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A theoretical analysis is presented of the tilt effect, namely the dependence of the absorption and velocity of 
longitudinal sound on the angle between the magnetic field and the wave vector. It is shown that in the 
absence of collisions the absorption and velocity of the sound in a classically strong magnetic field are 
nonanalytic (discontinous) functions of the tilt angle a .  The discontinuities arise at a critical value a ,  = s,,,/v 
and are due to the jumplike onset of dissipative collisionless interaction of electrons with the sound, which 
captures immediately an entire region near the limiting point on the Femi surface. Owing to the quasi-one- 
dimensional character of the electron motion in the magnetic field, this interaction is strong and does not 
contain the small adiabatic parameter s / v .  The proposed theory has not made it possible to calculate the 
angular dependences of the velocity and of the damping of the sound, which turned out to be in good 
qualitative agreement with the results of experiments on galllurn. The influence of the anisotropy of the Fermi 
surface on the absorption jumps and on the velocity of the longitudinal sound is discussed. 

PACS numbers: 43.35.Rw, 43.35.Jn, 72.55. + s 

1. INTRODUCTION imentally in the cited Ref. 2. Actually, both this phe- 
nomenon and the tilt effect have a common physical The gist of the tilt effect is that the electronic absorp- cause and a re  closely connected with each other. Both 

tion coefficient and the velocity of sound in a metal 
phenomena a re  reflections of the essentially nonadiaba- change radically a s  functions of the angle between the 
tic character of the interaction of the electrons with the magnetic field H and the sound propagation direction. 
phonons in the region of small angles a!(w/ / q,v 12 1, This phenomenon exists in the region of strong magnetic 
axis z 11 H ) .  The fact that the increase of the speed of fields, thus the cyclotron radius R is much less  than the 
the longitudinal sound at  a =0, predicted by Kulik is sound wavelength, and a t  small tilt angles a - s / v  ( s  i s  
actually a strong nonadiabatic effect manifests itself in the speed of sound, v is the velocity of the electrons on 
the absence of the small parameter s / v  in the observed the Fermi surface, a! is the angle between the vector H 

and the direction perpendicular to the wave vector q). change of s(H): 

The tit1 effect was first  observed by Renekerl in sound s Z ( H )  -sZ(0) =nmv2115p, ( 1 . 1 )  
absorption in bismuth. Its physical nature i s  connected 

where n is the electron density, m is their effective with the jumplike onset of collisionless absorption of 
mass,  and p is the density of the crystal. It turns out 

high-frequenvy sound (wt>> 1, r  is  the time between the 
that the additional increase of the speed of sound with collisions), when the frequency w  becomes equal to 
increasing a in the tilt effect likewise does not contain gv sin ru ,  inasmuch a s  at sin cr < w/qv there i s  no col- 
the small adiabatic parameter s / v ,  and its order of lisionless absorption. 
magnitude i s  that of (1 .1) .  This conclusion agrees with - 

The tilt effect in the absorption and the velocity of the experimental data,' which have s o  fa r  found no theo- 
longitudinal sound were subsequently investigated ex- retical explanation. 
perimentally in gallium by ~ e z u ~ l ~ i  and Burma,' and 
also in bismuth3 and antimony4 by Korolyuk and co-au- 
thors. There have been relatively few studies of this 
phenomenon. Spector5*' calculated the dependences of 
the longitudinal-sound velocity on the tilt angle a. 
However, the sign of the change of the sound velocity 
with changing angle a! was found in Ref. 5 and 6 to con- 
tradict the sign obtained in experiment2 and the results 
of the present paper. The theoretical description pro- 
posed in Refs. 3 and 4 for this phenomenon explain fairly 
well the results of the experiment a t  wr 2 1-3, but a re  
inadequate when wr >> 1 and the tilt effect becomes 
strong. 

The absence of collisionless interaction of electrons 
with sound at  q 1 H ( a  = 0) and the quasi-one-dimen- 
sional character of the electron motion in a strong 
magnetic field lead also to an increase of the sound 
velocity with increasing H. This effect was predicted 
theoretically by ~ u l i k ~  and later was observed exper- 

The purpose of the present paper is a theoretical de- 
scription of the tilt effect a s  an essentially nonadia- 
batic phenomeon, in which the electron-phonon interac- 
tion becomes very strong. Owing to the existence of 
an abrupt boundary of the Fermi distribution in velocity 
the strong collisionless interaction of the electrons 
with the phonons is turned on jumpwise when the angle 
a exceeds a threshold value a,=s,,/v. This leads to 
a nonanalytic dependence of the absorption and of the 
speed of sound on the angle a: both quantities undergo 
a first-order discontinuity at a = a ,  and a s  wr - m. It 
turns out then that the collisionless absorption of sound 
at  the maximum is determined by an entire region on 
the Fermi surface and not only by the resonant elec- 
trons, therefore the damping and the change of the 
velocity do not contain the small quantity s / v  and 
turned out to be large in terms of this parameter. It 
must be emphasized that under conditions of strong 
electron-phonon interaction the role of the electromag- 
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netic fields that accompany the sound in the metal 
increases sharply. It will be shown below that the 
contribution of the solenoidal fields to the spectrum 
and damping of the phonons cancel out almost completely 
the singularity due to the direct  deformation interac- 
tion. As a result of this cancellation, the electronic- 
renormalization singularity due to the resonant elec- 
trons turns out to be not in the numerator but in the 
denominator of the right-hand side of the dispersion 
equation. This conclusion i s  of fundamental impor- 
tance, since a similar increase of the role of the elec- 
tromagnetic fields should always take place whenever 
the electron-phonon interaction becomes strong and es- 
sentially nonadiabatic. 

In the next section we present the initial equations of 
the theory. In Sec. 3, a dispersion equation is derived 
for compensated and uncompensated metals. The con- 
cluding fourth section is devoted to an analysis of the 
dependences of the absorption coefficient and of the 
speed of sound on the tilt angle, and also to a com- 
parison of the results of the theory with experiment. 

2. INITIAL EQUATIONS 

The complete system of equations describingthe prop- 
agation of sound waves in metals consists, a s  i s  well 
known, of the elasticity-theory equations for the dis- 
placements u(r ,  t), Maxwell's equations for the electro- 
magnetic fields accompanying the sound wave, and the 
kinematic equation for the conduction electrons. The 
problem of deriving and proving such a system of 
equations has been actively discussed for many years 
up to recently. Its solution was the result of efforts 
of many investigators (see Refs. 7-12 and the litera- 
ture cited therein). The form of the kinetic equation in 
the presence of a sound wave was established in Refs. 
8, 9, and 11. The most complicated is the question of 
obtaining an equation for the force exerted by the elec- 
trons on the lattice. This force was first  obtained by 
Cohen and the Harrisons in the case of f ree   electron^,'^ 
and by Silin for an arbitrary dispersion law of the elec- 
trons, but without allowance for  collision^,^^ The cor- 
rect formula for the force, in the free-electron approx- 
imation with allowance for collisons and small terms 
from the Stuart-Tolman effect, was given in the first  
paper of Ref. 14 and used in Ref. 7. For an arbitrary 
dispersion law, the total expression for this force, with 
allowance for collisions and for the Stuart-Tolman 
effect, was obtained by Kontoro~ich '~  and independently 
by Vlasov and Filippov in the second paper of Ref. 14, 
and by Skobov and Kaner16 without allowance for the 
Stuart-Tolman effect. The theory was further de- 

, veloped in Refs. 17-23. The role of the dragging of 
the electrons by the lattice, which makes a substantial 
contribution to the interaction of the electrons with the 
sound, was analyzed in Refs. 20 and 17-19. A micro- 
scopic derivation of this system of equations, with al- 
lowance of interband transitions of the conduction elec- 
trons in a metal, was published in a recent paper.22 
In that paper, correct  expressions weee obtained for 
the adiabatic elastic moduli, and all the quantities that 
enter in the equations could be expressed in terms of 
microscopic interactions of the electrons and ions in 

the metal; by the same token, the validity of these 
equations for the description of strong nonadiabatic ef- 
fects could be corroborated. 

In accordance with the established approach, we write 
down the kinetic equation for the nonadiabatic part  
f (p, r ,  t )  of the complete distribution function 

F ( P :  r, t )  - f , ( ~ ' ) + f  ( P .  r, t ) ,  (2.1) 

where f,,(cl) is the equilibrium Fermi function, which 
depends on the electron energy in the co-moving 
reference frame: 

Here &,=q(p) is the law of electron dispersion in the 
absence of sound, ui, is the strain tensor, cp is the 
scalar potential of the electromagnetic field in the 
metal, m, is the mass  of the free electron, - 1 e l  i s  its 
charge, v =  a&,,/ap is the velocity of the conduction 
electron in the metal, the superior dot denotes partial 
differentiation with respect to time, and Ai,(p) is the 
strain-potential tensor for  which a microscopic expres- 
sion was obtained in Ref. 22, The kinetic equation is  
of the form 

a f  l e l  a f ofo - - + ( v V ) f  --[vXH~-+v{f}=--(-~e~Ev+Aulilib). (2. 2) 
a t  c a p  a s  

Here vCf}  i s  the collision integral, Aik(p) is the renor- 
malized strain potential: 

A;, ( p )  =I.~A(P) -(hi*), (2.3) 

the angle brackets denote averaging over the Fermi 
surface : 

P P 

(2.4) 
the symbol denotes summation over different groups 
in the case of a multiply connected Fermi surface, and 
Q(+)  is the density of the electronic state on the Fermi 
surface. 

The electric field E is given by 
1 m, .. 

E=E'+- [uXH]+ -u, 
c le t  (2.5) 

where E' = E + Vcp, is the nonadiabatic part  of the elec- 
t r ic  field in the metal, and (p, i s  the adiabatic electro- 
static potential, 

The equation of motion of the lattice, with allowance 
for the electron contribution to the elasticity of the 
metal, i s  of the form13-16.21 

I m ai ,  +dz L . ~ + ~ [ ~ x H ] ~ + - -  pui=Kihim - axhaxI axh IeI  a t  ' (2.7) 
P 

Here p is the mass  density of the crystal, and Kik,, is 
the tensor of the adiabatic elastic moduli of the metal, 
a s  obtained in Ref. 22. The electric current density j 
is 

D 

Finally, we write Maxwell's equations in the form 
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4n aj  
rot rot E'=- 

c2 at 

This equation contains in fact the electron quasineu- 
trality condition div j = 0. 

An essential role in the derivation of the dispersion 
equation for the sound oscillations is the relation be- 
tween the left-hand side of Eq. (2.9) and the terms with 
oE' in i ts  right-hand side. I t  is quite obvious that there 
should exist a frequency region in which qZc2 << 4770 I uikLl 
(o and q a r e  the frequency and wave vector, and the in- 
dex 1 labels the conductivity-tensor components that 
a r e  transverse to the wave vector q). In this case we 
can neglect the left-hand side of (2.9) when finding the 
connection between the electric field and the displace- 
ment vector u, i. e . ,  we can use in place of (29) the 
equation2' j = 0. The conditions under which this equa- 
tion can be used include the region of ultrasonic and 
hypersonic frequencies which is of most interest and 
of greatest practical importance,as well a s  all  the 
attainable magnetic fields H <(4nnm3)11z 5 lo5-lo6 Oe. 

3. DISPERSION EQUATION FOR THE SOUND 
OSCILLATIONS 

We consider the propagation of longitudinal high-fre- 
quency sound in a classically strong magnetic field, 
for the following inequalities hold 

( v  is the collision frequency and S-2 is the cyclotron fre- 
quency). 

We begin with the case of a metal with unequal elec- 
tron and hole densities. Simple estimates show that the 
main contribution to the electronic elasticity is made 
by the solenoidal electric field component 8, directed 
along the external magnetic field H. The dispersion 
equation for the longitudinal sound is of the form 

Here w, = w + iv - q,iJ,, m is the cyclotron mass,  
A =  A,,, and 

is the square of the adiabatic sound velocity in the 
metal. Formula (3.2) was written for a singly con- 
nected Fermi surface; in the case of a multiply con- 
nected surface, formula (3.2) retains the same form 
i f  the integrals with respect to p, a r e  taken to mean the 
sums of analogous integrals over the different groups. 
We note that the second term in the right-hand side of 
(3.2) is just the one that describes the contribution of 
the solenoidal field to the electronic renormalization of 
the spectrum and to the damping of the sound oscilla- 
tions. 

It is of interest to discuss different limiting cases 
contained in Eq. (3.2). This equation admits of a 
transition to strictly longitudinal propagation (q II H, 
a = n/2). In this geometry, the numerator of the 
second term in (3.2) vanishes in the principal approxi- 

mation in w/qv, in view of the fact that (A) =0, i. e. , 
i t  is necessary to retain in the right-hand side of (3.2) 
only the first  term. When this term is calculated, 
w*-' is replaced by -nid(w - q&), after which the spec- 
trum and the damping of the longitudinal sound a r e  
determined by the formula 

It is seen from i t  that the sound absorption i s  deter- 
mined only by the electrons on the Fermi surface "beltu 
iJ, - s = 0. In particular, in the case of an isotropic quad- 
ratic dispersion law we obtain for the relative damping 
decrement the known e x p r e ~ s i o n ' ~  

0'' n nmv s r=-=---- (o=o'-ion) . 
0' 12 ps u 

The next terms of the expansion in w/qv, including 
also of the second term in the right-hand side of (3.2) 
lead to a small  nonadiabatic correction to the sound 
velocity ~ s / s  -(s/v)'. We emphasize that in this geo- 
metry the role of the solenoidal fields is negligibly 
small in terms of the parameter s/v. 

We discuss now the limiting case of longitudinal sound 
propagation across H (q 1 H, a = 0). We assume for 
simplicity the collision frequency to be constant for each 
group. In this situation, the contribution of the solenoi- 
dal fields vanishes identically because the function 5,x 
is odd in p,, a s  a result of which the spectrum and the 
damping of the longitudinal sound a r e  determined by the 
f ormulaz3 

This formula generalizes, to an arbitrary dispersion 
law, the result previously obtained7 for free electrons, 
when 

Equation (3.6) then yields precisely Kulik's result7 

We turn now to an analysis of Eq. (3.2) at finite but 
small a, when q,v-w. In this case the contribution of 
the solenoidal fields turns out to be quite substantial. 
All the integrals in (3.2) have singuarities a t  those tilt 
angles a t  which a = w/qiJ,,,,. In other words, singu- 
latities in the integrals can result from the limiting 
points and from those Fermi-surface sections a t  which 
v, has an extremum a s  a function of p,. Thus, e.  g. ,  
in the case of a convex Fermi surface, the singularity 
is connected only with the limiting point. The structure 
of the right-hand side of (3.2) i s  such that the singular 
terms in i t  cancel each other (subtraction of two infi- 
nities takes place). As a result of this cancellation, a 
noticeable nonadiabaticity of the spectrum renormali- 
zation appears, and the remaining singular term con- 
tains a singularity no longer in the numerator but in the 
denominator. In other words, a t  the singularity point 
the contributions of the singular term to the spectrum 
and damping becomes equal to zero  and not to infinity, 
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a s  would have been the case if the solendoial fields were 
not taken into account and only the direct  deformation 
interaction retained [the first  term in the right-hand 
side of (3.2)]. 

For an isotropic (alkali) metal, when the effective 
mass m differs from m,, the tensor Aik  i s  deter- 
mined a s  before by formula (3.7), in which it i s  nec- 
cessary to introduce a dimensionless factor P con- 
nected with the fact that the electrons a re  not free.  In 
this case the disperison equation (3.2) can be represen- 
ted in the form 

oZ ner p z o ( o + i v )  - -s-= - (q.v)' 

q2 2p ( q , ~ ) ~  {I- j ( w + i v ) '  

where the function g(w, q,) is given by 

The logarithm in (3.2) is s o  defined that i t  is real  when 
the argument is positive. At real  q and complex 
w = w' - iw" (w" >0)  the imaginary part  of the logarithm 
is determined by the Landau bypass rule and is equal to 

where ~ ( x )  = 1 at  x >O and ~ ( x )  = 0 a t  x >O. 

Formula (3.9) illustrates the already noted cancella- 
tion of the singular terms: the function g(w, q,), which 
has a singularity a t  w = i q,u - iv, turned out to be in 
the denominator of the right-hand side of the dispersion 
equation (3.9). A numerical analysis of this equation is 
given in the next section. 

We point out that a singularity in an electron-phonon 
interaction can occur not only in the tilt effect, but also 
in a number of other cases. In such a situation, the 
appearance of a singularity in direct interaction between 
electrons and sound i s  always accompanied by an in- 
creasing role of the electromagnetic fields (longitudinal 
o r  vertical) and by a corresponding cancellation of the 
produced singularity. This is precisely why one cannot 
neglect the contribution of these alternating fields, 
which lead to terms similar to the second term on the 
right-hand side of (3.2). Yet in a number of papers 
(see, e. g. , Refs. 24-26) the dispersion equation was 
analyzed without such terms. As a result, a large 
part of the results of Refs. 24-26 calls for a review 
with allowance, in particular, fo r  the possibility of the 
appearance of waves of the zero-sound type. 

We obtain now a dispersion equation for sound in 
compensated metals. The need for  a separate con- 
sideration of these metals is brought about by the fact 
that the role of the solenoidal electromagnetic fields 
in the electron-phonon interaction depends substantially 
on the Hall conductivity that vanishes in compensated 
metals. In contrast to the case of unequal electron and 
hole densities, a substantial contribution to the electron 
elasticity is made now not only by the field component 
E,, but also by E, (the x axis is perpendicular to the 
vectors q and H). Simple calculations lead to the 

following form of the dispersion equation 

Here S is the area of the intersection of the Fermi sur- 
face by the plane p, = c o n s t ( 2 n z = ~ / m ,  = 0 ) .  

The structure of the dispersion equation (3.12), just 
a s  of Eq. (3.9), is such that the principal singular 
terms cancel each other, and the singularity is con- 
tained in fact only in the denominator of its right-hand 
side. 

In particular, a t  a = 0 the mean values that a r e  linear 
in the projection of the velocity 5, vanish identically, 
and the spectrum and damping of the sound a r e  deter- 
mined from the equation 

This equation shows that in the case of transverse pro- 
pagation the damping is due to collisions, and the re-  
normalization of the speed of sound a t  w >> v is of the 
same order a s  in (3.8). Formula (3.13) generalizes the 
result of Ref. 7 to include the case of a compensated 
metal. 

4. THEORETICAL ANALYSIS OF THE TILT EFFECT 

We proceed now to a solution of the dispersion equa- 
tion (3.9). Our purpose is to determine the velocity 
and the damping of the longitudinal sound a s  a function 
of the tilt angle u. Introducing the notation 

we write down Eq. (3.9) in dimensionless variables: 

where 

The tilt effect of interest to us is formally connected 
with the reversal  of the sign of the difference z - 0 and 
manifests itself most distinctly in the region of high 
frequencies, when the parameter 5 << 1. We confine 
ourselves therefore to an investigation mainly of the 
collisionless regime, putting 5 = 0. In the region of 
angles LL which is of importance for the tilt effect, the 
values of z and 0 turn out to be approximately equal and 
comparable with unity. For this reason Eq. (4.2), a s  
can be easily seen, does not contain the small adiabatic 
parameter s/v. Nonetheless Eq. (4.2) can be used for 
the description of a strong nonadiabatic interaction of 
electrons with phonons under conditions of the tilt ef- 
fect, inasmuch a s  in the derivationz2 of the initial sys- 
tem of equations (2.1)-(2.9) the adiabatic approxima- 
tion was not used. 
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We consider f i r s t  values of 8 that a r e  smal l  compared 
with unity. In this angle region, the function p(z, 8) a t  
5 = 0  is rea l  and positive, and i ts  expansion in powers 
of 8 is of the form 

From (4.2) we easily find the solution in the form 

This formula shows that a t  small  tilt angles a << s/v 
the speed of the high-frequency longitudinal 
sound increases with increasing a .  The reason why the 
solution (4.5) does not contain an imaginary frequency 
increment is that there is no collisionless absorption a t  
5=0 and small  a. The increase of the speed of sound 
continues until collisionless absorption se t s  in. It ap- 
pears  a t  z = 8, when the las t  term in the right-hand side 
of (4.2) vanishes. This point corresponds to 

At this point the speed of sound s(a) reaches a maximum, 
with 

I t  is seen that s,, exceeds the speed of sound s(0) a t  
a =0, and the difference between them does not contain 
the small  adiabatic parameter s/v. The spectrum of 
the wave near a = ao, on the side of the smaller  an- 
gles, is described by the expression 

At a = a0, c ~ l l i ~ i o n l e ~ ~  damping due to the reversa l  of 
the sign of the different z - 8 i s  turned on abruptly, and 
this leads likewise to a jump in the speed of sound a t  
this point. T o  determine the jumps of the velocity and 
damping on going though the value 8 = go, we write 
down the dispersion equation (4.2) for the complex 
quantity 

As we shall see,  A, and A2 turn out to be small  in ab- 
solute magnitude compared with unity. Using this c i r -  
cumstance, we represent Eq. (4.2) a t  8 = 8, + 0 in the 
form 

(4.10) 
Equation (4.10) determines the jumps of the sound 

velocity and of i ts  damping on going through the cri t i -  
cal angle c~,. The reason why A1 and A, a r e  finite i s  
that the logarithm in (4.3) acquires a phase n + cp a t  
a <a,. 

From the two equations for the rea l  and the imaginary 
parts  of A we can eliminate (A1 with the aid of the re-  
lation 

In(Cl I A I ) = (n+cp)ctg cp. (4.11) 

We then obtain an equation for cp: 

FIG. 1 .  Graphic solution of Eq. ( 4 . 1 2 )  at x= 0.812 ( B =  1 ) ; 
I-the function [ ( s i n  q ) / u ( r + p ) l I n [ x ( r + q ) /  sincp], 2-the plot 
of ( l / u )  c o s  9 .  

sin cp x(n+cp) 
roscp=-ln[-I. n+cp slncp 

It is seen from Fig. 1 that Eq. (4. 12) has a single root 
cpo=1.28048 a t B  =l. Hence 1A1=0.072225, A,  
= 0.020675, and A, =O. 069203. Accordingly, the 
jumps of the absorption and of the relative velocity 
on going through a! = a, a r e  

Thus, the speed and damping of the longitudinal sound 
in the collisionless regime a r e  discontinuous functions, 
i. e . ,  they have a non-analytic dependence on the tilt 
angle a. It is remarkable that despite the absence of 
the smal l  parameter s/v, the discontinuities a r e  never-  
theless numerically smal l  compared with unity. The 
physical reason of the obtained non-analytic dependence 
is the existence of an abrupt boundary in the Fe rmi  
distribution of the electrons in velocity and the jump- 
like onset of a collisonless interaction of electrons 
with the sound when the critical tilt  angle c~ = a, is 
reached. As for the smallness of the speed and 
absorption discontinuties, it  can be attributed to the 
fact that near the turning point on the Fermi  
surface the number of electrons which become involved 
in the collisionless interaction a t  the critical angle a, 
is small. A measure of this smallness i s  the ratio of 
ln(C/ ( A)) to n +cp in Eq. (4. lo), which equals 0.29875. 
Inasmuch a s  a t  the critical value a, the interaction of 
the electrons with the sound is strong and essentially 
nonadiabatic, i t  immediately affects not only the reso- 
nant electrons with v, = v,,~, , but also the electrons on 
the end sections of the Fe rmi  surface near the limiting 
points. By the same token, if the interaction is strong, 
not only the known resonant "beltsv and points become 
involved, a s  in the case of a weak (in t e rms  of the 
parameter s/v) nonadiabatic interaction, but also 
entire regions of the Fe rmi  surface near them. This 
manifests itself formally in the fact that the imaginary 
part  of the integral (3.10) for g(z, 8) exceeds n consid- 
erably even a s  v -  0, and i t s  rea l  part is only numeri- 
cally smaller  than Irng(z, 8). 

We point out that the logarithmic character  of the sin- 
gularity of the function b(z, 8 )  is due to the onset of the 
collisionless interaction of the sound with the electrons 
in the elliptical turning point. Fo r  this reason, the as-  
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FIG. 2. Dependence of the root of Eq. ( 4 . 1 2 )  on x. 

sumption that the Fermi surface a s  awhole is isotropic i s  
of no fundamental significance: P (z ,  0) acquires a lo- 
garithmic singularity also in the anisotropic case, if 
the turning point is elliptic. Anisotropy of the Fermi 
surface, f irst  affects the value of A ,  and second, can 
lead to the appearance of an additional factor l / h  in 
front of the logarithm in (4.3). The most substantial 
i s  the second circumstance, since i t  i s  precisely the 
one that changes mainly the constant C, i. e . ,  influences 
the ratio of A, and A,, and by the same token the rela- 
tive fraction of the electrons that enter in collisionless 
interaction with the sound a t  the critical value of the 
angle a. It can be shown that the elliptic limiting - 

point, for an arbitrary dispersion law, we have 

where xis the Gaussian curvature of the Fermi surface, 
m,,is a component of the effective-mass tensor, m is 
the cyclotron mass,  the zero subscript designates the 
turning point, and the integral 1 I m 1 dp, i s  proportional 
to the density of the electronic states Q(&,). It stems 
from the regular part  of the integral in the denominator 
of the second term of (3. 2). It follows from expression 
(4.14) that when h is increased the role of the angular 
part  of P (z ,  0) decreases and this corresponds to a de- 
crease of the fraction of the electrons that interact with 
the sound a t  a = a,. We note that h is equal to unity 
even for an anisotropic quadratic electron dispersion 
law, and the deviation of h from unity is evidence of an 
essentially nonquadratic &(p) dependence. 

Thus, the influence of the anisotropy of the Fermi 
surface in A, and A, manifests itself through a change 

FIG. 3. Dependence on x of the relative jumps of the speed 
(curve 1-A,)  and of absorption (curve 2-A2) of the longi- 
tudinal sound at the critical angle ff o. 
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FIG. 4 .  Dependence of the change of the relative speed of 
sound A S / S  = ( s (a ) - s ) / s  and of the relative absorption on 
8=ff v / s  for an isotropic metal ( B =  1 ); the inset shows the 
vicinity of the maximum. 

in the constants B and C. Therefore Eq. (4.10) can 
be used to analyze the dependence of the jumps of the 
absorption and speed of sound on the anis~tropic-Fermi 
surface characteristics that determine the value of the 
parameter H. = 3C/B. Figure 2 shows the dependence 
of the root of Eq. (4.2) on H.; a s  x - 0 the root cp, tends 
to n. Figure 3 shows the dependence of A, and A2 on 
x. It i s  curious that the jump in the speed of sound 
reverses sign a t  x = no= 3/2n. When H. < no and x 
tends to zero, the absorption jump A, decreases mono- 
tonically to zero, while the jump A, of the speed of 
sound goes through a minimum (in the region of very 
small x - 10-9, and then likewise tends to zero. 

Beyond the critical angle o > a,, the speed of sound 
decreases monotonically, and fa r  from a, we have 

At a! >a, the damping of the sound f i rs t  increases, 
reaches a maximum, after which it decreases like 

The dependence of the speed and absorption of the 
sound on the angle o is illustrated in Fig. 4, which 
shows the results of a numerical solution of the disper- 
sion equation (4.2) in the collisionless regime ( 5  =0)  
for a Fermi sphere (A = 3/4, B = 1). The maximum of 
the relative damping is located at 0 = o v / s  1 .4  and is 
equal to 0.114, i .  e . ,  i t  exceeds by approximately 1.35 
times the damping jump. The onset of a maximum in 
the angular dependence of the damping is  due to the 
decrease of the phase cp of the complex parameter A in 
(4.9) and to the relatively smooth increase of the rela- 
tive number of electrons that participate in the colli- 
sionless absorption of the sound. 

Allowan'ce for the finite relaxation times and temper- 
ature leads to an obvious smearing and smoothing of the 
singularities in the absorption and in the speed of the 
sound. We, however, shall not discuss here in detail the 
role of the collisions and of the temperature. 
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Violation of the condition j = O  on account of the term 
cur lcur lE1 in (2.9)  has no fundamental effect on the 
considered picture and can lead only to a change in the 
values of A, and 4. An investigation of the role of all 
these factors in the tilt effect will be reported separately. 

In conclusion, we refer to the experimental plot of the 
speed of-longitudinal sound in gallium, obtained by 
Bezuglyi and Burma (see Fig. 3 of Ref. 2). The theo- 
retical analysis above is in good qualitative agreement 
with the experimental data. In particular, the increase 
of the speed of sound with increasing a and i t s  abrupt 
decrease beyond the threshold a r e  distinctly observed. 
The quantitative differences between the experimental 
and calculated results a r e  due to the fact that the model 
of an isotropic uncompensated metal does not fully 
apply to gallium, which is a compensated metal with a 
complicated and multiply connected Fermi  surface. 

We a r e  grateful to A. A. Bulgakov for the numerical 
calculations of the angular dependences of the speed and 
of the absorption. 
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