Application of a constant external magnetic field H 
adds, a s  is well known, an additional phase factor in the 
transport integral J,, (the Peierls 

Jijn=exp (-icD,,) I,,, 

where R, is the radius vector that determines the posi- 
tion of the i-th site in the lattice. The main property of 
these factors is2' that the sum along a closed walk rN 
on the lattice is gauge-invariant and is equal to the flux 
of the magnetic field H through the a rea  SrN enclosed by 
the contour rN measured in units of the magnetic-flux 
quantum Go =Rc/e: 

The result (51) is valid in not too strong fields, for 
which one can neglect the deformation of the atomic 
wave functions in the magnetic field (this changes also 
the modulus J,,). 

We see  now that the influence of the magnetic field on 
the localization is similar to the influence, considered 
above, of the random phases J,,. It is determined com- 
pletely by the statistics of the area SrN of the self- 
avoiding walks on the lattice. T o  my knowledge, the 
problem of the distribution of the areas of the self- 
avoiding paths has not been considered before. It ap- 
pears that reliable results can be obtained here only by 
computer simulation. Nonetheless, regardless of the 
statistics of SrN, it is clear from the foregoing that the 
appearance of the phase factors GrN (52) in (23) can 
only improve the convergence of the Anderson se r i e s  
(or at least have no effect on it), and decrease effective- 
ly the connectivity constant of the lattice. Therefore, 
neglecting spin effects (their influeilce on the hopping 
conductivity was considered recently by Fukuyama and 
~osida"),  the magnetic field can only promote localiza- 
tion in this approximation. We present below a simple 
qualitative analysis aimed at revealing the principal 
relations and estimating the scale of the phenomena. 

It is known from the scaling theory of self-avoiding 
that the mean squared dimension of @ r N  is  

where a is the lattice constant and v is the critical ex- 
ponent of the correlation length. For a qualitative treat- 
ment we can therefore assume 

as  an estimate of the average a rea  of I?,. 

In the two-dimensional case, with the magnetic field 
perpendicular to  the plane of the system, it is clear 
that the values of (PrN (52) a re  distributed about 

(The two signs a re  again connected with the two pos- 
sible circuit directions of GrN). The distribution func- 
tion G,, can then be simulated by two Gaussian peaks: 

1 
P(QrN)=------ exp - 

2 ) 1 G a N  [ [ 
where 

an'-f (N) H2a41cDoz 

is the variance of this distribution. It is difficult at 
present to draw any definite conclusions concerning the 
behavior off  (N), other than it apparently increases like 
a certain power of N .  In addition, we assume that the 
distributions of the areas  (i.e., and of G, ) of the 

P different r, a r e  independent, an assumption that is of 
course rather doubtful when the statistics of self- 
avoiding walks is considered. 

From the foregoing analysis of the random-phase 
model we then obtain directly for the effective connec- 
tivity constant in a magnetic field the expression 

x= lim {PNe-"' cost Fo+KN [l-e-"* COS~-FO])"~~ 
N-- 

= { K; aN2~N1-dffa4/uJoz. 
K"; oN2-N1+'Hla'/cD: 6>0. 

(57) 

Only in the case $, - ~ E f a ~ / G i  do we obtain 
K exp(-const Fa4/@:) ; const In K 

constffa4/cD~>ln K' (58) 

i.e., a behavior of the type shown in Fig. 2. At ~ a '  
-Go, the phases a r e  thus completely randomized. The 
behavior (57a), i.e., the absence of an influence of the 
field on the localization, is also perfectly feasible. The 
case (57b) has low probability. 

We note that in the case (58) the effect saturates in 
fieldsHa2-@,, i.e., H" lo6 Gat a -  3 A .  InthelimitHa2 
<< Go it follows from (58) that 

i.e., the mobility thresholds a r e  shifted inside the band 
in proportion t o  the square of the field. 

In the three-dimensional case we again assume fac- 
torization of the distribution function 8 ,, with respect 
t o  various r,. In addition we assume also complete 
randomization of the orientations of S,, in space, s o  
that 

P (S,,) =P (Sr,")P (SrNY)p(s,*). 
Simulating each of the factors in (60) by a simple 

(60) 

Gaussian distribution (with zero mean value), we obtain 
fo r  the distribution function of the flux through the con- 
tour rN 

where for uN we again assume a behavior of the type 
(56). In the three-dimensional case we then obtain the 
results (57)-(59). 

Another possible approximation for P(GrN) is obtained 
if the variance of SrN is neglected. It can then be as- 
sumed that al l  the r, have a fixed area  of the order of 
(54), but the directions of S,, a r e  random in space. We 
obtain readily 

( @o/2H<ISrNI>; I@rNltH<ISrN 1) 
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and for the effective connectivity we get a result of the 
type of (47), i.e., the magnetic field does not affect the 
localization. It seems to me that the most probable is 
a behavior of the type (58), (59), but the final solution of 
the problem depends on the behavior of the variance o, 
(56). 

CONCLUSION 

In conclusion, we discuss the relation between the 
results above and the deductions of the scaling theory 
of and the predictions concerning the 
influence of the magnetic It was shown in Ref. 
7 that in two-dimensional systems an arbitrarily small  
disorder suffices for complete localization of a l l  the 
states in a band. Although this conclusion met with cer- 
tain objections (see the review3), it is confirmed by 
simple perturbation-theory calculations in the limit of 
weak d i s ~ r d e r , ~ "  when 1>> a, where 1 is the mean free 
path due to elastic scattering. Analogous calcula- 
t i o n ~ ~ . ' ~  have demonstrated the strong influence of a 
magnetic field on two-dimensional localization, viz., 
a negative magnetoresistance se ts  in, i.e., the field 
destroys the localization. These results ra ise  the 
question of the physical meaning of the two dimensional 
mobility edges obtained in Anderson's standard ap- 
p r o a ~ h , ~ . ~  a s  well as  of the meaning of the conclusion 
arrived at above, that the magnetic field can only 
promote localization (or, in the extreme case, have no 
influence on it). 

We note first  that despite the complete localization, 
two-dimensional thresholds retain according to Ref. 7 a 
certain definite physical meaning of the threshold ener- 
gies that separate the quasimetallic energy region in 
two-dimensional systems from the dielectric region. 
When the Fermi energy passes through these threshold, 
a rather abrupt transition should take from quasimetal- 
l ic to  hopping cond~ctivity.~ The localization effects in 
the "quasimetallic" region a r e  c ~ n n e c t e d ~ ' ~  with the 
singular behavior of a special class of per-  
turbation-theory diagrams (the Langer-Neal graphs,30). 
In the standard Anderson approachgs5 the analog of such 
processes a r e  apparently multiple scattering with re-  
turn [ ~ i g .  l(b)], which contribute to the self-energy 
parts A:''.. . ( E ) .  Neglect of such contribution or in- 
sufficient allowance for them in the usual 
does not lead to  weak (logarithmic) effects of complete 
localization in the quasimetallic region of a two-dimen- 
sional system. 

At the same time, the contribution of the Langer- 
Neal graphs is quite sensitive to the magnetic field 
(and also to  scattering by magnetic impurities).g810 
A rather weak field suffices to exclude such scattering 
processes, i.e., to destroy the localization in the quasi- 
metallic region, and it is this which leadsgo10 to the 
effect of negative magnetoresistance. However, even 
if the Langer-Neal processes a r e  completely neglected, 
the ordinary Anderson localization, which se ts  in at 
1 -a, is possible when the disorder increases in the 
system. In a two-dimensional zone of a system located 
in a magnetic field, at sufficiently strong disorder (and 

field), there exist ordinary mobility edges, whose 
behavior was in f a d  considered above. 

It is clear from the foregoing that the results of Refs. 
9 and 10 and of the present study pertain to  different 
ranges of magnetic-field variation. In particular, if 
the critical-field estimates of Refs. 9-10 a r e  rewritten 
in our notation, we find that the negative-magnetoresis- 
tance effect saturates (-lnH) in fields Hd/@, - (a/l)' at 
T =0, or in fields Hd/@, - 2/11 in at T #  0, where 1, is 
the mean free path for inelastic-scattering processes. 
By virtue of the condition a<< I<< I,, (T- 0) used in Refs. 
9 and 10, it is seen that ~h << a,. Typical values of the 
critical field in Refs. 9 and 10 a r e  of the order of 10- 
100 G. At the same time, the effects discussed above 
have a characteristic scale H 2  s @, and saturate at 
~h -ao,  i.e., they refer to fields H - 10'- lo6 G, where 
they should lead to positive magnetoresistance [this 
can occur earl ier  in the case of the behavior (57b)l. We 
note that positive-magnetoresistance effects a r e  im- 
plicitly contained in Refs. 9 and 10 via the magnetic- 
field dependence of the classical diffusion coefficient. 

In conclusion, the author is deeyly grateful to M. V. 
Medvedev and D. E. Khmel'nitskii for valuable discus- 
sions, and B. I. Shklovskii for interest in the work. 
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