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A theory of sudden perturbations, valid at high collision velocities u in the range Ze2/far 5 1 ( Z  is the charge 
of the incident particle), is used to obtain formulas for the probabilities of the Coulomb excitation of arbitrary 
states in the discrete and continous spectra of a hydrogenic atom and a negative ion with an outer S electron 
by a fast bare multiply charged ion. The total probabilities of electron detachment are investigated in detail 
throughout the whole range of the impact parameters and for various values of Ze2/far. The angular and 
energy distributions of fast secondary electrons (Wc k mu), which do not satisfy the suddenness condition, are 
analyzed by a method similar to the usual impulse approximation. 

PACS numbers: 34.50.H~ 

1. INTRODUCTION. GENERAL RELATIONSHIPS city in a target atom to the velocity of the incident 
particle Collisions involving multiply charged ions have re- 

cently become the object of intensive experimental ~=h/rnav=Z.ez/hu 
and theoretical investigations in connection with analy - 
sis of the role of impurities in thermonuclear fusion (m is the electron mass) and the quantity 

plasma, development of ion implantation processes, ~=Zez/hu=E(Z/Z.). (2) - .  . 
determination of the energy spectra of nuclear fission 
fragments, design and use of accelerators of heavy which determines-in the case of small impact para- 

high-energy ions, and need to interpret correctly the meters-the intensity of the interaction of this elec- 

data on ultraheavy cosmic rays. tron with a moving force center of charge 2. 

In a majority of the experiments on the stripping of The progress in generation of beams of fast bare 
atomic shells, in order to obtain partly o r  totally bare ions makes i t  reasonable to expect, in the near future, 
nuclei, the velocities of ion beams a r e  such that precision experimental studies of the Coulomb excitation 

of single atoms by fast multiply charged ions employ- v>eZIh, Zezlt2v<i. 
ing the already available method of excitation by pro- 
tons and alpha particles. In the simplest case one has A detailed investigation of the processes of the Coulomb 
to determine the cross sections of the individual excita- excitation and ionization under these conditions is re- 
tion or ionization channels, weheras in more complex ported below. 
situations one needs to determine the probabilities of In the case of fast protons and multiply charged ions 
transitions for various impact parameters by a method when v << eZ/A, the whole range of target parameters of 
developed in the last few years. interest to us b 2 a,=Az/me2 can be considered a s  fol- 

Investigations of this kindare undoubtedly of scientific 
interest because, from the theoretical point of view, 
we have here one of the few problems in atomic colli- 
sions that can be solved in a consistent manner when a 
strong field is introduced from outside into a system 
and i ts  influence cannot be allowed in any order of the 
conventional perturbation theory. 

The problem of the dependence of the probabilities 
of individual transitions on the impact parameter 
in the theory of the Coulomb excitation by fast protons 
has become urgent only because of the development 
of new experimental techniques and a deeper analysis 
of the channeling effect. Calculation of cross  sections 
in this problem is mch eas ier  and adequate mathemati- 
cal methods a r e  generally familiar. However, in the 
theory dealing with multiply charged ions the problem of 
the dependence of the probabilities on the impact para- 
meter is introduced organically, in contrast to the case 
of protons, because the correct  answer is obtained for 
different trajectories of telative motion by using quali- 
tatively different theoretical approaches. l 

The two central parameters in the theory of the 
Coulomb excitation a re  the ratio of the electron velo- 

lows. Electrons in inner shells of the target atom 
(5  2 1) experience a weak external interaction because 
the characteristics quantity for such electrons in the 
dipole range b a a, >>a = a d z ,  is of the order of qeff 
-qa/b >> 1. Therefore, the probabilities of the 
Coulomb excitation involving these electrons a r e  
found using the conventional perturbation theorYe3 in 
the lowest order in q. 

A general approach to the solution of this problem in 
the case of outer-shell electrons (2, - 1, 5 << 1) is given 
in Ref. 1.  In the case of small  impact parameters 
(b s a,) the Coulomb excitation of states in the discrete 
spectrum should be described using the theory of sud- 
den perturbations4 and in the dipole range ( b  >>a,), i t  
should be described by the conventional theory. Match- 
ing of the results  obtained in these two cases [which can 
be made more  accurately the better the condition qf  
<< y is satisfied, where y = (1 - . u ~ / c ~ ) - " ~  is the Lorentz 
factor] makes i t  possible to calculate correctly also the 
excitations cross  sections. 

In addition to separate discussion of the dipole and 
nondipole ranges in the ionization p r o c e ~ s , ~ * ~  one 
should also distinguish between channels involving de- 
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tachment of fast (kao>> 1) and slow (kaos  1) weakly 
bound ( 5  << 1) electrons (fik is the momentum of the 
knocked-out electron). The theory of sudden pertur- 
bations can be applied in the range b S a, right up to 
the values of k corresponding to the condition iik/mv << 1. 
However, if fik ik mu, the situation simplifies in a 
different sense, because we can then use a method 
similar to the conventional impulse approximation (for 
details see Appendix B). 

The relative trajectory of the incident heavy particle 
will be regarded a s  rectilinear R ( t )  = b + vt, and the 
interaction potential with an electron in an atom a s  of 
the retarded Coulomb type: 

The scattering operator includes a quantity proportional 
to the Fourier component of the potential (3): 

i m  6. = -- j dt exp(int)  C ( t )  
A -- 

=2iq [ exp ( . " v ~ ) ~ o ( % I ~ I ) - ~ o ( % ) ] ,  z- (4) 

where 

K,(z) is a modified Bessel function, and s is the projec- 
tionof the vector r on the plane of the impact parameter. 
In the conventional perturbation theory the excitation 
amplitude includes a Fourier component a t  the frequency 
of a transition in the target, 52= o, - mi, and in the 
lowest order theory of sudden perturbations4 i t  i s  ex- 
pressed in terms of the Fourier component (4) a t  zero 
frequency: 

2. IONIZATION OF A HYDROGENIC ATOM 

The probability of the Coulomb ionization 

is calculated in the suddenness approximation using 
the amplitude 

where do, is an element of the solid angle within which 
the momentum fik of the knocked-out electron is located 
The wave function of the final state in Eq. (8) is nor- 
malized to unit volume: 

m 1 

(-) 
k 

9. (.I= 4 n e m * z  z Y ~ . * ( ~ )  y l m  ( f )  
1-0 ,"--I 

r ( l+ l - i lka)  i 
r(21+2) 

(2tkr)'e-'"F 1+1+- ; 21+2; 2ikr ( lea (9) 

The ionization amplitude was calculated in the first  
work cited under Ref. 5 by a method representing essen- 
tially a development of the methods in Ref. 7 (see also 
Ref. 8). We shall obtain a different, simpler, expres- 
sion and also show that the amplitudes of any transi- 
tions in a hydrogenic atom can be found in a unified 

manner using a function M,,(a;@) calculated in the Ap- 
pendix A. Moreover, a s  shown below, our method 
makes i t  possible to find all the more important asymp- 
totes for the ionization channel and for the bound- 
bound transitions. 

The amplitude (8) is described by a ser ies  containing 
the functions M,,(a;P): 

mI8 ( k )  - 4 V ~ ~ / ~ ~ 2  2 YLm ( k / k )  r ( l + l + i / k a )  

Its asymptote in the range b << a for any value of ka is 

Using the relationship [ ~ q .  (13) in 02.3.2 of Ref. 91 
for the hypergeometric function in Eq. ( l l ) ,  and omitt- 
ing unimportant phase factors, we find that i f  b <<a and 
ka << 1, then 

Similarly, the amplitude of arbitrary bound-bound 
transitions can be calculated in the nondipole range: 

The result (13) simplifies greatly i f  we investigate the 
excitation of high-lying levels (n >> 1). In the range of 
parameters n >> 1 + 1, nZ >> r /a ,  of interest to us ,  the 
wave function is 

and instead of Eq. (13) we have 

B n l m ( b )  = i*-e. ( - 2 ) a  Mlm(l+o; I ) .  
Ynna (21+o+I) lo! 

In the limit b <<a, we then find 

We shall give, by way of example, the asymptotes of 
the amplitudes of the 1s -nS transitions in the b <<a 
case: 

B,8-ms(b)  =F( f - iq )F(Z- iq )  (g)3 F (  I-n, 3-2iq; 2; 
2  

{the factor [b(n + 1)/2an]ziq i s  omitted here), and 
their values in the n >> 1 case: 
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3. DETACHMENT OF AN ELECTRON FROM A 
NEGATIVE ION 

The results obtained in Sec. 2 using the hydrogenic 
model can also be employed in calculations relating to 
the excitation and ionization of neutral atoms and of 
positively charged ions. In the case of negative ions, 
we have here fundamental differences associated with 
a basically different behavior of the wave functions of a 
weakly bound electron in the ground state and in the 
continuous spectrum. Thus, the problem of the Coulomb 
detachment of an electron from a negative ion should 
be discussed separately. 

The states of an outer S electron in a negative atomic 
ion can be represented well by the states of a particle 
in the field of a point potential. If this model is adopted 
there i s  only one bound state and i ts  wave function is 

$0 (r) = ( h a )  -" exp (-rla) /r  (19) 

and its energy is E,= -Ii2/2rnd; the probability of de- 
tachment i s  simply the sum of the probabilities of the 
inelastic excitation channels. 

In the nondipole range the amplitude of the elastic 
channel calculated from the theory of abrupt perturba- 
tions is 

We, , ( b )  =n-'"Moo ( -2 ;  2 ) .  (20) 

Hence, in particular, we can easily obtain expressions 
for the total probability of detachment of an electron in 
the b <<a case 

and in the case when b >>a: 

The amplitude of detachment accompanied by the emis- 
sion of an electron with a momentum Eq is found from 
the general formula (8) after the substitution of 

This amplitude can be described by 

Here, 

If b << a and qa << 1, then 

In the limit b <<a, Eq. (25) can be made more flexible 
in respect of the parameter qa, in the same way a s  has 

FIG; 1. Probabilities of individual excitation and ionization 
channels of a hydrogenic atom in the limit b << a. 

been done in the derivation of formula (11). Reducing 
the sum over k before integration with respect to r in 
Eq. (A7) to a Bessel function of half-integer order, 
bearing in mind that i f  b <<a, then practically throughout 
the whole of space we have 

lml+3 B.(r) = ( b h )  21n-L-*/I' (A+ - - i n ) .  

we obtain 

For any value of qa in the limit b <<a, we have 

2 1 - ) I 1  b 1-iqa '"I 
Moo(-2; I-iqa) = -- 

1-iqa - 2  (PT) . (29) 

4. DISCUSSION OF RESULTS 

The differential probability of ionization of a hydro- 
genic atom in the nondipole range can be determined 
if, bearing in mind the orthonormalization properties 
of the spherical functions, we integrate directly the 
square of the modulus of the amplitude (8) along the 
directions of momentum of the knocked out electron. 
However, in calculating the total ionization probability 
there is no need to carry out separately the very com- 
plex numerical calculations of the type reported in Ref. 
5. The probability is found much more easily and 
sufficiently accurately by subtracting from the total 
probability of all  the inelastic channels W,,,, (b) = 1 
- W,,,,,(b) the probabilities of the first  few excitation 
channels and the sum of all the others, whose contri- 
bution is estimated from the above asymptotic expres- 
sions in the n >> 1 case. 

Figure 1 shows the dependence of the total probability 
of ionization W,,,(b) on the parameter q in the limit 
b <<a. For  comparison, this figure includes the pro- 
babilities of the elastic channel, several inelastic 
channels, and the total probability W,I (b). It should 
be pointed out that in the nondipole range the proba- 
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bilities of excitation of the S states in the discrete 
spectrum vary nonmonotonically with q .  For example, 
of b << a, al l  of them have maxima in the region of 
q =O. 75 (which is shifted slightly to the right on in- 
crease in n). The point is this: a further increase in 
q makes the Coulomb ionization the dominant process 
and in this range it i s  more important than the proba- 
bility of the elastic channel. In view of this nonmono- 
tonic behavior, we can also expect nonmonotonic de- 
pendences of the other channels 1s -nS on the impact 
parameter in the case when q >0.75, because an in- 
crease in b / a  reduces continuously the effective in ter-  
action qecr -qa/b and moving effectively to the left of the 
W,,~,,(qecc) curves, we again pass the probability peak 
a t  q,,, = 0.75. 

The situation is different in the case of ionization. 
For any value of q ,  the dependence W,,,(b) is monotonic, 
a s  shown in Fig. 2. It is also worth noting that, ac- 
cording to the theory of sudden perturbations, the re-  
lationships between the probabilities of electron de- 
tachment from a negative ion differ considerably from 
the probabilities of detachment from a neutral atom 
(or a negative ion). This is mainly due to the quali- 
tatively different behavior of the wave functions of the 
ground state, which results in very different values of 
the probabilities of the elastic channel. In the limit 
b <<a, the total probability of all the inelastic processes 
is much greater in the case of a negative ion when the 
state of an electron is largely localized (see the depen- 
dences of q in Figs. 1 and 3).  Moreover, in the case 
of a hydrogenic atom there a re  additional excitation 
channels that do not cause ionization. Conversely, a t  
high impact parameters, when the probability of elec- 
tron detachment decreases in either case in accordance 
with practically the same law [see the asymptote (22)], 
an additional power-law reduction in the electron density 
in a negative ion [see Eq. (19)] reduces also the role of 
inelastic channels for this ion. 

The considerable difference between the ionization 
probabilities calculated by two different methods is 
demonstrated in Fig. 4. In the nondipole range for 
11 << 1 (and in Fig. 4 also even for q = 0.5) the results 
of the theory of sudden perturbations a r e  close to 
those given by the conventional theory, but the difference 

FIG. 2. Probabilities of ionization of a hydrogenic atom (con- 
tinuous curves) and of Coulomb detachment of an electron 
from a negative ion (dash-dot curves), calculated using the 
theory of sudden perturbations. 

FIG. 3. Probabilities of the elastic channel in the case of 
Coulomb detachment of an electron from a negative ion in the 
limit b <<a. 

between them r ises  rapidly on increase in 7 so  that 
the ionization probabilities a r e  calculated using the con- 
ventional theory lose their physical meaning. The 
conclusions of the theory of sudden perturbations be- 
come qualitatively incorrect for high impact parame- 
t e r s  when the suddenness condition i s  no longer obeyed. 
Matching of the correct  results in the two regions solves 
the problem of the dependence of the probability of ion- 
ization of a target atom by a fast multiply charged ion on 
the impact parameter. In the case of cross sections the 
theory of sudden perturbations changes the results only 
slightly compared with the usual method of renormali- 
zation of the probabilities in the nondipole range6 be- 
cause if 5 << 1, the main contribution to the ionization 
comes from the dipole approaches in the theory of Cou- 
lomb detachment of an electron from a negative ion i s  
basically the same a s  in the case of ionization of a 
neutral atom. However, it should be noted that, other 
conditions (charges and velocities of the incident par- 
ticles) being constant, the matching is much more ac- 
curate because the inequality q5 << y is satisfied by a 
larger margin. 

FIG. 4. Probabilities of Coulomb ionization of a hydrogenic 
atom calculated using the theory of sudden perturbations (con- 
tinuous curves) and by the conventional method assuming that 
1*/10 and y = 1 (dash-dot curves ). 
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APPENDIX A the asymptote of the integral (Al) in the b <<a case is 

We shall consider an integral of the type 

I 2l+l (1-lml)! 
Y, , (r /r)  = (-I)("'+ lml ) lz i l  -- P:"" (cos 0 )  etmv, (A2) 

4n (l+lrnl)! I" 
cos ~=rvIru,  cos cy-rb,rb. (A31 

The associated Legendre polynomial, which occurs in 
the spherical function (A2), is a product of sin'"' 0 and a 
polynomial of degree (1  - 1 rn 1 )  and parity (-1)'-Im' on 
coso: 

It follows from the theory of Bessel functions (see also 
Refs. 7 and 10) that 

If the above relationships a r e  used to integrate Eq. 
(Al) with respect to the angles cp and 0 and the vectors 
p, we obtain 

A+$ ' 
M A ( b )  = (f) J d ( $ )  (5) a - k t " l e - ~ r / o ~ A ( r ) .  (A7) 

0 

The function B , ( r )  can be expressed in terms of a dis- 
continuous Weber-Schafheitlin integral and, in the 
ranges of parameters of interest to us,  this function 
is given by 

Integration of Eq. (A7) gives finally 
- 

MA(b) = {C,  (alb)  " + ~ " l p - ' ~  (Y, pb/a) +D. (b /a )2a+1'~p-pr (p ,  pbla)), 
I - "  

(A101 

where y ( v ,  x) and r ( p ,  x )  a r e  incomplete gamma func- 
tions. 

Since 

Here, 

It follows from the results of Ref. 1 and the definition 
of M,,(a;/3) that the function Moo(a;/3) can be written in 
the form of the following rapidly converging series:  

If a = -2, we have to use a-'/ax-' = J dx;Z,(z) in Eq. 
(A15); Zo(z) is a cylindrical function with an imaginary 
argument. 

APPENDIX B. ANGULAR AND ENERGY 
DISTRIBUTIONS OF FAST SECONDARY ELECTRONS 

We recall f irst  the method of calculation of the am- 
plitudes of transitions in situations when the sud- 
denness conditions a r e  satisfied not by the cpmpiete 
Hamiltonian of the unpertyrbed system H = Ho + H', but 
only by i ts  "small" part H', which we shall call the 
distortion of the Hamiltonian H,. It is shown in Ref. 4 
that in the most general case the pr:blem reduces to 
finding the time evolution operator S(t, t') in the case of 
~ca t t e r ing~of  the shake-up type, when an external per- 
turbation V(t) acts for a short time interval 7 near a 
certain moment to. This applies also to the weakly 
distorted quantum systems (wr << 1, where Pio a r e  typi- 
cal eigenvalues of 6'). In this case we can effectively 
retain the usual scheme of the theory of sudden pertur- 
bations and in zeroth order in respect to w~ we find that 
~ ( t ,  t') i s  identical with the evolution operator $(t, t ' )  in 
the absence of distortion. 

Use of the Magnus of Fe r  expansions4 makes it pos- 
sible to identify whole classes of systems that permit 
compact representations of the evolution operators 
,'?,(t, t'). For  example, in the case of arbitrary quad- 
ratic Hamiltonians 

and interaction potentials of the type 

we find, to within an unimportant phase factor 

I 

q= ( U h )  j d t [ f  (t)cos cp-(y/a)'"g(t)sincp], 
1. 

I 

b= Jdt [ ( a / r )  "f ( t )  sin cp-g ( t )  cos q ] ,  cp=2t (cry) ". 
I' 

If, for example, E?, is  the Hamiltonian of a free particle, 
H ,  = O2/2m and 3(t) = -f(t)r, the amplitude of a transi- 
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tion between stationary states of I? in the zeroth order 
with respect to w r  is 

The second term in the exponential function of (B2) is 
missing in the usual formulation of the theory of sudden 
perturbations, but in the case of large momenta trans- 
ferred to a target it does indeed play the decisive role. 
We shall show how this occurs in the process of Cou- 
lomb ionization of an atom by a fast multiply charged 
ion. 

If ka >> 1, then in the range b - a  the operator of the 
interaction of an electron with a moving Coulomb center 
can be simply replaced with a dipole approximation, 
because the main contribution to the ionization ampli- 
tude i s  made by the range r / a  5 l/ka << 1. The effec- 
tive interaction occurring in q in Eqs. (Bl)  and (B2) is 
qett -qr/b -q/ka << 1, whereas the contribution of the 
second term-as shown below-is governed by the para- 
meter kA-qtku, which easily reaches values of the 
order of unity. The ionization amplitude in Eq. (7) in 
the most interesting case of kA 2 1 is 

%(k) =a-"(f 1 exp ( i k i l h )  1 i ) .  033) 

It is clear that the above formula has nothing in common 
with the results of the usual theory of sudden perturba- 
tions nor with the results of the conventional perturba- 
tion theory in the lowest order with respect to q. 

Near a nucleus, where rs  l/k,  if we substitute the 
condition (ka)' >>Z/Za, we find that the potential in the 
unperturbed system Zae2/r i s  much greater than the 
effective interaction potential of an electron with an 
incident particle Ze2r/a2, and the electron state is 
approximately the same a s  in the absence of an exter- 
nal perturbation. The wave function of the final state 
in the ionization amplitude (B3) should include the 
zeroth (plane wave) and the first  Born approximation in 
respect to.the potential of the target atom (the plane- 
wave approximation by itself is  insufficient !). In the 
calculation of A the integated with the long-range Coul- 
omb potential should be truncated a t  I t - to ( - l / w ,  so  
that 

~ ' t f  ( t )  =2q -- In 
m -- mu ' " v [ ( )  I ]  (B4) 

where C = O .  577 is the Euler constant. 

For comparison, we shall give the formula for the 
amplitude (B3) in the case of ionization of a hydrogenic 
atom 

and the Coulomb detachment of an electron from a nega- 
tive ion in the model of zero-radius potential 

The large difference between Eqs. (B5) and (B6) in re-  
spect of the fall expressed by the power of l/ka is due to 
the fact that i f  Y <<a, the electron density in the ground 
state is considerably higher for the delta potential (we 
shall not deal with the real  electron distribution in neg- 
ative ions and, in particular, with the value of a in this 
o r  in any other system). Moreover, the angular distr i-  
butions of the knocked-out electrons a r e  very different. 
For example, a minimum in the probability of ioniza- 
tion of a hydrogenic atom 

d W H ( b )  32 I-cos kA -=- 
d(ka) do, n (ka)' I -exp  ( -2n /ka )  

corresponds to the directions k l v  [it should be noted 
that if kA << 1,  the formulas for the amplitude and 
probability of ionization (B5) and (B7) become more 
complex expressions requiring numerical calculations 
and these follow from the general result ( ~ 2 ) ] .  In the 
case of a negative ion the extrema in the angular dis- 
tribition 

d W , ( b ) / d ( k a ) d o , =  (nka)-'  

""" ) '+  [( cos kk- - 
kh kh 

a r e  located in cones defined by tank. A =  tan(k~l2) .  

'G. L. Yudin, Dokl. Akad. Nauk SSSR 251, 82 (1980) [SOV. 
Phys. Dokl. 25, 192, ( 1980 )J .  

2 ~ .  P .  Krainov and G. L. Yudin, Dokl. Akad. Nauk SSSR 249, 
589 (1979) [SOV. Phys. Dokl. 24, 931 (1979)l. 

3 ~ .  A.  RyabOv and G. L. Yudin, Zh. Eksp. Teor. Fiz. 78, 474 
(1980) [SOV. Phys. JETP 51, 239 (1980)) .  

4 ~ .  M.  Dykhne and G .  L. Yudin, Usp. Fiz.  Nauk 125, 377 (L978) 
[SOV. Phys. Usp. 21, 549 (1978)l. 

5 ~ .  Eichler, Phys. Rev. A 15, 1856 (1977); A. Salop and J .  Ei- 
chler, J .  Phys. B 12, 257 (1979). 

6 ~ .  L. Duman, L. I. Men'shikov, and B. M. Smirnov, Zh. Eksp. 
Teor. Fiz.  76, 516 (1979) [SOV. Phys. JETP 49,  260 (1979)l. 

P ~ .  K. Thomas and E. Gerjuoy, J .  Math. Phys. (N.Y.) 12, 1567 
(1971). 

8 ~ .  K. Thomas and V. Franco, Phys. Rev. A 13, 2004 (1976). 
9 ~ .  Erdelyi (edJ, Higher Transcendental Functions (California 
Institute of Technology H. Bateman MS Project), Vol. 1 ,  
McGraw-Hill, NewYork, 1953 (Russ. Transl . ,  Nauka, M.,  
1973). 

I0v.  Franco and B:K. Thomas, Phys.  Rev. A 20, 759 (1979). 

Translated by A. Tybulewicz 

528 Sov. Phys. JETP 53(3), March 1981 G. L. Yudin 528 


