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A study is made of one kind of oscillations of magnetic filaments which are of interest in connection with 
energy transfer in a plasma along magnetic filaments. It is shown that taking the inhomogeneity of the plasma 
parameters inside the filaments into account leads to a strong damping of these oscillations, so that estimates 
of the transfer of mechanical energy along the magnetic filaments must be based mainly on the flexural 
oscillations of the filaments. 

PACS numbers: 85.70. - w 

1. INTRODUCTION 

Under astrophysical and laboratory conditions one 
often meets with a situation where the whole of the mag- 
netic flux is concentrated in separate thin and widely 
spaced tubes (called magnetic filaments), whereas 
outside these tubes the magnetic field is weak o r  com- 
pletely absent. In particular, such a situation i s  typical 
for the atmosphere of the where the oscillations 
of the magnetic filaments a r e  apparently an important 
agent which guarantee the transfer of mechanical ener- 
gy from the lower layers of the photosphere to the 
chromosphere. Under laboratory conditions a "mix- 
ture" of a plasma with magnetic filaments can ar ise  
near the boundary of the plasma with the magnetic field 
when the flute instability develops. 

In connection with the problem of energy transfer 
along the filaments, the long-wave oscillations with a 
longitudinal wave vector k which is small  compared to 
the reciprocal of the filament radius R" a r e  of most 
interest: such oscillations have usually a relatively 
small damping ra te  and a r e  easily excited by the large- 
scale plasma motions. Long-wave flexural oscillations 
of magnetic filaments have been studied before4; oscil- 
lations of an ensemble of such filaments were studied 
at the same time. The effect of a plasma inhomogeneity 
on the damping of flexural oscillations was elucidated 
in Ref. 5. 

Defouw6 indicated an interesting kind of oscillations 
of a magnetic filament. In his paper he dealt with axial- 
ly symmetric oscillations in which the sum of the gas- 
kinetic and magnetic pressures was not perturbed: the 
compression (rarefaction) of the plasma along the fila- 
ment is compensated by the decrease (increase) in the 
longitudinal magnetic field due to a corresponding change 
in the cross section of the filament. We shall call 
these oscillations slow a s  they are ,  in essence, some 
kind of analog to the slow magnetosonic waves. In that 
sense the normal acoustic oscillations of a filament in 
which the gaskinetic and magnetic pressures change in 
phase a r e  the analog of the fast magnetosonic waves, 
and at a wavelength comparable with the slow longi- 
tudinal waves they have a much higher frequency. 

An important feature of the slow oscillations (how- 
ever, not mentioned in Defouw's papere) is connected 
with the fact that one can check that the absence of 

perturbations of the total pressure leads to the practical 
vanishing of the "radiative" damping of the oscillations 
which is connected with the emission of sound waves 
into external space. In that sense the slow oscillations 
differ strongly from the axially symmetric acoustic 
oscillations for which the radiative damping rate is 
comparable with the frequency and which hence can, in 
fact, not propagate along filaments (cf. Ref. 4). Slow 
oscillations, if they were to exist, could thus be con- 
sidered to be an important agent guaranteeing the trans- 
f e r  of energy along the filaments. 

However, it follows from qualitative considerations7 
that the slow oscillations must be very sensitive to in- 
homogeneities in the plasma and in the magnetic field 
over the cross  section of the filament. As these in- 
homogeneities certainly exist under realistic conditions, 
it is necessary to consider their role in any plausible 
model of the slow oscillations. A study of this problem 
is the basic content of the present paper. 

The analysis given in the present paper has shown 
that under conditions when the relative drop in the 
plasma density and/or magnetic field over the filament 
radius exceeds the small amount E=(kR)' (k is the wave 
vector of the oscillations and R the radius of the fila- 
ment) the slow oscillations vanish. Apparently, this 
result means, in practice, that the slow oscillations can 
not be effective transfer agents for  the energy, s o  that 
energy transfer along the filament can occur only 
through the flexural oscillations which were studied 
earlier.4 It is also interesting to note that the damping 
mechanism observed here is in essence different from 
the absorption effect in a resonance point8 and is con- 
nected with the fact that radiative losses again become 
significant when there a r e  plasma inhomogeneities 
present. 

2. EQUILIBRIUM STATE 

We introduce a cylindrical system of coordinates (r, 
p, Z) with the z-axis directed along the unperturbed 
magnetic field. We assume the unperturbed state to be 
axially symmetric and uniform in z .  In other words, 
the unperturbed density p, the pressure P, and the 
magnetic field H(O,O, H) depend solely on r. Bearing 
in mind that the field inside the filament is much 
stronger than outside, we shall simply assume the ex- 
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FIG. 1. 

ternal magnetic field to be equal to zero (this is not a 
crucial assumption; one can show that taking the exter- 
nal magnetic field into account does not affect the final 
result). We note that Defouw in his paper assumed that 
the magnetic field, the density, and the pressure inside 
the filament were uniform and that the filament had a 
sharp boundary. We shall, on the other hand, consider 
a more realistic situation and assume that the mag- 
netic field decreases smoothly from a maximum value 
on the axis of the filament to zero a s  r-a (Fig. la).  
We shall assume that the plasma density and pressure 
a r e  also smooth functions of r. 

The condition for equilibrium of the plasma gives a 
unique relation between the functions H(r) and P(r):  

where P, is the pressure at  large distances from the 
filament. We can express the local sound velocity s ( r )  
and the local Alfven speed a ( r )  in terms of the functions 
p ( r ) ,  P(Y), and H(r): 

where y is the adiabatic index. The functions s ( r )  and 
a ( r )  a r e  related through the equation 

s2 ( r )  + yaz ( r )  / 2 = ~ . ~ p  ( r )  /P,  

(we indicate by asterisks the values of the correspond- 
ing quantities at  large distances from the filament). 
For the particular case when p(r) = const =p,,  we show 
the characteristic behavior of s2(r) and a2(r) i l k  Fig. lb. 

3. EQUATIONS FOR SMALL FILAMENT OSCILL- 
ATIONS 

We shall start  from the linearized equations from 
single-fluid magnetohydrodynamics: 

av I 
pat=4n[rothX HI-grad6P, 

-= ah ro t IvXH] ,  
at 

a6P - + div pv=O, 
at 

d6F - + v grad P=O. 
at 

Here F=Pi7, while v, h, 6p and 6P a re  the perturba- 
tions of the velocity, magnetic field, matter density, 
and pressure: 

We consider perturbations which a r e  independent of cp 
and which propagate along the z-axis with a wave 
vector k and frequency o, i.e., we shall assume that h, 

6p, 6P, and v change in proportion to exp(-iwt +ikz). 
For such perturbations we get from Eqs. (2) 

Equation (3) gives 

while Eqs. (4) and (5), if we use (6), take the form 

We eliminate 6p from these two equations and sub- 
stitute the expression for 6P thus obtained into Eq. 
As a result we get 

The first term on the right-hand side vanishes due to 
the filament equilibrium condition (1) and then this 
equation takes the form 

In order to obtain an expression for v ,  we transform 
the expression on the right-hand side of Eq. (7), using 
(9), (lo), ( l l ) ,  and the equilibrium condition (I), to the 
form 

H h  s2+aZ 1 sZ 
tip+--= --rv.+-kpv,.  

4x i o  r o 

Furthermore, substituting here the expression for v ,  
from Eq. (12) we find 

H h ,  p oz(s2+az)  - k 7 a z  1 a 
t ip+-=-  -- ru,, 

4x i o  o ~ k ' s '  r ar 
(13) 

and finally we get 
a 02(s2+az)  -k's2a2 I a -- (14) 

ru,+p(oz-kza2) v,=O. 
arP ~ 2 - k z ~ 1  ' r ar 

This equation describes the small oscillations of the 
plasma both inside and outside the filament. 

4. DISPERSION RELATION 

At large distances from the filament when Y>>R and 
where one can assume the substance to be uniform and 
the magnetic field to vanish, Eq. (14) is simply the 
Bessel equation. Bearing in mind that in the region 
r>>R there must only be waves going out from the fila- 
ment (there a r e  no incoming waves) one can verify that 
here the solution is proportional to a second-order 
Hankel function (emission condition): 

u , = A ~ '  (qr ) .  
(15) 

Here q = (w2/s; - k2)'" and we choose the branch of the 
roots with Re q>O. It is understood that Re w > 0; 
when Re w<O one would have to put v,-H(:)(qr). 

At small distances (as compared to k-') from the 
filament axis the second term on the left-hand side of 
Eq. (14) is small compared to the first  one (one sees 
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easily that the small  parameter is k2R2). We can there- 
fore easily construct an approximate solution in that 
region. Neglecting the second term in the zeroth ap- 
proximation we find that 

where B is a constant. 

From the condition that there be no singularity a s  
Y - 0 we find 

B ' (a2-kzsz)  r'dr' .,= ,J 
(1,' (sZ+aZ) -k2sza2 (17) 

0 

This solution i s  valid for any ?'-dependence of p and H. 
When we evaluate the integral (17) it follows, in ac- 
cordance with the causality principle, that w has a 
positive imaginary part, Imw>O. 

One can take the last term in Eq. (14) for the deter- 
mination of u, in the region Y << k" into account in the 
framework of perturbation theory. One can, however, 
check that the corrections which then appear a r e  
unimportant. 

When R << r<< k-l Eqs. (15) and (17) have an over- 
lapping region of applicability and in that region we can 
join the solutions; this enables us to obtain the disper- 
sion relation. To really effect the joining we consider 
the behavior of the solution (17) in the region Y>>R. 
Here a = 0 and s = s ,  = const, i.e., the integrand changes 
in proportion to Y .  Hence, the main term in the asymptotic 
form of o, i s  proportional to rwhen Y>> R. To find the next 
term in the expansionweadd to and subtract from the ex- 
pression for u,  the term 

after which we get 

The expression inside the square brackets decreases 
fast at large r and, hence, we have for Y>> R 

where D(w) i s  a quantity defined by the formula 

while 

We have thus found the next term in the asymptotic 
expression. 

In accordance with the causality principle we must 
put Imw > 0 when evaluating D(w). In the region Imw 
<O the function D(w) is determined by means of the 
analytical continuation procedure. Using now an ap- 

proximate expression for the Hankel function for small 
values of the argument, 

H,"' =qr/2-2ilnqr (20) 

and equating the expressions obtained from Eqs. (18) 
and (20), we find the dispersion relation: 

The integrand in Eq. (19) for D ( d )  i s  non-vanishing 
only when r 5 R, i.e., D ( w )  - R2. As we assume that 
R<<kml, the ratio of the left-and right-hand sides of 
Eq. (21), assuming that w/ks, w/ka " 1, turns out to be 
of the order of magnitude of k2R2<< 1. Therefore, in 
the class of solutions with w/ks, w/ka- 1 (and the slow 
waves belong just to that class) one can satisfy condi- 
tion (21) only through a special choice of w, such that 
the denominator w ~ - ~ ~ u ~  be close to zero. That fact 
by itself shows the great sensitivity of the result to the 
inhomogeneity of the plasma, which will be confirmed 
by further analysis. 

5. STUDY OF THE DISPERSION RELATION 

Firs t  we use Eq. (21) to reproduce Defouw's result 
for a stepwise distribution of the plasma parameters 
(uniform filament with a sharp  boundary). In that case 

and we have from (21) 

As there stands a large quantity (Q" 1, kR << 1) on the 
right-hand side of Eq. (22) one can easily find both 
solutions of this equation. One of them corresponds, in 
agreement with what was said at the end of the preced- 
ing section, to an almost exact vanishing of the demoni- 
nator of the left-hand side: 

and the second (lzl>> 1) 

The indexes S and F indicate that the solutions found 
correspond to the slow and fast magnetosonic oscilla- 
tions. 

Using the remark following Eq. (15) we find w, and 
w, from the expressions for z, and zF: 

The real  part of w, i s  the same a s  Defouw's result 
while the imaginary part describes the radiative damp- 
ing (an effect neglected by Defouw). It i s  clear that 
when kR << 1 the radiative damping is ,  indeed, small.') 
As to the fast oscillations they have a very high fre- 
quency and turn out to be rapidly damped. We note that 
for them q-R-l  so  that for them the expansion (20) i s  
not valid; equation (25) for w, has therefore only a 
qualitative meaning. 
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It is clear that when &<< 1 the remaining quantities in 
Fig. 3. [,= -~QC/&'R' ,  [ ' = i n  ( 1  - ~ / 2 )  ( 1  - ~ / 2 - a ~ ~ / u ~ ~ )  

the integral for D a r e  independent of r inside the tube. 

In order to formulate the conditions under which r m ~  , 

We thus have for  D 
R2 ~ ~ ~ s . ~ ( z - a ~ ~ I u O I )  dc 

D ( z ) - -  2 s h o z  ~:;--ltEb' 

where z is defined by Eq. (23). This integral deter- 
mines an analytical function D ( z )  in the complex z-plane 
with a cut between the points z = 1 - 6 and z = 1 (Fig. 2): 

RZ ~,'s.%-a,~/u,' Z- I+E 
D ( z ) =  -------1n-. 

2  a,'sOz E 2-1 

The imaginary part of the logarithm changes between 
the limits - in  and in. 

the plasma inhomogeneity s tar ts  to show an ap- 4 

preciable effect on the slow oscillations we con- 
sider a model situation when the quantity 

s2az /'?, - 
0'- - i' =\ 

s2+a2 
\ 

changes along the radius of the filament by a small  \ \ 
amount E :  '\ ' . 

u2= 1 ; ~ ( l - ~ ~ l R ' ) .  r 4 R  ---- 
r>R 

mapping the contour shown in Fig. 2 onto the complex 
P-plane. In accordance with the Nyquist criterion the 
number of roots of Eq. (26) lying in the lower z-half- 
plane2' i s  equal to the number of times the hodograph 
of 3' goes round the point -iQ&/k2R2. We show the 
shape of the hodograph in Fig. 3. It is clear from the 
figure that the critical value of & i s  determined from 

Re F 

h)  

tr ,' ‘q 
\ 

-/A' \ 
- I 

11 1 1 

0 
/ 

*-/--' -------- -- 

In the framework of the model considered the dis- the relation 
persion relation has the form 

As E - 0 we can perform an expansion in powers of & 

on the left-hand side and we a r e  led to the dispersion 
equation (22), which has the solution z =  1. One can 
check that this result is valid when E<< k2R2. By con- 
trast ,  when & >> k2R2 (even though still &<< 1) Eq. (26) 
cannot have a solution 2 %  1. Indeed, as we noted 
earlier, the imaginary part of the logarithm changes in 
the limits from -in to in. Thus, if the absolute mag- 
nitude of the right-hand side of (26) is large compared 
to unity, the modulus of z must also be large compared 
to unity in order that we can satisfy Eq. (26). We can 
easily find'that solution. When lzl>> 1 

and from (26) we get z = -iQ&/k2R2, i.e., a solution with 
(21 >> 1, corresponding to a fast wave [cf. (25)). 

The solution corresponding to a slow wave exists thus 
when & s k2R2, while it disappears when G . 2  k2R2. We 
now find the critical value of & for which the solution 

When kR<< 1 it follows from. this that 

6. CONCLUSION 

Physically, the origin of the effect considered in the 
present paper i s  connected with the fact that an inhomo- 
geneity in the plasma parameters leads to an impossi- 
bility to satisfy the condition that nowhere across  the 
cross section of the tube [except that point where the 
local value of u equals w/k; see  Eq. (14)] i s  the total 
pressure perturbed only a little; therefore, in the case 
of an inhomogeneous filament the radial pulsations of 
the surface become large and cause a catastrophic 
growth of the radiative losses. In that sense the effect 
differs strongly from the one considered earliel5 of 
the absorption of flexural oscillations of a filament in 
the Alfv6n resonance point w = k a  (see also Timofeev's 
review articles). 

vanishes. To do this we construct the logarithm of the As it is difficult to expect that the plasma inside a 
function magnetic filament would be uniform to a high degree, 

we a r e  led to the,conclusion that in actual fact the slow 
oscillations of a magnetic filament do not exist. For 
estimating the transfer of mechanical energy along 
magnetic: filaments one must thus base oneself solely 
upon flexural (and, maybe, torsional) oscillations of 
the filaments. 

FIG. 2 .  

 he statement in our earlier paper4 that there are no weakly 
damped oscillations with m= 0 i s  connected with the fact that 
in that paper right from the start we studied the case of a 
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zero-temperature p lasma inside the f i laments (s = 0 ) ; in 
that  c a s e  u =  0 and t h e  s low osci l lat ions d i sappear  indeed. 

2 ' ~ s  i t  i s  c l e a r  that  the  s y s t e m  i s  s table,  we  are interested 
only in  roots  with Im E < 0. - 
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