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The appearance of turbulence in cylindrical Couette flow is experimentally and theoretically investigated. The 
loss of the stability of the Taylor vortices leads to the appearance of strictly periodic oscillations in the flow. It 
is shown that as the Reynolds number increases these oscillations acquire, as a result of the destruction of the 
spatial coherence, a deep slow modulation that subsequently becomes chaotic. A system of ordinary 
differential equations describing the dynamics of the interacting vortices at this stage is proposed. The 
behavior of the model in a numerical experiment qualitatively corresponds to the change of flow regimes 
observed in a natural experiment. 

PACS numbers: 47.25. - c, 47.20. + m 

INTRODUCTION 

It can now be considered to be generally acknowledged 
that the transition from laminar flow of a liquid to tur- 
bulent flow can be described with the aid of a finite sys- 
tem of ordinary differential equations. This system i s  
usually obtained by reducing the Navier-Stokes equa- 
tions by the method of approximating functions (i. e. , 
by Galerkin's method). In such an approach, the onset 
of turbulence i s  related1*' to the formation of a stoch- 
astic attractor in the phase space of this multidimen- 
sional dynamical system. Normally, the stochastic 
attractor3 i s  a closed attracting set of trajectories, 
which, however, disperse everywhere exponentially, 
so  that a trajectory taken separately is forced to behave 
highly intricately-in the str ict  sense, chaotically. But 
the study of the question of the relationship between the 
stochastic attractors and the onset of turbulence is  only 
beginning. 

The first steps in this direction have been taken in the 
study of extremely simple convection flows. It is  shown 
in Ref. 4 that the initial stage of the development of 
stochasticity in a convection loop is  described by the 
well-known Lorenz system of three differential equa- 
tions. Sinai3 and Lyubimov et a l .  have used for the 
description of thermoconvection in a plane layer (i. e ,  
in a Haley-Shaw cell) eight equations that reveal stoch- 
astic behavior in a numerical simulation. The num- 
ber of usable equations increases sharply when we at- 
tempt to describe more complex flows. 7 * 8  This is  due 
to the fact that an almost arbitrarily chosen basis of ap- 
proximating functions is usually quite different from 
the eigenbasis even for the simplest regimes that a r i se  
not far beyond the instability threshold. This leads to 
an unwarrantably large number of equations, and makes 

. the analysis of their solutions extremely difficult. But 
the truncation of the formal Galerkin.series can lead 
to a change in the subtle characteristics of the attractor 
structure of the initial multidimensional system: the 
stochastic attractor may be converted into a complex 
limit cycle. Further truncation of the system may con- 
vert the cycle into another stochastic attractor, so  that 
it remains unclear whether the attractors constructed 
in this way bear a direct relation to the problem of the 
development of turbulence. Therefore, the first  ques- 

tion that ar ises  is  this: How many, and precisely 
which, equations a r e  necessary for a reasonably accur- 
ate description of specific flows a t  different Reynolds 
numbers ? 

It may be pointed out here that in a number of prob- 
lems with Reynolds numbers characterizing the transi- 
tion from the laminar regime to the developed-turbul- 
ence regime the main energy of the liquid is  concen- 
trated in narrow frequency regions of the power spec- 
trum. Therefore, the velocity v ( r , t )  can be represent- 
ed in the form 

v(r, 1 )  =Re [ Z l , ( r .  t )  erp ( iu j )  ] , (1) 
i 

where, in contrast to v(r ,  t) ,  the "complex mode en- 
velopes" A,(r, t )  a r e  slowly varying functions of the time 
withcharacteristic time scales of the order of the inverse 
line width Aw;'. We can, in some small  domain of variation 
of the Reynolds number, neglect the variation of the spatial 
structure of the "fast" w, modes, and, assuming that A,(r, t )  
=A,(t)fj(r), write down phenomenological equations for 
A,(t), retaining in them only the resonance terms,  and 
taking no interest in the specific spatial structure of 
f,(r). We can call the quantities Aj(t) thus constructed 
effective phase variables, and formulate in such terms 
a number of questions for experiment: What i s  the di- 
mensionality of the effective phase space of the given 
hydrodynamic flow in the specific narrow range of 
Reynolds numbers? What i s  the character of the phase 
trajectory a s  t - a, i .e . ,  what is  the structure of the 
attractor? How does it vary with increasing Reynolds 
number? And, finally, what i s  the relationship be- 
tween the experimentally observed attractor structure 
and the structure that a r i ses  in a numerical modeling 
of the phenomenological equations? 

In the present paper we study these questions in the 
particular case of the transition to turbulence in circu- 
lar Couette flow. The hydrodynamic unit of the setupg 
(see also the Appendix) consisted of a stationary cylin- 
drical container of diameter d2= 55 mm and height h 
= 305 mm, in which a rod of diameter d, = 35 mm rot- 
ated. The azimuthal velocity component v ,  was mea- 
sured with a laser Doppler velocimeter (LDVM) at  a 
fixed point whose vertical coordinate could be varied 
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within the limits from 80 to 120 mm from the top of the 
cylinders, while the radial coordinate was chosen to be 
that of the middle of the gap. To begin with, we shall 
in 8 1  briefly describe the process of Taylor-vortex for- 
mation, and discuss the evolution of the power spectrum 
in a broad range of Reynolds numbers (from lo2 to lo4) 
in order to obtain information about the order of ap- 
pearance, and the number of, the "fast" motions. In 
02 we present more detailed experimental data in the 
range of Reynolds numbers from 1000 to 1200, in which 
the coherence of the flexural vibrations i s  destroyed and 
the flow of the liquid becomes stochastic. Further, in 
83 we propose a phenomenological system of equations, 
(3,4), for the flexure amplitudes in the Taylor-vortex 
pairs, and study the analytically simplest steady states 
of the system and their stability. In 04 we present pre- 
liminary results of a numerical simulation of this sys- 
tem. This simulation revealsa  wide variety of attrac- 
tors,  including quite complex ones, and the sequence of 
bifurcations for some values of the parameters coin- 
cides with the experimentally observed sequence. In 
05 we carry out a numerical investigation of the sim- 
plest statistical properties of the trajectories on a com- 
plex attractor, and estimate its dimensionality. 

$1. PRELIMINARY EXPERIMENTS 

1. Appearance of Taylor vortices 

As i s  well known,'' there should form in almost any 
real circular Couette flow, a s  the Reynolds number 
adiabaticajly increases, a strictly fixed "optimal" 
number, No, of Taylor vortices. This state is  created 
not through bifurcation, but smoothly from the state 
with Re=  0, although the amplitude of this motion be- 
comes appreciable only upon the attainment of a Rey- 
nolds number close to the critical Reynolds number 
(Re,) of an idealized infinitely long system, and sub- 
sequently varies according to the square root law 
[-(Re - Re, )'"] for normal bifurcation. 

In our setup the Taylor vortices first become obser- 
vable a t  Re = 74 2. We determine the Reynolds num- 
ber from the expression Re = wmdl(d2 - d1)/4v, where 
om is  the angular velocity of the inner cylinder and v 
is  the coefficient of kinematic viscosity. To obtain an 
optimal unique state, we employed the following pro- 
cedure: a t  Re = 65 (which for water corresponds to a 
rotation period T 5 20 sec a t  t = 24 "C) we waited for one 
hour and then increased the Reynolds number according 
to a linear law to 85 over a period of 5 hours. In the 
process, in nine out of ten cases the state with No 
= 30 was created. Other stable steady states with 22 
to 36 vortices could be realized in the setup with rough- 
er acceleration regimes. ' 

2. Evolution of the power spectrum 

As the Re is increased, the secondary steady states 
with different 10 in our setup remain stable right up to 
high supercriticalities: Re -- (6-13)Rec , s o  that up to 
this moment the measured quantity v,(t)=const. Furth- 
er increase of the Re leads to the excitation of nonsta- 
tionary flow regimes. The series of power spectra 
J(w) measured for a number of successively increasing 

FIG. 1. Evolution of the velocity power spectrum J( cd ) for 
flow with 30 Taylor vortices. The vertical lines indicate the 
harmonics of the rotation frequency of the inner cylinder; the 
numbers, the frequency in Hertz. The use of the "Henning 
window" gives a 3/512 frequency resolution for the entire 
scale. 

Re values shows that the representation (1) i s  indeed 
valid at the initial stage of the turbulization. The pow- 
e r  spectrum was computed according to the expression 

where v, i s  the Fourier transform of v,(t) and (. . . ) 
denotes averaging over the successive segments of the 
v,(t) realization. The detailed evolution of the spec- 
trum for flows with N equal to 28, 29, and 30 is,dis- 
cussed in Ref. 11. Here we restrict  ourselves to the 
description of the evolution of the fro= 30 optimal state 
(Fig. 1). We can follow the succession of bifurcations 
leading to the excitation of new modes of motion. Thus, 
at Re = 1000 there a re  excited flexural vibrations of the 
vortices (6 bends along the circumference of a vortex), 
and a sharp peak appears in the power spectrum a t  the 
frequency w,= 1. 93wm. The relative width of this peak 
is equal to at a level of 10" from the maximum. 

In the Re = 1040-1140 region we observed a number of 
bifurcations leading to the appearance of a fine struc- 
ture in the o, line and a slight broadening of the line 
(Aw$w, 5 a t  Re = 1040). A low-frequency motion 
with characteristic times Aw,' then arises.  Later, in 
the range Re = 1200 - 1300, there ar ise  successively 
motions a t  the incommensurable frequencies w, 
= 0.550, and w, = 0. 95w, and their combination harmon- 
ics. Subsequently, the widths of the peaks gradually 
become comparable to their spacing. The spectrum no 
longer contains well pronounced peaks at Re = 1900. 
Upon further increase of Re, sharp peaks appear in the 
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TABLE I. Bifurcation parameter values for the first 
reconstructions of Couette flow. 

Data of Refs. 

1 l 3  

Number of generated flexures 6 4 
Stability region for the azimuthal 1 0 . 0 2  I & 1 14 
waves (Re -Re, )/Re, 

Cylinder heightlgap 
Ratio of gap to radius of inner 
cylinder 
Appearance of Taylor vortiw 
Number of Taylor vortices 
A m a n c e  of azimuthal waves 

continuous-spectrum background. Then this system of 
secondary peaks a re  destroyed in the same way a s  the 
primary system. At very high Re (the bottom figure) 
the spectrum turns out to be continuous, but even in this 
case remnants of the steady-state spatial structure can 
be observed, although in the temporal aspect the flow 
has already been highly turbulized. 

It should be noted that the way to turbulence in Coutte- 
Taylor flow (the sequence of bifurcation Reynolds num- 
bers, the type of motions arising then, the character 
of the peak broadening in the power spectrum, etc. ) 
depends not only on the geometric dimensions of the cy- 
linders and the boundary conditions at the ends, but 
also on the number of vortices that ar ise  in the same 
setup (Table I). But the rough, qualitative aspects of 
the pattern of transition to turbulence a r e  on the whole 
general." Among them is,  for example, the fact that, 
as the Re increases, bifurcations occur which lead to 
the appearance of sharp peaks in the spectrum, to the 
broadening of the spectral peaks appearing earlier,  a s  
well a s  to the appearance of peaks of finite width. Also 
fairly general is the presence, strongly manifested in 
Couette flow, of several metastable flows in the inter- 
mediate range of Re numbers. All this points to the 
fact that a Couette flow with a rotating internal cylinder 
i s  a convenient model for the study of a number of gen- 
eral  qualitative characteristics of a smooth, somewhat 
phased regime of transition to turbulence. 

30 
0.57 

Re,=74*2 
3 0  28 

Re/Re,=i3 I ReiRe,=6.5 

52. DESTRUCTION OF THE COHERENCE OF THE 
FLEXURAL VIBRATIONS 

20 
0.14 

Re,=120 
17 

Re/Re,=l.3 

As has already been noted, a t  Re > 1040, the w, line 
of the power spectrum broadens. We shall show that 
this phenomenon has a fundamentally important char- 
acter,  and indicates a transition to stochastic (unpre- 
dictable at large times) flow. In our setup, these pro- 
cesses have quite a slow character, and we investigat- 
ed them using the following procedure. After the pro- 
cess of growing the optimal Taylor vortices, the Re 
number was smoothly increased at a rate of -200/h to 
the supercritical value Re = 1050 - 1100. After 10-20 
minutes vibrations with frequency w, = 1.6 Hz were ex- 
cited in the flow. Then the measuring volume was 
moved along the z axis to the place where the signal 
was strongest (see Ref. 111, and the Re number was 
decreased in small steps ( m e  z20/h) until the state with 
A(t) = const was attained. Then we decreased the Re 
in even smaller steps ( m e  = 5-10), and a t  each step 

f ,  Hz 

FIG. 2. Fine structure of the w6-peak evolution. The vertical 
line indicates the frequency ZW,. 

waited for the establishment of the steady-state ampli- 
tude (0.5-2 hours, depending on the supercriticality), 
after which the observable signal was recorded with the 
aid of a system for the collection and display of data. l2 
A typical realization length for the estimation of the 
amplitude was 1024 sec, with 16 counts in a second 
(8192 counts), while for the analysis of the character of 
the signal this length reached 256 thousand counts. 

After getting fairly close to the threshold from above, 
we again increased the Re number in steps, and, after 
waiting a t  each step till the transient processes were 
over (1-1.5 h), made a record of the realization. The 
application to these realizations of the traditional tech- 
niques of spectral analysis with high frequency resolu- 
tion yields the result shown in Fig. 2, from which it can 
be seen that, above Re = 1100, the spectral line acquires 
a complex fine structure a s  a result of the deviation of 
the observed signal from monoharmonic. A much 
greater amount of information about the flow can be ob- 
tained by using the envelope representation (I), and 

FIG. 3. Time dependences of the w6-peak intensity ( i n  the 
( 1 a 0.02 )w6 frequency window. A 2000-sec time interval cor- 
responds to - 3500 periods of the fundamental motion. 
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computing the time dependence of the amplitude of the 
w, peak with the aid of one of the narrow-band digital 
filtration algorithms. We employed a filter with a 
Gaussian window and a width equal to the peak width 
at the 10" level. These results a re  shown in Fig. 
3. In the first regime (Figs. 2a and 3a with Re = 1035), 
with a supercriticality Re -Re, = 2 x 10-2Re,, the ampli- 
tude A&) does not vary in time, which corresponds to 
a periodic motion with frequency w,, whose image in 
the phase space of the fast variables i s  a stable limit 
cycle. In this case the characteristic vibration ampli- 
tudes measured in neighboring vortices differ by not 
more than 10%. 

The next two regimes [the regimes b) and c )  in Fig. 
3, a s  well a s  the regime c )  in Fig. 21 correspond to Re 
numbers, 1043 and 1054, exceeding some bifurcation 
value, ~ e f ) ,  that gives r ise  to a slow sinusoidal modul- 
ation of the fundamental motion, whose frequency, w,, 
increases with increasing supercriticality. This mod- 
ulation, which i s  clearly visible in Figs. 3b and 3c, i s  
not manifested in the spectra because of the finiteness 
of the resolution. The image of the motion depicted 
here is  a simple attractor-a two-dimensional torus. 
It i s ,  of course, possible that the modulation in Figs. 
3b and 3c i s  not strictly periodic. 

Further increase of the Reynolds number leads to the 
occurrence of a series of closely positioned bifurca- 
tions whose observation is made difficult by the extreme 
slowness of the steady-state establishment process. 
Therefore, we cannot be entirely certain that the re -  
gimes described below directly replace each other a s  
the Re is increased. Thus, the periodic modulation de- 
scribed below does not occur when Re = 1062, a simple 
limit cycle being observed (Fig. 3d). At Re = 1098 we 
observe a complex modulation that can be described 
a s  chaotic, a s  far as we can judge from observations 
made over a relatively short period of time. The w, 
peak for this Re number (Fig. 2e) turns out to be ap- 
preciably broadened. The fact that with increasing 
Reynolds number the modulation again becomes period- 
ic, although not sinusoidal, but saw-toothed (Figs. 2f 
and 3f for Re= 1108), is  extremely interesting. Sub- 
sequently (Figs. 2g and 3g, Re = 1140), the nature of 
the modulation again becomes complex. With a certain 
imagination, we can see in Fig. 3g alternating seg- 
ments of sinusoids of different frequencies. According- 
ly, the w, peak in Fig. 2g is split into two broad peaks. 
Let us also note that the modulation frequency in this 
regime is an order of magnitude higher than in the 
preceding regime. At Re = 1174 (Fig. 2h), the spec- 
tral  line exhibits on i ts  right slope a narrow peak with 
two satellites, a fact which indicates the presence in 
the amplitude modulation of a periodic component not 
present in the preceding regime. 

In the last regimes we can, by moving the measur- 
ing volume of the LDVM along the z axis, observe that 
the vortices vibrate in pairs: in each interval of time 
the amplitude of the ninth vortex is equal to the ampli- 
tude of the tenth vortex, while the eleventh and twelth 
have the same aplitude. However, the amplitudes of 
these vortex pairs can differ by a factor of two to three, 

FIG. 4. The w 6  peak's mean amplitude and its variance 
( whiskers) as a function of the Reynolds number. The 
letters a-h correspond to the regimes depicted in Figs. 2 and 
3. 

and this relation and its sign vary in time in a complica- 
ted fashion. From this it can be inferred that the de- 
struction of the limit cycle in our setup i s  due first 
and foremost to the destruction of the spatial coherence 
of the flow, and not to internal processes in the vortex 
pair. Only when the Re i s  increased further does a new 
"fast" motion-the o, mode-arise. 

The computation of the mean value and the variance 
of the square of the slow amplitude yields the result 
shown in Fig. 4, from which it can be seen that the 
(IA 1') values for small supercriticalities lie on the 
straight line (IA 1')-Re -Re,. This allows us  to esti- 
mate Re, to within *1 in each experiment. In our ex- 
periments we found three Re, values: 995, 1005, and 
1015. If, after the creation of some state with a de- 
finite Re,, the system is not taken far and for a long 
time into the subcritical region, then this state exists 
for an indefinitely long period of time. For example, 
there a r e  among the data shown in Fig. 4 on the initial 
segment of the dependence points that were obtained two 
days after the beginning of the experiment, and they lie 
on the same curve (for greater details, see  Fig. 3.3 in 
Ref. 11). But if we return to the subcritical region, 
wait there for the vibrations to be completely damped 
out, and then let the system again r i se  abruptly above 
the instability threshold, then (Id 1 ') as a single valued 
function of Re cannot be reproduced. The causes of this 
a r e  a s  yet unclear. Nevertheless, these states sub- 
sequently evolve in a qualitatively similar fashion: we 
first  observe a long-wave modulation, which subsequent- 
ly disappears in a narrow range of Re values, after 
which there a r i ses  a complex modulation that sub- 
sequently develops into a higher-frequency modulation. 

$3. PHENOMENOLOGICAL MODEL FOR A SYSTEM 
OF INTERACTING TAYLOR VORTICES 

1. The basic equations 

The spectrum for small supercriticalities above the 
threshold Re, contains peaks at the frequencies w, and 
2w,. We can accordingly write down a system of equa- 
tions for the envelopes A and B of these motions, re-  
taining only the resonance terms in it: 

dAldt=yA+c,BA'+wlA I2A, dB/&=-vB+vzAa. (3.1) 

For Re =Re,, y = 0, and it is therefore natural to set 
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y = a(Re -Re,). For small supercriticalities Y>> y , 
and therefore the characteristic time, T ,  for the mo- 
tion should be longer than y". This means that we shall 
be able to neglect d/dt as compared to ; in the equation 
for B. In that case the B motion will become a forced 
motion: 

These arguments can be justified experimentally. In 
the first place, it follows from (3.2) that the phases 
(JI, and q2) of the A and B motions should be rigidly 
correlated: 2J11 - J1, = const, so  that the quantity 
I @  I ,  where 

should be equal to unity. Its computation from the ex- 
perimental data yields the value 0.98-0.99 right up to 
Re= 1300. 

Further, the quantities I,(t)= IA(t) I2=I, and I,(t) 
= IB(t) 1 2 ,  a s  computed from the experimental data on 
the velocity v(t), can be regarded a s  a parametric 
representation in the X-  Y plane of the projection of 
the phase trajectory. Since this trajectory contains a 
random component, it is  natural to construct the prob- 
ability density for the system to stay a t  one point of the 
phase plane, and analyze only the regression lines: 
(X) a s  a function of Y and (Y) a s  a function of X .  The 
results of such a analysis show that the regression lines 
a r e  concentrated along the parabola corresponding to the 
consequence of the relation (3.2): B(t) -A2(t). By taking 
the square root of the Y coordinate, q e  straighten the 
parabola, and obtain a straight line. It follows from all  
this that the motion a t  the frequency 20, i s  a forced mo- 
tion, and is therefore not an effective degree of free- 
dom, so that, with allowance for (3.21, the system (3.1) 
reduces to the standard form: 

This equation has a unique solution which expresses the 
Landau law: IA I2=y/q = a(Re -Re,)/?. Figure 4 shows 
that it i s  well fulfilled in experiment in the region Re, 
<Re < ~e:", where a stable limit cycle exists. But this 
equation does not explain the destruction of the limit 
cycle, i. e. , the appearance of the time dependence 
A(t). The point i s  that, in deriving it, we assumed 
the absence of any degeneracy, assuming that the w, 
flow is described by the unique spatial function f,(r): 
A(t)f,(r). At the same time, the visualization of the 
flow shows that, even in the case of an appreciable flex- 
ure amplitude, the boundary between pairs of vortices 
almost does not vibrate. Consequently, the first ap- 
proximation, the flow in each pair is  independent, and 
the flexure amplitude of the n-th vortex pair has its own 
equation (3.3) to be written down [see the first  line in (3.4)]. 
Thus, the w, flow has a high degeneracy multiplicity 
(equal to the number of vortex pairs ~ = f i / 2 ) ,  which i s  
due to the great relative height of the cylinder: h 
>> r2 - r,. On account of the weakness, noted above, of 
the interaction between neighboringpairs, we shall take 
this interaction into consideration only in the linear ap- 
proximation: 

We must assume that y > 0 and q > 0 in this equation, 
and rKe can, without loss of generality, assume that 
a > 0. It i s  reasonable to assume that only y depends 
on the Re number. 

2. The steady-state solutions in an unbounded cylinder 
and their stability 

The number of vortex pairs in our setup is fairly high: 
N =  15. It i s  therefore reasonable to initially assume 
in an analytical investigation of equations of the type 
(3.4) that N>> 1, and neglect the boundary conditions. 
It is  then clear that for y > 0 this equation has a non 
trivial, spatially homogeneous solution that coincides 
with the solution to Eq. (3.3): 

A, ( t )  = A O ( t )  =Ao exp ( i yT t lq ) ,  IA"lZ=y/q. (3.5) 

Let us  investigate the stability properties of this sol- 
ution. For this purpose, let us  assume that An differs 
from A0 by a small quantity bA,, and linearize Eqs. 
(3.4) with respect to bA,, which we represent in the 
form: 

GA.=eA" exp (vt+Zi+n). (3.6) 

Then the system of linearized equations for 6An reduces 
to a pair of complex equations for E and E *, the con- 
dition for the vanishing of whose determinant yields an 
expression for the increment of the "modulation instab- 
ility :" 

It can be seen that vo= 0; for small JI 

Thus, v,> 0 when bT >aq, and the spatially homogen- 
eous solution (3.5) is  unstable against the amplitude 
modulations (3.6). The boundary, qo, of the instability 
region can be found from (3.7) after setting v , ~ =  0: 

It also follows from (3.7)- (3.9) that, in the opposite 
case, i. e. , when aq 1 bT,Rev,< 0 for any J I ,  and the 
solution (3.5) i s  stable. 

3. The steady-state solutions in a bounded cylinder 

In a bounded cylinder, it i s  necessary to allow for the 
fact that the equations for the extreme vortex pairs 
(with n =  1 and n = N )  differ from (3.4), for each of them 
interacts not with two but with only one vortex pair 
(with n = 2  and n = N -  1, respectively). Formally, this 
circumstance can be taken into consideration by im- 
posing the following "boundary conditions" on the ad- 
missible solutions to Eqs. (3.4): 

Ao=A.v+,=O. (3.10) 

For small supercriticalities it is convenient to seek the 
solutions to (3.4) in the form of an expansion in terms 
of the harmonics Bm: 
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which automatically satisfy the condition (3.10). This 
representation i s  also convenient in that it diagonalizes 
the linear part of Eqs. (3.4): 

Here we have introduced the notation 

The nonlinear pzrt of (3.12) appears to be quite com- 
plicated: 

where B, = B B,, and A is the Kronecker symbol: 
"i' 

A(0) = 0 and A(n)= 1 for n * 0. 

Equation (3.12) allows us  to find easily the instability 
threshold for the zeroth-order solution with respect to 
the excitation of the n-th harmonic: yn = 0. The first 
to be excited i s  the harmonic B, when 

As was to be expected, a s  the length of the cylinder i s  
increased (i. e. , a s  N - a), the excitation threshold for 
the first harmonic tends to the threshold for the appear- 
ance of the spatially homogeneous solution (3.51, y = O .  

It follows from the structure of Eqs. (3.12)-(3.14) 
that three types of solutions can occur: a )  with vanish- 
ing even harmonics, b) with vanishing odd harmonics, 
and c )  a solution of the general form; the last solution 
is  twofold degenerate-with respect to a change of sign 
of the even harmonics. In this case 

B,(t) = I B, I exp i&l, 1 B, I:= l y , l  (A'+I)!lZq, 

= - + I ,  B,(t)=IBsl exp i&t, (3.16) 
IBs12=IBt 12y12(T2+q2)/9qZ[@+(bIz-b32)]. 

This solution has been obtainedfrom (3.12)-(3.14) under 
the assumption that I B, I << I B, I ,  i. e .  , for small super- 
criticalities. It can be shown that it i s  stable in this 
region against the excitation of the even harmonics. 

Let us now show that, a s  the supercriticality increas- 
es ,  the solution to Eqs. (3.4) with the null "boundary 
conditions" (3.10) tends to the spatially homogeneous 
solution (3.5) in the case in which it is  stable, i. e. , 
when ag > b T .  

Let us first  investigate the approach of (3.5) to i ts  
asymptotic form a s  the distance from the boundary in- 
creases, i .e . ,  a s  n increases. For this purpose, we 
assume that An(t) differs from A0 by a small quantity 
6An, and linearize (3.4) with respect to 6An, which we 
represent in the form 

Then we obtain for E and E *  a pair of complex equa- 
tions, the condition for the vanishing of whose deter- 
minant yields 

The solution to this equation has the form 

From this it can, for example, be seen that even with 
C = $ the difference bAn decreases very rapidly with in- 
creasing n: 6An+l/bAn & 0.21. All this i s  a manifesta- 
tion of the symmetry of the initial problem with respect 
to the interchange n -N + 1 - n, which corresponds to a 
reflection in the plane passing through the middle of the 
cylinder. The solution a )  i s  symmetric under such an 
interchange; the solution b),  antisymmetric; and two 
nonsymmetric solutions of the type c )  transform into 
each other under such an  interchange. 

If y l <  0 ,  lyl I < y,, and y, > 0, then a solution of the 
type a )  is  realized. At large C, (3.5) approaches its 
asymptotic form even more rapidly; for example 
6An+,/6An=0. 17 for C =  1. 

For C 3 $, we can, by assuming A, =A0, easily find 
the flexure amplitudes in the extreme pairs directly 
from the Eqs. (3.4): 

It can, for example, be seen that even with C =  $, 
IA, 1 '  differs little from IAOl2=y/g: IA, 12=0. 75IA0I2 

Summarizing the results of Subsecs. 2 and 3 of this 
section, we can say that, when aq >bT, the steady-state 
solution to Eqs. (3.5) with null "boundary conditions" 
is stable for any supercriticality. For small y/a the 
profile of IA, I has, in accordance with (3.16), the shape 
of a half-wave; with increasing y, the profile of lAnI 
becomes flatter, approaching, in accordance with (3.19) 
and (3.20), (y/g)"2. If, on the other hand, ag<bT,  
then the steady-state solution to Eqs. (3.4) i s  stable 
only a t  small supercriticalities, when the profile of 
IAn I has, in accordance with (3.161, the shape of a 
half -wave. Numerical experiments, which we describe 
in the following section, show that a t  < bT the steady- 
state solution to Eqs. (3.4) loses its stability with in- 
creasing y, a sequence of bifurcations, which separate 
the various regimes of the temporal behavior of An(t), 
being observed. 

We may think that the "stable" case aq > bT i s  real- 
ized in experiments13 with a narrow clearance, a s  well 
a s  in experiments with a wide clearance for the m = 1 
flexural mode in a flow with N =  14, experiments which 
a r e  characterized by the fact that lAn 1' = const in a 
broad range of Reynolds numbers (see Table I). On the 
other hand, the complex dynamics of 1,(1) decribed in 
the second section should be due to the instability of the 
solutions to (3.4) that a r i ses  whenag < b T .  The stochas- 
tization of the flow in the case in which aq > bT should 
proceed along another path, namely, via the excitation 
of new fast motions. Apparently, we can describe cer-  
tain features of this phenomenon if we restrict  ourselves 
to the processes occurring in one vortex pair. Yahatas 
recently simulated these processes with the aid of a 
Galerkin expansion of the Navier -Stokes equations, in 
which 32 selected functions were retained. A good 
agreement i s  obtained with experiments13 on the critical 
number for the transition to the stochastic regime, but 
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the broad-band component, B, ar ises  a t  an entirely dif- 
ferent place in the spectrum. 

54. THE COMPLEX BEHAVIOR OF A SYSTEM OF 
INTERACTING TAYLOR VORTICES. A NUMERICAL 
EXPERIMENT 

1. The procedure for the numerical experiment 

Let us  choose-as dimensionless time 5 and dimension- 
less amplitude A the following quantities: 

Then Eqs. (3.4) assume the form 

We shall, in investigating them, restrict  ourselves to 
the N =  15 case,  which corresponds to the experimental 
situation, and use the null "boundary conditions" 

2,-A,,=O. (4.3) 

The numerical modeling of the problem (4.21, (4.3) r e -  
duces to the study of the trajectories A,(;) over periods 
of time much longer than the characteristic periods of 
the motion. Therefore, the numerical solution requires 
the use of stable difference schemes that do not lead to 
the buildup of computational e r ro r s  over the long time 
intervals. We used the Runge-Kutta fourth-order pro- 
cess. It guarantees the attainment of a steady-state 
solution and the constancy of this solution to within 
over arbitrarily long periods of the time 't. In the re= 
gime of periodic auto-oscillations, their amplitude 6A 
and period T did not depend on the choice of the step 

to within when At < 0.27. In the numerical 
simulation of the stochastic auto-oscillations a t  high 
supercriticalities, we enc6untered additional difficul- 
ties cocne_cted with the rapid divergence of the trajec- 
tories A,,(t) that a re  close in their initial values. For 
example, for @ =  10, r = O .  144, and B =  1.25, two tra- 
jectories starting with one and the same initial con- 
dition, and differing in the steps chosen for their com- 
putation (&=o.  15 and A; = 0.3, which a r e  respectively 
0.008 and 0.016 of the characteristic period, T =  19, of 
the motion), completely diverged (by a value of the o ~ d -  
er  of the attractor dimension) over a period of time t 
= 80. In this case a one-percent loss in accuracy due 
to-the e r ro r  made in the difference_ approximation with 
At = 0.15 was reached roughly by t 60. All this, gen- 
erally speaking, makes it impossible to study the de- 
tails of the behavior of the system over time intervals 
longer than the"confidence interval." But this circum- 
stance is  of no importance in the study of the statistics 
of the process, since the dynamical stochasticity due 
to the hyperbolicity of the system i s  stronger than the 
stochasticity arising on account of the approximation 
errors. '  The numerical experiments agree with this in 
the cases in which the values chosen for the coefficients 
of the system (4.2) a r e  not too close to the bifurcation 
values. Thuj, for example, the power spectra com- 
puted with At = O .  15 and At =0.3 for @ = l o ,  r = 0 . 2 ,  
and B = 1.25 coincide within the limits of the confidence 
interval stipulated by the finiteness of the observation 
time. 

FIG. 5. Time dependences of the intensity of the w6 motion in 
the fourth vortex pair after an abrupt change in the Reynolds 
number. On the right a r e  the results of the natural experi- 
ment; on the left, the results of the numerical experiment 
with 8 =  10,  B= 1.25, and r= 0.56(Re - Re,)/Re,. 

2. The dynamical properties of the trajectories 

The preliminary numerical experiments involved the 
visual observation of the trajectories IA,(t) l for very 
different values of the coefficients, r ,  0, and B ,  of the 
Eqs. (4.2). Characteristic time dependences of IA,(t) l 
a r e  shown on the left hand side of Fig. 5. It can be 
seen that the amplitude IA,(t) 1 can approach a limiting 
value aperiodically (l? = 0.024) o r  with damped oscilla- 
tions ( r  i s  equal to 0.048 o r  0.091), appear a s  a period- 
ic function of the time, or behave in a chaotic fashion. 
We can get a clearer idea about the behavior of the sys- 
tem by considering the projection of the phase trajec- 
tory on certain planes. In time, the phase trajectory 
of the system (4.2) gets, irrespective of the initial 
values of the phases, drawn to attractors of one or 
another degree of complexity: to a fixed point, to a 
limit cycle, o r  to more complex attractors. Examples 
of some of them a r e  shown in Fig. 6. We cannot a t  

FIG. 6. Examples of the projections of the phase trajectories 
of Eqs. ( 4 . 2 )  on suitable planes: a) a triple limit cycle; b), 
c), and d) stochastic attractors of various degrees of complex- 
ity. 
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FIG. 7 .  Regions of different types of behavior of the system of 
equations ( 4 . 2  ) : 1) and 2) equilibrium configurations, 3) limit 
cycles, 4) two-dimensional tori, and 5) complex attractors. 

this stage of the investigations distinguish a complex 
limit cycle or a long transitional regime from really 
stochastic behavior. It i s  easy to record only rela- 
tively simple limit cycles o r  equilibrium configurations 
The results obtained at this level of rigor a r e  indicated 
in Fig. 7, where the regions of different types of be- 
havior of the system a r e  marked out in the ( r  , B )  plane 
for 0 = 1 0 .  The ordinates a r e  the values of the ratio 
r = y / a ,  which is  proportional to the Reynolds number. 
By choosing ratios of B and 0, we can obtain in a num- 
erical experiment the same sequence of bifurcations 
(as Re is  increased) a s  is obtained in experiment. For 
example, for the arbitrarily chosen value 0= 10, such 
an agreement is  observed a t  B = 1.20-1.30. Indeed, 
a s  Re is increased in a natural experiment (see Fig. 3), 
and a s  r i s  increased in a numerical experiment (see 
Fig. 5), a stable limit point i s  replaced by a limit cycle 
with sinusoidal modulation, then the stable point reap- 
pears,nonly to be replaced by a stochastic attractor. If 
we set r = 0.56(Re - Re,)/Re, here, then the measured 
and computed bifurcation Reynolds numbers a r e  in qual- 
itative agreement. 

Also resembling each other a r e  the experimental and 
temporal IA(t) I dependences corresponding to the step- 
wise variation of the Reynolds number (see Fig. 5). 

TABLE 11. Level of excitation of the system in the numerical 
experiment with different r and O =  10. 

Note. The upper part of the Table (for r= 0.08; 0.15; 0 .20 )  
pertains to the case B= 10; the lower part, to the case B =  
1.25. The first line for each r gives (in percent) the ratio 
of the intensity In= (IB,  1 2 )  to the intensity of the most strong- 
ly excited harmonic. The second line gives the eigenvalues 
of the matrix 100 (B,B:) /maxIn. 

But a t  this stage it i s  too early to speak of complete 
agreement between the rea l  and numerical experiments. 
In particular, in the real  experiment we observed (see 
Fig. 3 )  a limit cycle after a stochastic attractor, which 
was not found in the numerical experiment. It i s  pos- 
sible that this discrepancy i s  due to the fact that the 
relation 0 = 10 is an arbitrarily chosen one. Generally 
speaking, we should carry  out special experiments to 
independently measure the coefficients in the phenomen- 
ological model (4.1)-(4.3). Nevertheless, it i s  even 
now quite safe to say that this model indeed describes 
the initial phase of the turbulization of the Couette-Tay- 
lor flow. Therefore, a more detailed study of the stat- 
istical properties of the attractor in this model i s  of 
definite interest. The first  results  of such an inves- 
tigation a r e  presented in the following section. 

55. THE STATISTICAL PROPERTIES OF THE 
TRAJECTORIES IN  THE PHENOMENOLOGICAL MODEL 

1. The upper limit of the attractor dimensionality 

The phase space of the system of the fifteen com- 
plex Eqs. (4.2), (4.3) has a dimensionality of 30. But 
a much smaller number of degrees of freedom should 
be excited when I'<< 1. This can easily be verified by 
considering the representation (3.12) of the harmonics 
diagonalizing the linear part of the equations. Indeed, 
for y << a only the harmonics with small n fall in the 
instability region. For example, a t  r =O. 05 only the 
first  two harmonics a r e  unstable; a t  I'=0.1, the first 
three; and at r = 0.2 only for the first  four of the fif- 
teen harmonics is  y, < 0. It i s  precisely the unstable 
harmonics that should be most effectively excited. They 
a r e  the driving force for all  the rest .  The greatest 
response should come from the low-n harmonics, which 
have the least margin of stability; the harmonics with 
large n should be effectively suppressed. 

On the whole, experiment corroborates these ex- 
tremely simplified arguments (Table 11). It can be 
seen that, with the exception of one case,  the most in- 
tense is the first harmonic; the intensity of excitation 
decreases monotonically with increasing harmonic num- 
ber in a system of even and odd harmonics. If we as- 
sume that the weakly excited harmonics (e. g., with re-  
lative intensities of less than 5% of the highest inten- 
sity) virtually do not affect the dynamics of the system, 
then, for y << a ,  the requisite number of differential 

TABLE 111. Number of harmonics whose lev- 
e l s  of excitation are more than 5% of the max- 
imum level (for 8 =  10 and different l? and B ) .  

Footnote. Indicated in the brackets i s  the 
number of eigenvalues of tlie correlation ma- 
trix (B,,B:) that have magnitudes of more than 
5% of the maximum eigenvalue. 
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TABLE IV. The normalized correlation matrices (B,B~) 
for B=1.25, 0=10, r=0.08 (upper part) and B=1.25, 8=10, 
l"= 0.2 ( lower part). 

Footnote. The diagonal elements are given by the ratio 
100 (' lB,12)/max( I Bn 12); the off-diagonal elements determine 
the correlation coefficient K,= (B,B:)> ( ( I Bn12)( IB, 12))-'I2. 
The numbers above the principal diagonal are values of the 
real part of K, multiplied by 100, while those below it are 
values of 100 I ~ { K ~ } .  

equations reduces from fifteen to the number indicated 
in Table III. In geometric terms,  we can say that the 
attractor of the dynamical system in question is orient- 
ed in phase space almost perpendicularly to the coor- 
dinate axes corresponding to the high-n harmonics. 
But the harmonic representation (3.12) i s  not the best 
linear unitary change of variables (i. e. , choice of 
orientation of the coordinate axes of phase space) for 
which the number of intensely excited variables i s  a 
minimum. To find these variables 

we must compute the single-time correlation matrix 
@,A:), and find the unitary matrix, Vn,, that reduces 
it to the diagonal form. This procedure is equivalent 
to the approximation of an attractor by a multidimen- 
sional ellipsoid and the determination of the orientation 
and magnitudes of the principal axes (ICn 12)"'. The in- 
tensities (IC,, 1') a r e  the eigenvalues of the correlation 
matrices @,,A:) or  (B,B:). In Table IV we give the cor- 
relation matrices (BnB:) a s  computed for 0 = 10, B 
=1.25, and the twovalues l?=0.08 and0.2. It canbe 
seen that the odd harmonics a re  quite strongly corre- 
lated, the correlation factor Knm being almost real ,  and 
increasing with increasing n and m. The even harmon- 
ics a r e  more weakly correlated among themselves than 
the odd ones. The motions of the even and odd harmon- 
ics a re  virtually not correlated. As the supercriticality 
(i. e . ,  the ratio r = y / a )  increases, the degree of cor- 
relation in the motions of the harmonics decreases. All 
these factors (with the exception of the reality of Knm 
for the odd harmonics) can be explained on the basis of 
the structure of the equations (3.12), (3.13), for the har- 
monics. 

The eigenvalues, (ICn 12), of the correlation matrix 
a r e  given for some values of the parameters in Table 

FIG. 8. Power spectra corresponding to: a) an equilibrium 
configuration and b) a limit cycle; 0 = 10, B= 1.25, and r= 
0.04; 0.06. 

11, while Table 111 gives the number of the eigenvalues 
(lCn 1') whose magnitudes exceed 5% of the maximum 
eigenvalue. It can be seen that the transition to the 
"best orientation of the coordinate axes," C,, allows a 
further reduction of the required number of differential 
equations in comparison with the number required in the 
case of the harmonic representation. 

Thus, we have obtained the upper limit for the di- 
mensionality of the attractors a s  a function of the pa- 
rameters of the problem, including the supercriticality 
I?. Naturally, this estimate i s  too high in certain 
cases. For example, f o r 0 = 1 0 ,  B=1.25, a n d r  
=O. 06, the attractor i s  a limit cycle, i. e. , the di- 
mensionality is equal to one, and, with an appropriate 
choice of variables, the behavior of the system can be 
described by one differential equation. But the vari- 
ables Cn have the advantage that they can easily be ex- 
plicitly indicated in (5.1) with the aid of the unitary ma- 
tr ix U that diagonalizes the correlation matrix (BnB:). 

2. The power spectrum 

In the preceding subsection we considered the single- 
time correlation matrix (B,(t)B:(t)). Here we discuss 
the results of a numerical experiment involving its 
diagonal elements in the case of noncoincident times: 
Jn(?) = (Bn(t)B:(t + T ) ) .  Instead of the quantity J,(T), it 
i s  convenient to use i ts  Fourier transform, i .e . ,  the 
power spectrum of the harmonics: 

where B,(w) i s  the Fourier transform of Bm(t), while 

FIG. 9. Power spectra corresponding to a double limit cycle 
( r= 0.0 66). 
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FIG. 10. Power spectra and excesses of the f i rs t  and second 
harmonics in the region of stochastic behavior ( l?= 0.08 ). 

(. . . ) denotes, a s  in (2. I ) ,  averaging over the suc- 
cessive Bm(t)-realization segments. 

The spectrum a )  (see Fig. 8) corresponds to a simple 
limit cycle with a trivial time dependence: Bm(t) 
cc exp(-at) [the finite width of the line is  explained by 
some imperfection in the computational algorithm for 
(5.2)]. In a coordinate system rotating with frequency 
D, this situation corresponds to an equilibrium con- 
figuration; the regions 2) with this behavior have been 
marked out in the parameter plane (see Fig. 7). The 
spectrum b) in Fig. 8 was computed in the region 3) of 
the parameter plane, i. e. , in the region of limit cycles 
(in a rotating reference system). It is  noteworthy that 
the intensities of the satellites decrease exponentially 
with increasing distance from the central D line. In 
Fig. 9 we show the spectrum corresponding to a double 
limit cycle. We can see the splitting of the lines, which 
ar ises  a s  a result of the noncoincidence of the periods 
of the first and second revolutions in the limit cycle. 

The spectra shown in Figs. 10-12 were computed in 
the region 5) (complex attractors) of the parameter 
plane, where the trajectory of the system appears to 
be stochastic. We used sufficiently representative 
B,(t)-realization segments containing up to ten y- 
characteristic times. In this case  the spectra computed 
with essentially different initial conditions coincide with- 
in the limits of the confidence interval, which indicates 
the stochasticity (the "nonremembrance" of the initial 
conditions) and the stationarity of the system's trajec- 
tory. 

The spectra of the harmonics shown in Figs. 10 and 
11 were computed in the region of stochastic behavior 
with the same Q = 10 and B = 1.25 and different super- 
criticalities r = 0.08 (see Fig. 10) and r =O.  2 (see 

-0.5 0  0 . 5 w ( O  0 0.5 w ZO 

FIG. 11. Power spectra and excesses of the f i rs t  and second 
harmonics in the region of stochastic behavior ( r= 0.2 ). 

FIG. 12. comparison of the power spect ra  of the f i rs t  har- 
monic for three values of I?= 0.08; 0.15; 0.2. 

Fig. 11). Also shown in these figures a r e  plots of the 
66 excess" K(w), computed from the formula 

We shall discuss the quantities K(w) below; here we 
consider only the evolution of the spectra J,(w) with in- 
creasing supercriticality (at fixed 8 = 10 and B =  1.25). 

The value r = 0.08 lies quite close to the region of 
dynamical behavior: the trajectories a r e  periodic 
when r = 0.06 and r = 0.1. Therefore, when r = 0.08, 
the attractor should contain slightly unstable cycles, 
near which a trajectory can exist for quite a long time. 
Accordingly, the power spectrum of the odd harmon- 
ics with small n(=l; 3; 51, on which the cycle i s  prob- 
ably concentrated, contains strongly pronounced peaks. 
It is  noteworthy that the asymptotic form of the spectra 
in the region far from the line center is ,  to a high de- 
gree of accuracy, exponential (a straight line in the 
logarithmic scale): 

the indices A* of the exponential functions for the right 
and left slopes being practically independent of the 
harmonic number. 

At high supercriticalities we move away from the 
stability region of the limit cycles, which then cease 
to appear in the spectrum (see Fig. 11). It i s  char- 
acteristic that the spectra of al l  the harmonics a r e  very 
similar and a re  even better described by the exponential 
function (5.3). The indices for the exponential function 
increase with increasing supercriticality (see Table V 
and Fig. 12). 

In conclusion of this section, let u s  note that the ex- 
cess  K(w) computed in the region of stochastic behavior 
(see Figs. 10 and 11) differs little from unity. This in- 

TABLE V. Index A, of the exponential 
function determing J,(w) according to the 
formula (5.3) for  0 = 10, B = 1.25, and dif- 
ferent r. 

r ' 1 A+/= 1 A-/a 1 A+/V 1 A-IY 
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dicates that the statistics of the random processes B,(t) 
is  in a sense nearly Gaussian, and we may hope that 
an analytical statistical description of a system of 
interacting Taylor vortices that uses this fact will be 
successful. 

CONCLUSION 

In this paper we have demonstrated the possibility of 
describing the initial phase of turbulence with the aid of 
a finite-dimensional dynamical model in the particular 
case of circular Couette flow. The complex attractor 
in the phase space of this model is  the image of the tur- 
bulent motion of the liquid. Formally, the phenomeno- 
logical model proposed by u s  can be derived from the 
Navier-Stokes equations in much the same way a s  the 
Landau equation i s  derived, but in this case allowance 
is  made for the degeneracy of the bifurcating solution. 
It would have been useful to t ry  with the aid of a com- 
puter to calculate the coefficients in the phenomeno- 
logical equations (3.4) and find the region of their applica- 
bility and the structure and magnitudes of the correction 
terms. It i s  necessary to carry  out measurements to 
verify the assumptions underlying this model: for 
example, the hypothesis that A(r,t)=A(t)f(r). It i s  also 
necessary to investigate the spatial profile of the azi- 
muthal modes along the whole cylinder and the mutual 
correlation of the motions in the various vortices, and 
to carry out a much more detailed comparison of the 
results of the natural and numerical experiments [with- 
in the framework of Eqs. (3.4)]. After this, it will 
make much more sense to carry  out a detailed inves- 
tigation of the structure of the complex attractor in the 
phase space of Eqs. (3.4): the study of the character 
of the trajectory dispersal, the functions of the ~ o i n c a r 6  
sequence, etc. Of special interest a r e  the problems 
pertaining to the transition from the dynamical descrip- 
tion of the system within the framework of (3.4) to a 
statistical description by methods worked out in the 
theory of turbulence. The following questions arise:  
How close to Gaussian is  the statistics of the A,@) mo- 
tions? On what does the degree of this closeness de- 
pend, and in which region of the parameters of the mod- 
e l  i s  Kraichnan's direct-interaction approximation ap- 
plicable? How good is, and what range of phenomena 
can be described within the framework of, this approxi- 
mation? Many of the above questions a r e  interesting in 
themselves, but, a s  links of a single chain connecting 
the general Navier -Stokes equations with turbulent mo- 
tion in a specific flow, they a r e  fundamental questions. 
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APPENDIX 

We used the experimental setup whose mechanical 
construction i s  shown in Fig. 13. The principal unit i s  

FIG. 13. Hydrodynamic stand. 

a spindle 8), which rotates in precision ball bearings 
7) secured in a race on a bedplate 11). At the top of the 
spindle i s  a massive (40 kg) flywheel 4) ,  and to the bot- 
tom i s  attached via a Morse cone 10) a stainless steel 
inner cylinder 13) of diameter 35 mm. The whole ro- 
tating part of the apparatus is  borne on an air-lubricat- 
ed bearing 5). The spring suspension 6) i s  adjusted in 
such a way a s  to relieve tbe bearing 7) of the vertical 
s t r e s s  and minimize the frictional noise. The flywheel 
is  set in rotation by an electric motor 1) via bellows 
2). The angular velocity i s  controlled by an electronic 
circuit whose follow-up instrument is  a precision tach- 
ometer 3). The technical measures taken allow us to 
to maintain the period of rotation T to within lo4 T o r  
less  (in the range of T from 20 to 0.1 sec),  and guaran- 
tee less-than-5-gm wobble of the base of the inner cy- 
linder (for a gap of 1 cm). The outer cylinder 14) in the 
above-described experiments was made of stainless 
steel, and had an internal diameter of 55 mm. Its 
mounting 12) allows us  to make the setting coaxial with 
the inner cylinder to within 5 pm. The upper and lower 
ends of the cylinder a r e  made of optical glass. The 
laser beams a r e  distributed along the azimuth of the 
cylinders, and reach the experimental volume from 
above in accordance with Fig. 13. The whole setup is 
placed in a box with thermal insulation, which also con- 
tains a thermostat that maintains the a i r  temperature 
to within i0 .02 "C.  The temperature of the outer cylin- 
der was measured with a 2801a Hewlett-Packard quartz 
thermometer. 

" ~ e t  us note in this connection that Fenstermacher et a1 . I 3  

have also observed in an experimental investigation of the 
laminar-turbulent flow transition in a Couette flow with a 
narrower gap a narrow spectral  line, which they interpret 
a s  a purely periodic regime. But a slow modulation is  dis- 
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tinctly visible in the  real izat ion range  shown in  Fig. 5a of 
the i r  paper.  l3 
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