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We investigate the behavior, at large distances, of ultrashort pulses (USP) of radiation with frequencies wj 
satisfying one or several resonance conditions of the type srjo, =om ,, where w, , is the transition frequency 
of the molecule of the medium, r, is the multiplicity of the degeneracy in the frequency w,. It is observed that 
the resonant interactions (RI) are divided into two groups: in one of them production of self-narrowing pulses 
of self-induced transparency (SIT) is possible, and in the other not. It is shown that parametric RI (when 
several resonances of the indicated type are present) are characterized by establishment, everywhere except at 
some individual points, of finite amplitudes at the frequencies of all fields whose USP participate in the 
process. The use of RI for the conversion of the USP frequencies with simultaneous shortening of their 
duration is discussed. It is shown that four-photon parametric RI suitable for this purpose make it possible to 
tune the frequency of the converted radiation in the range from 0 to 20, ,. It is noted that the energy of the 
SIT subpulses is calibrated and depends only on the system parameters; this makes measurement of the 
polarizability of the resonant transition possible. We consider the effect exerted on the possible asymptotic 
behavior of USP by the following factors: the dispersion of the group velocities, the dispersion spreading of 
the wave packets, the wave mismatch, the dispersion of the polarizabilities of the energy levels of the resonant 
transition, the frequency detuning of resonance, the inhomogeneous line broadening, and the inhomogeneity 
of the light beams in the transverse direction. 

PACS numbers: 42.65.Gv, 33.80.Kn 

Resonant interactions (RI) of ultrashort pulses (USP) 
of light with a medium, compared with RI of quasista- 
tionary waves, have a number of characteristic fea- 
tures due to the coherence of the interaction. These 
include f i rs t  of al l  the phenomenon of self-induced 
transparency (SIT), discovered in 1967 by McCall and 
Hahn for one-photon resonance.' Among the other 
types of RI, the conditions for the onset of SIT (i. e . ,  
the conditions for the formation of USP propagating 
hereafter without change of energy) were investigated 
for two-photon absorption, stimulated Raman scatter- 
ing, and third-harmonic generation under conditions of 
two-photon resonance at  the pump frequency (see, e. g. , 
Refs. 2-6). 

Self-induced transparency can find a variety of appli- 
cations, one of the most attractive of which is, in our 
opinion, i t s  use for  substantially shortening the dura- 
tion of radiation pulses with practically no change in 
their energy. In this connection, and recognizing that 

oneself to the initial stage. To determine the character 
of the subsequent behavior of the fields in similar  situ- 
ations the problem is usually solved with a compu- 
ter.''-l2 This, however, does not tel l  us  whether the 
distances at  which the solution is already close to the 
steady state has been reached, o r  whether the calcula- 
tion must be continued and the form of the solution will 
change qualitatively in the succeeding stages. Knowl- 
edge of the asymptotic form of the solutions permits a 
correct  determination of the instant when the calcula- 
tion can be stopped. A study of the asymptotic form is 
therefore important also fo r  obtaining the complete 
picture of the interaction by numerical methods. In 
this respect, (as well a s  possibly in several others), 
the investigation of the asymptotic behavior of USP in 
RI is just a s  useful as, e. g. ,  the investigation of the 
solutions near the equilibrium states in limit cycles in 
the theory of oscillations of a system with lumped pa- 
rameters.  l3 

the foregoing l ist  of resonant interactions is far  from 
complete, i t  seems appropriate to formulate the condi- 

1. INITIAL RELATIONS 

tions for the onset of SIT in RI of general form, a s  We consider the interaction of an  electromagnetic ra-  
well a s  to find the asymptotic (steady-state a t  large diation of the form 
distances) distribution of the amplitudes of the fields in 
the pulse. Such an investigation would clarify the ex- E=C E,= ZC, e x p [ i ( o , t - k , z )  ]+c .c .  (1 
tent to which parametric bleaching (see the book8 and 1 I 

the references therein) remains typical of resonant with a medium characterized by transition frequencies 
parametric interactions (RPI) on going from quasista- w,, between the energy states m and n. Assume that 
tionary light wave to USP. the resonance conditions 

One more remark i s  in order. An exact analytic de- C r ,. w i = o m , + v .  (2 
scription of RI is a s  a rule impossible. It is quite fre- j 

quently possible to obtain an  approximate analytic solu- a r e  satisfied for  one of the transitions from the ground 
tion for the initial stage of the interaction, when the states;  we assume that the levels 1 and m a r e  not de- 
amplitudes of some of the fields a r e  still small. 6 * 9  In generate. In Eqs. (1) and (a ) ,  w, and kf a r e  the fre- 
the experiments, a t  the same time, the interaction re- quency and wave number of the jth wave, rf, is the mul- 
gion is by no means small enough to be able to confine tiplicity of the degeneracy of the sth resonance with re- 
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spect to the frequency w,, and v, is the frequency de- 
tuning from the sth resonance (we put henceforth v, 
= v). The order of the sth resonance is q, =Cj r,,. 

To describe such an interaction we use the equations 

which a r e  obtained when the material-atom polarization 
obtained in Refs. 14 and 15 for resonant processes is 
substituted in the abbreviated equations for the ampli- 
tudes C,. l6 Here t and z a r e  the time and longitudinal 
coordinate; nj is the refractive index a t  the frequency 
w,; n,""' and xj'  a r e  the polarizabilities, a t  the fre- 
quency wj of the molecule (atom) in the mth and first  
energy states, respectively; n, is the polarizability of 
the transition 1 - m for the s th  resonance; N is the 
number of molecules (atoms) per unit volume; vj i s  the 
group velocity a t  the frequency w,; A is the three-di- 
mensional Laplace operator; g(v) is the distribution 
function, normalized to unity, which characterizes the 
inhomogeneous line broadening of the resonant transi- 
tions (Ig(v)dv = 1); the tild; over the summation o r  pro- 
duct sign means that these operations must be carried 
out over the indices of the frequencies contained in the 
sth resonance (the one corresponding to r,,). Equations 
(3) take into account the dispersion spreading of the 
momenta and the diffraction of the wave beams. If we 
make the substitution w j  - -wj in the resonance condi- 
tion (2), then C, - Cf in (3). The slow components of 
the population difference 7 and of the off-diagonal ele- 
ment of the density matrix u satisfy the equations of the 
generalized two-level system," which for pulses with 
duration rp much shorter than the longitudinal (r) and 
transverse (T) relaxation times take the form 

where the matrix element of the Hamiltonian of the 
average motion Wand the Stark shift 52 a r e  given by 

If some frequency wj is present in several  of resonance 
conditions (2), then i t  is necessary to sum in the right- 
hand side of Eqs. (3) the terms pertaining to these 
resonances, with allowance for the sign of w, in (2). 

We neglect in (3) the terms with the second deriva- 
tives and put g(v) = 6(v) and vj = v (the role of the dis- 
persion of the group velocities, of the dispersion and 
diffraction spreading of the pulses, a s  well a s  of the in- 
homogeneous broadening will be dealt with later on). 
Then, changing over to equations for the real  ampli- 
tudes A, and phases cp, (c, =A, exp(-icp,)) , we get 
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where 

We begin the investigation of these equations with the 
simplest case, when the wave mismatch bks = 0, and 
the difference between the polarizabilities ~ 7 ' "  and 
. / c f l  can be neglected. 

In typical experiments dealing with frequency conver- 
sion upon entering a medium, the pump fields whose 
frequencies participate in one of the resonances (pump 
channel, s = 1) a r e  different from zero, and one of the 
fields A, pertaining to the remaining resonances (the 
conversion channels) i s  absent. Then in the case when 
rjJ = 1 and there is no phase modulation of the pump at  
the entrance into the medium, the phase difference 0, 
assumes practically instantaneously, according to (6), 
a value zero  or n, depending on the sign of sin$, in (6). 
Thus, just a s  in quasistationary resonant parametric 
 interaction^,^.'^ phase locking of the interacting waves 
takes place here. The differences of the phases 0, 
subsequently remain unchanged until the amplitude of 
one of the fields A,  again vanishes. At that instant, 
the phase cp, can change jumpwise by n. We see there- 
fore that the amplitudes C j  always remain real  (if the 
phases a r e  reckoned f rom the input phases of the 
pump); only their sign can change. Taking this into ac- 
count, we can write," after integrating (7)-(9) and sub- 
stituting u and q in (3), the following equation for the 
amplitude C j  

aCj nNx,r, .oj  - = C'1.r' 

njc 
fi c:', s ine  (i). 

al, 
1 +, 

where we have introduced the area  under the pulse 

It can be verified that if frequencies with r,, > 2 a r e  
present in a certain conversion channel, and A, = 0 a t  
the input, then no field of frequency oj will be pro- 
duced, and the processes that take place in the remain- 
ing channels will proceed a s  i f  the channel in question 
were absent. We therefore exclude parametric pro- 
cesses of this type from consideration. 

Equations (10) a r e  applicable to multiphoton process- 
e s  in which there is only one resonance. 
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FIG. 1. Example of steady-state distribution of the pulse a rea  
a([) (accurate to a factor % ). 

For systems with an arbitrary number of resonances 
i t  is easy to obtain from (10) 

From (111, using (12) and (2), we easily obtain the ex- 
pression 

from which i t  follows, f irst ,  that the energy in the 
pulse does not increase and, second, that in any inter- 
val A[ = t2 - [, a constant field-energy flux density is 
established sooner o r  later. A stationary distribution 
of the energy in a pulse is established if we have for 
any 5 

where n(5) is a staircase function that assumes only in- 
teger values (one of the examples is shown in Fig. 1). 
With the aid of (10) and (14) i t  can be shown that estab- 
lishment of the distribution of the total energy within 
the limits of the pulse leads to establishment of a sta- 
tionary distribution of the amplitudes of each of the 
fields. Obviously, this distribution must be such that 

 n nu ti Anl[8  (E-e1) 1" (15) 
f 

[An, i s  an integer equal to the change of the function 
n(5) at  the point 6 = 5 ,; 6(5 - 5 ,) is a 6-function; 0 cp ,  
G 11. The requirement that the pulse duration a t  the 
input be limited excludes the possibility of the appear- 
ance of pulses moving with velocity l e s s  than v (similar 
to the pulses considered in Ref. 21, if among the reso- 
nances (2) there a r e  no first-order resonances, and the 
spontaneous transitions can be neglected. The interac- 
tions that occur under conditions when resonances with 
q = 1 a r e  present will be considered in Sec. 6. 

2. MULTIPHOTON INTERACTIONS 

We consider now processes that occur if only one of 
the resonances of type (2) i s  present. If some of the 
frequencies in (2) a r e  negative, one refers  to a Raman 
process; on the other hand i f  all the frequencies in (2) 
a r e  positive, then we deal with multiphoton absorption. 
In the case of Raman interactions the amplitudes of the 

fields C j  a r e  bounded by the initial conditions [see (12)], 
i. e. ,  I W I is a bounded quantity and therefore the only 
value of W for steady-state fields is W =  0. From this, 
using (12), we find that a t  large distances (5 - a) there 
a r e  established the following flux densities of the photon 
numbers Mj =njc j2 / r j  l wj I : 

where the upper sign corresponds to wj > 0 {radiation of 
the pump) and the lower to wj < 0 (scattered radiation); 
M,o = m i n { n , ~ ~ ~ ~ / r ~ w ~ }  [in the last  relation, wj > 0 and 
Cjo = Cj(5 = O)]. In particular, for ordinary stimulated 
Raman scattering (SRS) we have a s  5 - 
just a s  in stationary SRS (the subscripts "p" and "s" 
pertain to the pump and to the Stokes components). 

In systems with multiphoton absorption, the ampli- 
tudes Cj a r e  not restricted by the conditions (12). The 
steady-state values of Mj a r e  

everywhere except at  the points 5 , where a burst  of W 
is possible [see (15)], and consequently also of Cj. 
Obviously, since IC I>> ICjo I in this case, the fields a t  
these points satisfy the proportionality condition 

On the basis of numerical solutions of the equations 
that describe two-photon absorption (TPA) and Raman 
interaction of ultrashort pulses, the authors d Refs. 
10 and 11 have concluded that sufficienuy intelaree puls- 
es, such that O 2 2 m  (n is an integer) break up into n 
individual subpulses, which decrease in duration and in- 
crease in power a s  they move in the medium. Our 
asymptotic solution (16) for SRS does not contain short 
subpulses, and is determined only by the input values 
of Cflo and C,,. Consequently, in the case of SRS the 
breakup into subpulses and their narrowing takes place 
only up to definite distances, beyond which the sub- 
pulses begin to be smoothed out. 

In the case of multiphoton absorption, on the contrary, 
the narrowing and the growth of the amplitude of the 
subpulses can proceed without limit within the frame- 
work of the given model. Starting from the definition of 
W, from the condition of proportionality of the fields 
(18), and from expression (15), i t  is easy to see  that 
the limiting energy of the ith subpulse a t  the frequency 
of each of the fields is proportional to [6(5 - 5,)]?p'ad[, 
and consequently, as the subpulse evolves the SIT tends 
to zero  in systems with resonances of order higher than 
the second. Therefore the use of resonances with q > 2 
to obtain intense and short pulses is ineffective, since 
the energy of such a pulse decreases substantially when 
the pulse becomes sharper. This conclusion is valid 
also for  resonant parametric interactions, in which the 
order of the resonance in the conversion channel is 
larger  than two. In systems with q =2, the energy of 
the subpulses is damped a t  any p # 1. We shall there- 
fore be interested in Secs. 3-5 only in subpulses with 
p = 1. Systems containing resonances with q = 1 will be 
considered in Sec. 6. 
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The results obtained here can be used to determine 
the asymptotic behavior of nonsynchronous resonant 
parametric frequency conversion (of the type considered 
in Ref. 4). Namely, regardless of the type of reso- 
nance in which the pump-pulse fields participate, i t  is 
impossible to realize SIT in the second pulse, if the 
frequencies of the fields in this pulse satisfy a reso- 
nance condition of the Raman type; on the other hand if 
all the frequencies of the fields in the second pulse en- 
ter  in  the resonance relation (2) with equal signs, then 
6-shaped subpulses W should be produced under certain 
conditions imposed on the input values of the fields and 
on the frequency. 

3. RESONANT FOURPHOTON PARAMETRIC 
INTERACTIONS; ALL wj>  0 

We proceed to resonant parametric interactions. We 
confine ourselves here to excitation of resonant four- 
photon parametric interactions (RFPI), which have been 
the subject of the largest number of experimental stud- 
ies. Resonant four-photon parametric interactions can 
be divided into two groups. In the f i r s t  of them a r e  
satisfied two resonance conditions of the TPA type: al l  
w, > 0. In the second group, one of the resonances 
corresponds to Raman interaction, and the other to 
two-photon absorption (one of the frequencies w, is 
negative and the remaining ones positive). The third 
group consists of RFPI, in which both resonances a r e  
of the Raman type. 

If al l  w,> 0, then we easily obtain from (10) the f i rs t  
integral 

where 

x, and x, a r e  respectively the polarizabilities of the 
transitions between the levels 1 and m in  the pump and 
conversion channels. For  RFPI of general type, if the 
resonances a r e  not degenerate in frequency, the cor- 
responding f i rs t  integral is of the form 

where 

Inasmuch a s  in the course of establishment of the sta- 
tionary distribution of W there should take place an  un- 
limited growth of W([,), the amplitude of a t  least one of 
the fields will increase without limit a t  the points 5,. 
I t  follows from (12) and (19) that a t  these points the 
amplitudes of all the interaction fields should tend to 
infinity simultaneously. The pulses in both the conver- 
sion channel and in the pump channel then become pro- 
portional (ai = a2; q = a4), since it turns out that a,(t;,) 
>>ajo(5,). Using this fact a s  well a s  (12), (15), and 
(19), we can write down near the point 5 ,  (we assume 

that An,= -1) 

where /3 = x,(w3w4/n3n4)" 2. From this and from the re-  
quirement that the pulse energy be finite i t  follows that 
if y >  1, then near 5 , ;  

the energies of the pump fields passing through a unit 
a r e a  during the ith SIT pulse a r e  equal to 

and the corresponding energies a t  the frequencies of 
the triggering and generated fields a r e  equal to zero. 
On the other hand if y < 1, then the energies U1,) of the 
pump pulses turn out to be zero, and 

[ ~ n  this case ai2 =a22 - [6(5 - 5 ,)I1 and a32 = a42 - 6(5 - {,)I. 
When y = 1 all  a,'- 6(5 - 5 ,), and the relations between 
vl, (5 ,) and U3,4(5 ,) depend on the values of the fields a s  
they enter into the medium. For example, 

If two proportional pulses (alo =az0, a30 = ~40)  enter a 
medium with y = 1, then their behavior is described by 
the solution 

It follows from (25) that 6-like pulses with energies U, 
that coincide with those obtained from the asymptotic 
expressions a r e  produced at  the frequencies of all the 
fields. 

In al l  the remaining points (5 # 5 ,), parametric bleach- 
ing is established [W(5) =0, see  (15)]. To find the 
steady-state values of the fields i t  is necessary here to 
use, besides the condition W= 0, also the f i rs t  integrals 
(12) and (19). These values turn out to be the same a s  
in quasistationary interaction,19 since the se t s  of rela- 
tions for  their determination a r e  perfectly identical in 
both cases. 

I t  is of interest to consider also the initial stage of 
conversion, when yala2 >> a3nb, We consider the situa- 
tion most frequently encountered in experiments, when 
the pump frequency is equal to half the transition fre-  
quency (we note that if the frequencies wi and w2 a r e  
different, and the pump pulse at  the input is proportion- 
al, i. e. , aio = aZ0, then the results  will be the same). 
In  this case i t  is easy to obtain for  the problem of fre- 
quency conversion (ado = 0) from (10) 

a .  I/. " I .  ;/. ; 
a,,& = , sin- sin- * sin- sin- , (26) 

2 
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In (26), the plus sign pertains to a3 and the minus sign 
to a,. The a rea  under the pump pulse 

varies in accord with the law7 

and aO(f)  = a([, 5 = 0). Equations (26) differ from the 
corresponding expressions in Ref. 9 because in the lat- 
ter  i t  was assumed that a30 = a,, + 0. 

I t  is obvious from (25) that the energies of the fields 
a3 and a4 f i rs t  increase independently of the value of y 
and of the coordinate [ (i. e . ,  both in the region where 
parametric bleaching should become established, and 
a t  the points where SIT pulses can be produced). It is 
interesting to note that a t  y > 1 formulas (26) and (27) 
describe quite well the interaction up to i t s  asymptotic 
behavior. In particular, i t  is easy to find with the aid 
of (26) that, a s  expected, the energy of the SIT pulses 
a t  the frequencies w3 and w4 decrease to zero  a t  infin- 
ity, whereas the energies of the pump subpulses as- 
sume constant values. At y < 1 the amplitudes of the 
subpulses of fields a3 and a4 increase more rapidly 
than the amplitudes of the pump subpulses, a s  a result 
of which the condition yalaz >> %a4 is violated. 

4. RESONANT FOURPHOTON PARAMETRIC 
INTERACTIONS; ONE OF THE FREQUENCIES 
wj IS NEGATIVE 

We assume for the sake of argument that the negative 
frequency i s  w2, regardless of the resonance to which 
the pump channel corresponds. In this case y in (20) is 
imaginary, pi = 1, fl  = ly Ilnp2, and f2 =-1 ly I-'lnpi = O .  
The fields a j  take in terms of the variables pi,* and f i V 2  

the form 
a,=o,, cos f,+n,, sin f , ,  a,=am0 cos f , - a , ~  sin f , ;  (29) 

Using the relations written out here and the require- 
ment W(f) = 0, i t  is easy to obtain the expression that 
determines the values of the field a, for those points 
where parametric bleaching is established: 

(azOz+a,,2) (p,Z-pZ-') + 2a,,ai0 (p2Z+pm-2) 

As follows from (15) and from the conservation laws 
(12), the SIT regime can be realized only in that chan- 
nel in which both frequencies a r e  positive. In analogy 
with the preceding section, we can determine the ener- 
gy of the SIT subpulses a t  the frequencies w3 and w4: 

where n is the polarizability of the two-photon transi- 
tion between the levels 1 and rn under the influence of 
the fields C3 and C4. Then &(t i )  increases without 

limit in the course of formation of the b l i k e  subpulse, 
and this leads, a s  seen f rom (291, to a continuous en- 
ergy exchange between the frequencies wi and w2. 

We see  thus that generation of intense short  (in the 
limit, 6-like) pulses in the course of upward frequency 
conversion on the basis of TPA of the pump is impossi- 
ble in  frequency-nondegenerate RFPI. As  we shall see  
below, this is possible when one and the same frequen- 
cy takes part  in both resonances but with opposite signs: 

The changes of the amplitudes of the interacting fields 
a j  = ~ ~ ( n ~ / w ~ ) " ~  is described by the equations 

aa,/a6=nNc-'aaZ sin 8 ( E ) ,  
8a,/a6=nNc-'(aai-@a3)sin 8 ( E ) ,  

aada t=nN~-~pa ,  sin 8 ( E ) ,  

from which follow the integrals of motion 

Here 

y=ac/j3, and n,,, and x,, a r e  the polarizabilities 
corresponding to the 1- m transition in  TPA and SRS. 
Jus t  a s  in the processes considered above, in this case 
a parametric bleaching regime is also established 
(everywhere except at  the individual points f ,). Using 
(33) and (34) and the fact that W is zero, we obtain for 
the stationary values of aj([) 

The SIT regime is realized a t  the points f ,  where 
I @ [ , +  c)-0([,- E )  I=27r. At these points al l  aj2- 6(f 
- f ,). The energies passing through a unit a rea  during 
the SIT subpulse a r e  equal to 

It follows therefore that the considered process is of 
interest  from the point of view of obtaining near-8- 
function pulses of radiation that is tunable in frequency, 
not only in the case of upward conversion of the f re-  
quency on the basis of the TPA of the pump, but also 
for  downward conversion on the basis of SRS of the 
pump (w3 is the pump frequency and w2 is the frequency 
of the Stokes component). We recall that no such puls- 
e s  can be produced in al l  other processes with SRS in 
the conversion channel. 

I t  is easy to deduce from (33) and (34) that if aio 
= yq0 and a20 = a,0(y2 - I)"', then also subsequently ai 
= ya3 and a, = a3(y2 - 1)" '. In this case Eqs. (32) have 
a n  exact solution 
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where 

The solution (36) coincides in form with the law of the 
change of the fields in TPA of proportional pulses,3*7 
but the conditions for the proportionality of the pulse in 
the solution obtained here differ from the corresponding 
conditions in TPA. In the presence of third-harmonic 
generation, for which the resonant conditions a r e  a par- 
ticular case of (31) a t  w2 = mi, there also exists a pro- 
portional regime described by a formula of the type 
(36), where the proportionality condition and the expres- 
sions for 6 0  and K differ from those given above [a, 
= y (1 - \ I v ) a l ,  Ref. 61: 

2 a  - 2nNa  - 
8, =-(2-11-:-') a,," d t ,  K=- ( l -Yl -y-z) .  

uh r C 

An analysis bf formulas (35) and (36) shows that 
realization of a proportional regime and the onset of 
6-function subpulses a re  possible only a t  y >  1. 

For the initial stage of frequency conversion on the 
basis of TPA of proportional pump pulses (aio = a30 
= 0) we can obtain the solutions 

~ , , z = ~ I o  I sin f /sin: I , 
a ~ - a , ~ y - ~  ( I  sin;/ sin: I - I ) 

[ 3 ( 5 )  is the same quantity as in (26)-(28)j. These solu- 
tions a re  valid when 

It is seen from (37) that establishment of a propor- 
tional regime begins with establishment of a constant 
ratio at/%. 

To conclude this section, we present for the initial 
stage of RFPI solutions that a r e  not degenerate in fre- 
quency. In two-photon pumping by a proportional pulse 
[the pump fields aiVz vary in accord with (37)] we have 
for the fields in the frequency-conversion channel 

as=aso COs f-a.0 sin f, a,=aro cos j+a3, sin f ,  

In SRS pumping, the initial stage of the interaction of 
the fields a, is described by the equations 

aro+a&o 
a,., = - 2 exp{-y-I [arc t g  (5-exp(-~oL&) are ) - arc t g % ] ]  ale 

) - a r c t g 2 ] ) ,  
2 a,. 

where 

5. RESONANT FOURPHOTON PARAMETRIC 
INTERACTIONS WITH ONE NEGATIVE FREQUENCY 
IN  EACH OF THE RESONANCES 

In this section we consider stimulated Raman scatter- 
ing of biharmonic pumping and the process of raising 
the radiation frequency on the basis of SRS of the pump 
(the corresponding processes in quasistationary inter- 
actions a r e  the subject of Refs. 20 and 21). In addition, 
there exist two RFPI that a r e  degenerate in frequency, 
for which one of the frequencies in each resonance is 
negative, viz., generation of the second Stokes and 
anti-Stokes SRS components. 

For  nondegenerate RFPI of the type considered, y is 
real and the quantities pi, q, fl, and f, in (20) and (21) 
satisfy the relations 

The normalized amplitudes a, a re  connected with fi and 
f 2  a s  follows: 

a,=a,, cos f,+a,, sin f , ,  a,=a,, cos f,-a,, sin f , ,  

a3=aso cos f2+a,(l sin f,, a,=a,, cos f,-a,, sin f,. 
(4 0) 

From (15) and from the conservation laws (12) i t  is 
easily seen that the only possible steady-state regime 
is parametric bleaching. Using (39), (40), and the con- 
dition W ( [ )  = 0, we obtain for the stationary distribution 
of fi(5) 

( 
aJoz+aLol 

sin 2f,+arc sin- = -y-I- 
2a1"20 ) a,oz+a,oz ai,l+az," 

x sin (2j.y-'+arc sin- 

An analysis of (41) shows that if y <  1 and the quantity 
y-'(%: + a,:)/(alt + %:) is sufficiently small compared 
with unity, then the stationary values of fi  and f 2  a r e  
approximately fi = n/2 and f 2 =  n/2y. In quasistationary 
interaction i t  follows therefore that while the strong 
pump ai goes over practically completely into i t s  Stokes 
component a,, there will take place 7-' cycles of total 
conversion of the energy of the weak pump a3 i ts  Stokes 
component ad, and vice versa; parametric bleaching 
takes place a t  a low level of the pump ai. In the case 
of RFPI of UPS, the dependence of fi on 5 for certain 
points 5 inside the pulse can be nonmonotonic. For  
these points, therefore, y" turns out to be only the 
minimum number of the cycles of the total conversion 
a3 + a4. 

The initial stage of the interaction of the considered 
type lends itself to calculation under conditions I cua1a2 I 
>> Ipa3a4 I and O(5) << 1. The solutions that describe the 
behavior of the weak pump and of i t s  Stokes component 
during the initial stage agree with the corresponding 
solution in the quasistationary caseZo if we substitute in 
i t  T --[/TI. 

We consider now RFPI that a re  degenerate in fre- 
quency. For  the generation of the second Stokes com- 
ponent the resonance conditions take the form w, - w, 
= W, - w2, = w,i (the subscripts p ,  s, and 2s pertain re- 
spectively to the pump radiation and to the f i rs t  and 
second Stokes components). The behavior of the fields 
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C, is described with the aid of the equations 

aa,/dC=nNc-'aa. sin 8 ( e )  , 
aa,/ag=dc-'  (pal,-aa,)sin 8 ( g ) ,  

aa, . /ag=nN~-~$a. sin 8 ( g ) ,  

where 

x, and x ,  a r e  the polarizabilities of the transition be- 
tween the levels 1 and m in the course of the SRS of the 
pump and of the f i rs t  Stokes component, and corre- 
spondingly for this system W = -a,(aa, + Pa2,). Equa- 
tions (42) have two integrals of motion 

a,'+a.l+a,."=a,02+a,,l+a~,o, 

pap+aa,.-$aPo+ aazao.  
(43 

Since these integrals limit the possible values of the 
field, the matrix element of the average-motion Hamil- 
tonian W cannot become infinite and, a s  follows from 
(15), the asymptotic value of W is  zero everywhere; 
parametric bleaching se t s  in; the SIT regime is impos- 
sible. From (43) and from the requirement W =  0 we 
easily obtain the steady-state values of the fields 

During the initial stage of the conversion, when Ipq, 1 
<< laa, I and 0(5) << 1 the behavior of the field of the 
second Stokes component is described by the formula 

[K, i s  the same a s  in (38) and y = &/PI, while the solu- 
tions for the pump fields a, and for the Stokes compo- 
nent a, a r e  obtained from (38) by making the substitu- 
tions al  - a, and a, - a,. 

The system (42) describes also the behavior of the 
fields in the case of anti-Stokes stimulated Raman scat- 
tering. It is necessary only to make the substitutions 

OP-+O., O ~ - O P ,  w2.-wl;  a,-a., 
a,-a,, a,.+a.; r.,+x,, x,-+x. 

(45) 

(a,a,, and a, a r e  respectively the fields of the pump and 
of the Stokes and anti-Stokes components). Obviously 
here, a s  in the case of the generation of the second 
Stokes component, the asymptotic value of W is zero  
everywhere (the parametric bleaching regime), and the 
SIT regime is impossible. The steady-state values of 
the fields a j  a r e  obtained from (44) by using the sub- 
stitutions (45). If laa, I < <  I Pa, I and 0(5) << 1, then the 
dependence of the pump and Stokes-component fields a, 
and a, on the coordinates C and 5 is the same a s  in the 
case of generation of the second Stokes component dur- 
ing the initial conversion stage. The anti-Stokes com- 
ponent increases during this stage with increasing 5 
like 

6. RPI WITH PARTICIPATION OF A FIELD OF 
FREQUENCY RESONANT TO THE TRANSITION 
FREQUENCY 

By way of example of such interactions we consider 
three-photon RPI: resonant generation of the sum fre- 

quency (SF) in TPA of the pump (wi + w2 = wmi = w3) and 
generation of the difference frequency (DF) in SRS (wl 
- a, = w,i = w3). 22-24 A particular case of generation of 
the S F  is second-harmonic (SH) generation in TPI (20, 
= wmi = wSH). 18*25 I t  is easy to obtain for the description 
of these processes the equations 

aa,/aC=-nNc-'aaz sin 8 ( g ) ,  
da,lag=rnNc-'aa,  sin 8 ( g ) ,  

a a , / a g = - n N ~ - ~ g  s in  €3 ( e ) .  

In the second equation of (46) one must use  the minus 
sign for the SF generation problem and the plus sign for 
the DF generation problem; o/ = n(w1w2/ntn2)i12, P 
=d(w3/n3)"'; W = aalaz +pa3; d is the matrix element of 
the dipole moment for the one-photon transition m + 1; 
n is the polarizability of this transition and determines 
the pump TPA o r  the SRS; a, =~,(n,/w,)"~. 

For  SF generation we can obtain integrals of motion 
of the type 

It  follows from (48) that outside the limits of a pump 
pulse moving with velocity v [where aio(5) + q O ( ( )  = 01, 
no fields a t  frequencies w1 and wz a r e  produced; rela- 
tions (47) and (48) impose no limitations whatever on 
the amplitude of the field a3. The stationary distribu- 
tion of as is determined here by the third equation of 
(46), where W =  Pa3. In other words, the problem of 
determining the stationary distribution of a3 in this re- 
gion reduces to the problem of finding SIT pulses in 
one-photon absorption. Among these one can separate 
pulses moving with velocity V <  v (Ref. 26) and having a 
finite duration (these pulses lag the pump), a s  well a s  
pulses moving with velocity v.  For  the latter, the form 
of W is similar to (15). The requirement that-the ener- 
gy in the pulse be finite l imits the possible values of p, 
namely p 1/2. At p < 1/2 the energy is zero; a finite 
energy is carried by SIT pulses with C3 - [6(5 - 5 ,)Iil2 
(these a r e  0. s pulses, since their a r e a  is equal to 
zero). This ra ises  the question: can such resonant- 
field pulses be situated within the limits of the pump 
pulse? 

A steady-state distribution of the fields within the 
pump pulse should satisfy the condition 0 ( ( )  = 2rn(5). 
From this, just a s  fo r  the remaining RPI, i t  follows 
that everywhere with the exception of a finite number of 
points there is established the regime of parametric 
bleaching: W(5) = 0. As  for these points, in some of 
them there can be produced 6-like proportional sub- 
pulses of the fields ai and %, similar to solitons in  
TPA; together with them there a r e  produced a t  the f re-  
quency y pulses of infinite amplitude but zero energy, 
a s  follows from (48). The production of pulses with a3 - [6(5 - [()]i12, moving with velocity v within the limits 
of the pump pulse, should be accompanied by the ap- 
pearance of pulses ai and %- exp(a3/p) [see (48)] with 
infinite energy. I t  is obvious therefore that the produc- 
tion of 'solitons a3 - [6(5 - 5 within the pump pulse 
is impossible. 

In the case of DF generation we have in place of (47) 
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and (48) 

alz+az'-al~+a20z, 

a, la/$1 =arg[ (al+az)/(a,o+azo) I 

The behavior of the fields outside the pump pulse is 
analogous to the preceding case. Just  a s  in the SF gen- 
eration, parametric bleaching is likewise established 
within the limits of the pump pulse everywhere except 
fo r  individual points. In the latter there can be pro- 
duced 0 .  n pulses of SIT with a:, - [6([ - [ ,)Iv2, moving 
with velocity v (in contrast to the SF generation pro- 
cess); no solitons of self-induced transparency can be 
produced at the frequencies wi and w2 [by virtue of 
(4911. 

These results, a s  well a s  the results of an investiga- 
tion of other processes, lead to the conclusion that 
self-narrowing radiation pulses can be produced in RPI 
with participation of a field a t  a frequency resonant to 
the transition frequency. 

7. ALLOWANCE FOR INHOMOGENEOUS 
BROADENING AND FOR FREQUENCY 
DETUNING 

Thus, in the simplified model considered above only 
three types of asymptotic behavior of USP a re  possible 
in resonant interactions: 1) damping of the fields of one 
o r  several frequencies to zero; this is typical of one- 
and multiphoton absorption and of Raman interaction; 
2) parametric bleaching wherein stationary finite ampli- 
tudes a re  established for all waves; this bleaching takes 
place in resonant parametric interactions; 3) formation 
of 6-function self-induced transparency pulses propagat- 
ing subsequently without change of energy. We now 
clarify the role of the factors previously excluded from 
consideration. 

In this section we neglect the diffraction and disper- 
sion spreading of the wave beams and assume the v, to 
be all equal. Changing from Eq. (3) to the equations 
for ICj I Z ,  multiplying them by n,, and integrating with 
respect to [, we obtain 

where w(,O,) is the frequency of the transition that is at 
exact resonance (wgO,) =)=')3jr,,wj). It follows from (4) 
that the total energy decreases everywhere with 5 ,  and 
that in any interval A[ = c2 - a constant field energy 
flux density is established sooner o r  later. The condi- 
tion for the formation of a stationary distribution of the 
fields independently of the form of g(v) is 

This is possible only when q([) = 1 for molecules with 
arbitrary detuning v. Taking the integral of motion (9) 
into account, we obtain from this Imo = Rea= 0. Sub- 
stituting q = 1 and U =  0 in (3), we easily verify that the 
steady-state field distribution satisfies the same equa- 
tion a s  the steady-state distribution in a system without 
inhomogeneous broadening [when g(v) = 6(v)]. This 
means that the presence of inhomogeneous broadening 
exerts no influence on the form of the asymptotic solu- 
tions for the USP (i. e., i t  does not disrupt either the 

parametric bleaching o r  the self-induced transparency); 
however, the inhomogeneous broadening can apparently 
change the threshold a t  which the SIT sets  in. It is 
easy to verify that frequency detuning away from the 
center of the homogeneous line likewise does not lead 
to a qualitative change in the asymptotic behavior. 

8. INFLUENCE OF THE WAVE MISMATCH AND OF 
THE STARK EFFECT 

We shall use Eqs. (5)- (9). When the field distribution 
is close to the steady-state, q = 1, R = I =  0, and the 
phases 

vary continuously relative to one another in the general 
case with further motion [see (611. When (7) and (8) 
a re  taken into account, i t  follows therefore that R and I 
can be kept equal to zero only when all the  IS = 0, 
i. e., a t  least one of the fields attenuates to zero in 
each of the resonances (we exclude SIT from consider- 
ation for the time being). On the other hand if 

(the wave mismatch is offset by the dispersion of the 
polarizations xmm and x", which determine the Stark 
shift), and R = I =  0 under the condition W = 0, then the 
$, are  constant and R, I, and aAj/ac remain equal to 
zero, i. e . ,  the regime of parametric bleaching is rea- 
lized. In these cases the integral curves for the ampli- 
tudes of the fields participating in the RPI [see, e. g., 
(20)] remain the same a s  in the absence of wave detun- 
ing and of the Stark effect. Therefore the latter, just 
a s  the inhomogeneous broadening, do not change the 
conservation laws (12); the connection between the val- 
ues of the field in the parametric bleaching regime and 
their values a t  the entrance into the medium also re- 
mains unchanged. 

We consider now self-induced transparency. Assume 
that in the course of establishment of stationary field 
distribution there was produced in the vicinity of the 
point 5 ,  a sharpened subpulse of the fields at frequen- 
cies pertaining to one of the resonances. We assume 
also that near these points the changes of the phases 
a re  much slower than the changes of the amplitudes. It 
is then easy to find from (7)- (9) that in the vicinity of 5 ,  

Substituting these expressions in (5), we obtain an equa- 
tion that coincides with (lo), whose steady-state solu- 
tion should have an averaged Hamiltonian in the form 
(15). Since, a s  can be easily verified, the assumptions 
made above become more and more valid a s  the steady 
state is approached, i t  can be concluded that the SIT 
can be realized a t  least in one of the resonances, inde- 
pendently of the presence of wave mismatch and of the 
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Stark effect. If the SIT subpulses exist a t  one and the 
same point [, at  frequencies of fields pertaining to 
several resonances, then energy can be  transferred 
from the fields of certain resonances into others and 
back, with the total energy of the pulse conserved. For  
example, if there a r e  two resonances, then the coordi- 
nate dependence of the population difference takes the 
form 

( x i  pertains to the resonance with = 0, q2 pertains to 
the second resonance, F = ni?Ti/x2112). When lli- 6([ 
- 5,) and the argument of the cosine in (53) is equal to 
2nn, the population difference is q = 1. If 

(B is an arbitrary constant), then 17 remains equal to 
unity a t  al l  I ,  thereby ensuring energy conservation in 
accordance with (51). Since cos& i s  an oscillating 
function of z [see (6)], the ratio F = niIIi/n2112 also 
oscillates. 

9. ROLE OF DISPERSION OF GROUP VELOCITIES 

Assume that despite the difference in uj there can ex- 
i s t  a stationary wave distribution moving with velocity 
V. Then, changing over to the coordinates 5' = z  and 5 
= z  - Vt and neglecting the terms with A and a2/at2, we 
easily obtain from (3) 

(we assume that a t  t = -m the amplitudes of all  the fields 
were equal to zero). In the steady state, the first  term 
in  (54) vanishes, and we obtain the relations that must 
be satisfied by the amplitude of the steady-state distri- 
butions of Cj: 

Since the right-hand side of (55) is non-negative, V 
should be less  than the smallest of the v, in the case of 
multiphoton absorption (s = 1, q 2 2, w, > 0). ') Since the 
durations of the pulses of al l  the fields a t  the input a r e  
bounded (Cj = 0 outside them), it i s  obvious that the 
solutions with V< min{v,} cannot occur; thus, in the 
case of multiphoton absorption the dispersion of the 
group velocities disrupts the self-induced transparency. 
A similar analysis for the Raman processes shows the 
possibility of formation of SIT pulses of finite amplitude 
if max{v,,}< min{vp} ({up} a r e  the velocities of the pump 
components, w j  > 0; {v,,) a r e  the velocities of the scat- 
tering components, w, < 0), with max {v,,)< V c  min{up}. 
For the case of stimulated Raman scattering (SRS) the 
corresponding solutions were obtained in Refs. 5 and 
27. 

In RPI, when there a r e  several  resonances, the pos- 
sibility of formation of SIT pulses a r e  greater. Thus, 
in a system with two TPA resonances there can be pro- 
duced SIT pulses with finite amplitude, moving with 
velocity V that satisfies the condition vi, v2 < V< v ~ ,  v4 

[analogous relations for RPI can be easily obtained 
from (55)], something possible a t  a definite law of dis- 
persion of the refractive index (we recall that SIT is 
impossible in each of the resonances taken separately). 
If a t  the same time 6k = 0 and there i s  no dispersion of 
the Stark shift, and y = f f / ~  = 1, 

then the steady-state field distribution takes the form 
a,'=al'=D5za,2-D1a2 

where a j  =Cj[nj Ivj - ~ l / w , v ~ ] " ~ ,  is determined by 
the instant of time to a t  which the maximum of the pulse 
should pass through the point z  = 0, and 

Da= lim (a?/a?). ,+-- 
Steady-state solutions with nonzero values of all the 
fields that participate in the RPI can be called para- 
metric solitons. 

We shall show that the dispersion of the group veloci- 
ties destroys the parametric bleaching that should be 
realized when W([) 0 and all the C ,([) + 0. If W([) = 0, 
then we should have [see (411 q([) = 1. We then find 
from (55) that al l  the amplitudes Cj = 0 with the possible 
exception of only one (for which v, = V), and this con- 
tradicts the definition of parametric bleaching. 

We note that all the qualitative conclusions concerning 
the influence of the dispersion of vj were made without 
any assumptions concerning the magnitude of the wave 
mismatch and of the Stark shift of the levels, a r e  con- 
cerning the presence o r  absence of inhomogeneous 
broadening. 

10. ALLOWANCE FOR DISPERSION AND 
DIFFRACTION SPREADING OF WAVE PACKETS 

We consider f i rs t  the influence of the dispersion 
spreading of USP, confining ourselves to an example of 
multiphoton absorption, and neglecting the inhomogene- 
ous broadening and the Stark effect. For  this case, in 
the coordinate system with 5 = z  and 5 = z  - Vt, we have 
in place of (3) the equation 

(57) 
0 and q a r e  described by Eqs. (4) in  which v =  = 0. 
From (57) we easily find that so  long a s  the pulse dura- 
tion is not too small, and the a rea  is large enough, a 
shortening of the pulse takes place, and this would lead 
to a 6-shaped pulse W if the term with ;32~ /a [2  would 
not grow. On the other hand, a solution with W- 6(5 
- 5 $ cannot simultaneously satisfy the equations for 0 
and 77 and Eq. (57). This means that the dispersion 
spreading of the pulses is a substantial factor that de- 
termines the shape of the solitons and imposes a lower 
bound on their duration. 

We consider now the influence of the diffraction of 
light beams. Since the qualitative arguments that ex- 
plain the diffraction-induced instability of one-dimen- 
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sional waves28 remain valid also for  multiphoton reso- 
nances, i t  is obvious that this instability should take 
place also in this case. However, a more important 
factor in the character of the asymptotic behavior a t  
large distances is that the beam has a limited c ross  
section. 

From (3), neglecting dispersion factors, inhomogene- 
ous broadening, and the Stark effect, i t  is easy to ob- 
tain an  equation for IC, 1 2 ,  f rom which, after integrating 
first  over the cross  section and then with respect to 5, 
we get 

(we have used the radiation conditions at  infinity). The 
steady-state solution must satisfy the relation 

and this is possible only if the a rea  O is everywhere 
equal to an integer number of 2n. Since all  the C, - 0 
a s  x2 + y2 m, i t  follows that Q(x, y, 5 )  should be every- 
where equal to zero. From the equations for C,, writ- 
ten down with allowance for diffraction, i t  is easy to 
find that the equality W(x, y, 5) = 0 will not be preserved 
when t is varied if i t  is recognized that the terms pro- 
portional to (a2/ax2 + a2/ay2)cj a r e  different because the 
k,  a r e  different. Thus, the limited character of the di- 
mensions of the light beams participating in the reso- 
nant interaction disrupts in final analysis both the SIT 
and the parametric bleaching (the lat ter  is true also in 
the quasistationary case). A similar result  is produced 
also by nonresonant energy loss of the interacting 
waves, due e. g., to scattering. 

CONCLUSION 

We present the basic results  of the study and make a 
few estimates (using the data of Ref. 29 for  Na and of 
Refs. 6 and 30 for Li). The f i rs t  group of conclusions 
(items 1-7) pertain to systems to which the simplified 
model used in Secs. 2-6 is applicable. 

1. The formation of intense and very short subpulses 
of radiation (corresponding to 6-like subpulses of SIT 
in our model) is possible a t  frequencies that enter in 
the resonant conditions of the type of multiphoton ab- 
sorption [all wj > 0 in (2)]. 

2. No such subpulses can be produced a s  a rule a t  the 
frequencies that enter in the resonance conditions of 
the Raman type [some of the frequencies negative in 
(2)]. In this case the inhomogeneities of the radiation, 
which occur during the ir.itia1 stage, become smoothed 
out ultimately. Exceptions a r e  RPI, in which one of 
the resonances corresponds to multiphoton absorption 
and the other to Raman scattering, with the frequency 
of any one of the fields entering in both resonance con- 
ditions. 

3. Parametric bleaching, which consists of establish- 
ment of finite amplitudes, independent of the distance 
covered by the pulse, a t  the frequencies of all the fields 
that take part  in the process, is also a characteristic 

of resonant parametric interactions of USP. The con- 
nection between the amplitudes of the field a t  the en- 
trance and their steady-state values is the same a s  in 
the corresponding quasistationary RPI. The parametric 
bleaching regime is disturbed at  those points inside the 
pulse, where subpulses of self-induced transparency 
a r e  produced. 

4. In the case of formation of 6-like subpulses, their 
energy turns out to have the standard value, depending 
only on the order of the resonance, on the values of the 
frequencies, of the refractive indices, and of the polar- 
izability (connected with the corresponding resonance) 
of the transition between the levels. This makes i t  
possible to determine in simple fashion, by measuring 
the energy, the polarizabilities of both transitions with 
two-photon absorption and of SRS transitions, i f  the 
frequency-degenerate RPI considered in Sec. 4 a r e  
used. 

5. The energies of the SIT subpulses at  frequencies 
that enter only in the resonances with q > 2 a r e  equal to 
zero. Therefore among the se t  of RI in centrosymme- 
tr ic media (gases, liquids), from the point of view of 
generation of frequency tunable subpulses of SIT, 
greatest interest  attaches to RFPI, in which a t  least  
one of the resonances corresponds to two-photon ab- 
sorption. 

6. If both resonances correspond to the TPA, the for- 
mation of SIT subpulses calls  for satisfaction of the 
condition w ~ ( w ~ w ~ / ~ ~ ~ ~ ) " ~  3 ~~(w~w,/tz, tz,)"~ (1 3 y) .  In 
such systems i t  is possible to achieve considerable nar- 
rowing of the duration and increase of the power of the 
fields even in the case when the initial energies of these 
fields a r e  insufficient to obtain the corresponding effect 
by using two-photon resonance alone. For  this purpose 
i t  is sufficient to have the intensity of the fields in the 
pump channel exceed the threshold of formation of the 
subpulses in their two-photon absorption (without RFPI). 

By way of example we consider sodium vapor with 
concentration N = 2 x loi6 cmS. The working transition 
is 3s-4d. The pump frequencies a r e  wiV2 = 17 275.5 
cm", the frequencies in the conversion channel a r e  w3 
= 4226 cm-' and w4 = 30 272 cm-', the polarizabilities 
a r e  n , = 2 ~ 1 0 - ~ ~  cm3 and n c = 3 ~ 1 0 - 2 2  cm3. In this 
case y = 1, the pump-power threshold is 750 IvW/cm2 
a t  an input pulse duration T,,,,, =lo-" sec. Applying to 
the input, simultaneously with the threshold pump 
pulse, pulses with intensities 130 = 1 .8  IvW/cm2 and 14,, 
= 12.5 klw/cm2 (T,,,,, = lo"* sec), we can obtain a t  the 
output pulses that a r e  100-1000 times more intense 
and shorter a t  the frequencies w3 and w4 (both photoion- 
izations7 and the dispersion of v, limit the duration of 
the SIT pulses in TPA to the level 10-'~-10-'~ sec). We 
note that by using simply the TPA of the frequencies w3 
and w4, no such contraction of the pulses is possible so  
long a s  the initial intensities and a r e  lower than 
180 IVIw/cm2 and 1.25 Gw/cm2, respectively. Using 
(25), we can easily determine the characteristic dis- 
tance a t  which an  SIT regime is established in RFPI, 
namely, L-  T'= 2 cm. If y < 1 ( w ' , ~  = 17 275.5 cm-', 
w3 =4276 cm", w4 =30276 cm-', n, =2  x cm3, and 
n c  =5  x lo4' cm3), the steady-state energies of the sub- 
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pulses of the field in the conversion channel do not de- 
pend on the initial values (U3 - l.2X lo4  J/cm" E4- 0.75 
x lo9 J/cm2). 

7. The resonant four-photon parametric interaction 
discussed in item 6 (all w, > O), can cause both a de- 
crease of the frequency and an increase (to wmi). The 
frequency can be lowered also by using RFPI in which 
one of the w, is negative-generation of a difference fre- 
quency in SRS pumping. To  increase the frequency to 
more than wml with formation of SIT subpulses, the only 
suitable RI is RFPI, which takes place under conditions 
of a resonance of the type (31). 

A similar interaction can be effected in lithium vapor 
with working levels 2s-5s, x,,, = 3.8 x 10"~ cm3, 
xSRS = 7X cm3, N=2X lot6 cmJ, wi = 18 868 cm-', 
w2 = 19 668 cm-', w3 = 58 204 cm-' ( w ~ , ~  a r e  the pump 
frequencies and w3 is the frequency of the generated 
field). The energies of the SIT subpulses turn out here 
to be U, = 0.4 J/cm2, U2 = 0.38 J/cm2 and U 3  = 0.14 J/ 
cm2. In the proportional interaction regime, the char- 
acteristic distance over which SIT subpulses a r e  pro- 
duced [a distance equal to K-', see  Eq. (36)] is -170 cm; 
the threshold pump power needed to realize the SIT re- 
gime is -40 G W / C ~ ~  at  a pulse duration 10"' sec. 

8. The inhomogeneous level broadening and the devia- 
tion from resonance do not influence the character of 
the stationary field distributions, which can set  in a t  
large distances (although they undoubtedly affect the 
transient process). 

9. When account is taken of the remaining factors 
that make the theoretical model closer to reality, a 
formulation similar to the Le Chatelier principle re-  
mains valid: the evolution of USP in resonant interac- 
tion with a medium leads to changes such that the action 
of the medium on the pulses i s  stopped. Their influ- 
ence, however, leads to a qualitative change of the pos- 
sible forms of the asymptotic solutions. 

The wave mismatch disrupts the parametric bleach- 
ing. Self -induced transparency remains possible also 
in the absence of wave synchronism. The wave mis- 
match can lead to a new type of parametric soliton, in 
which periodic energy exchange can take place between 
the subpulses of fields belonging to one of the reso- 
nances and subpulses of fields a t  frequencies entering 
in the other resonance condition. 

10. The presence of a dynamic Stark shift of the level 
does not change the character of the possible asymptotic 
solutions, either by itself o r  in conjunction with inho- 
mogeneous broadening. The solutions a r e  changed by 
the frequency dispersion of the polarizabilities that de- 
termine the Stark effect; the influence of the polariza- 
bility is analogous to the influence of the wave mis- 
match. 3 i  

11. The dispersion of the group velocities of the in- 
teracting waves makes parametric bleaching impossi- 
ble. I ts  action should lead also to the appearance of 
SIT solitons with finite duration and amplitude. The 
soliton velocity should lie between the highest and low- 
e s t  of the group velocities of these waves. Impossibil- 

ity of existence of 6-like solitons should result  also 
from the dispersion spreading of the wave packets. 

The requirement that the light pulses entering the 
medium be of limited duration excludes the possibility 
of soliton formation in processes of the multiphoton ab- 
sorption type. The possibility of their onset in Raman 
processes and in RPI is not affected by this factor. If 
the SIT regime is not realized, very short  pulses can 
nevertheless appear also a t  various group velocities; in 
this case pulses with different frequencies a r e  separat- 
ed in space (in the longitudinal direction). 

12. The limited transverse dimensions of the light 
beams, a s  well a s  nonresonant losses, can cause only 
the intensities of a l l  the fields to be attenuated to zero. 

13. Estimates performed using typical values (ni t  
cm3, x ; " ' " - l ~ - ~ ~  cm3, a x / a ~ - 1 0 ~ ~  cm3sec) show 

that the dispersion of the Stark shift of the level is equi- 
valent to the influence of wave mismatch with a syn- 
chronism length exceeding by many orders  the distances 
over which the SIT pulses a r e  produced. Ordinary wave 
mismatch can be made small  enough by a suitably cho- 
sen  buffer gas. 3' If the phase velocities a r e  made equal 
in this manner, the quantity (v, - v,)/vj < lo9 ( j  f 1 )  and 
the duration of the produced solitons, estimated with the 
aid of (56), does not exceed 10-'~-10-'~ sec. Therefore 
the dispersion factors do not change the estimates, 
made in the f i rs t  par t  of the paper, of the limiting pa- 
rameters  of the self-narrowing pulses. 

I t  i s  obvious that in cases  when a distinct hierarchy of 
the parameter values characterizing the effectiveness 
of the action of each factors can be established, the 
r ea l  distribution of the fields in time and in space takes 
on alternately a form close to one and to the other of 
the asymptotic solutions obtained above. This makes i t  
possible to track in greater  detail the evolution of the 
pulses from the initial stage to the end. Thus, in the 
case of frequency-degenerate two-photon absorption of 
an  intense beam of limited c ross  section but of suffi- 
cient width, with a small  spatial modulation (due, for 
example, to the structure of the transverse mode of the 
master laser) ,  the following should take place in  a 
medium with a dispersion of the refractive index: an 
SIT pulse is f i rs t  produced practically over the entire 
beam cross  section; the pulse narrows down to a defin- 
i te duration, after which, owing to an instability of the 
type considered in Ref. 28, the inhomogeneity in the 
transverse direction is strengthened. After that, dif- 
fraction causes a gradual destruction of the SIT, and 
the field ultimately vanishes everywhere. 

" ~ f  the temperature of the medium # 0,  then the equilibrium 
population difference q o f  1 .  Generalization to the case of 
nonzero temperature is easy by multiplying by q, the right- 
hand sides of the expressions for R and r) and by replacing 
N by Nqo everywhere except in Eqs. ( 51 ). (54) .  and ( 5 5 ) ,  
where r) - 1 must be replaced by 7 - 70. 

"we are interested here in a nontrivial solution in which all 
Cjf 0. The case when V coincides with one of the v j  corres- 
ponds to spatial separation of waves with different frequen- 
cies,  inasmuch as in this case the remaining Cj at a given 
value of [ are equal to zero. 
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3 ) ~ h e  question of which of the possible stationary solutions 
( z e r o  o r  SIT) i s  established, and under what conditions, re-  
mains open in the general case.  Numerical calculations per- 
formed for a number of specific sys tems [ K. N. Drabovich 
and L. M. Kocharin, Sov. J. Quantum Electron. 10, 1386 
(1980)l  have shown that in these sys tems the frequency de- 
tuning and the Stark effect lead to damping of the USP, and 
not to establishment of SIT. 
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