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A theoretical description is presented of the narrowing of the Doppler contour of spectral lines and of the 
narrowing of the Q branch of the Raman-scattering spectrum of molecules. The description is based on the 
exact properties of the collision integral. This reveals a number of new features of the phenomenon, some of 
which had been observed in experiment and found to have no theoretical explanation. The identity of the 
mathematical formalism used in the investigation of spectral structures of different origin emphasizes the 
common interference origin of the phenomenon. 

PACS numbers: 33.70.Jg, 51.70. + f 

In the overwhelming majority of cases, collisions of 
a molecule with surrounding particles lead to a broad- 
ening of the spectral line. We consider below two 
deviations from this rule: the relatively rarely ob- 
served narrowing of the Doppler line contour by col- 
lisions, which was predicted by Dicke,' and the narrow- 
ing of the Q-branch of Raman scattering of simple 
molecules (see, e.g., Refs. 2-4 and the literature cited 
therein). 

Model solutions were constructed for the theoretical 
description of these It i s  shown in the 
present article that the main qualitative features of the 
line-narrowing effects can be described without invok- 
ing model solutions, within the framework of a theory 
based only on the exact properties of the collision in- 
tegral. In addition to an overall survey of the spectral- 
line narrowing process, this approach reveals new 
features, not contained in the model solutions, of the 
described phenomenon. 

1. NARROWING OF THE DOPPLER CONTOUR OF A 
SPECTRAL LINE BY COLLISIONS 

1. To facilitate the subsequent comparison with ex- 
periment, we consider the specific case  of broadening 
of an isolated vibrational-rotational component of the 
Raman-scattering spectrum of a molecule. With simple 
and obvious change of the coefficients of the right-hand 
sides of the equations, all  the formulas presented be- 
low a r e  equally applicable to ordinary linear o r  two- 
photon absorption. 

The line shape of an isolated vibrational-rotational 
component of the Raman-scattering spectrum of a mole- 
cule is described by the density-matrix element 

p(q=Oj,m,, q=lj,m,, v, t )  =eC"'-"~"p (m,m2v), 

where q is the vibrational quantum number, j i s  the 
rotational number, m i s  the projection of the angular 
momentum on the z axis, and w, and wz a r e  the fre- 
quencies of the incident and scattered waves. The 
matrix elements p(mlmzv) satisfy the equation (see, 
e.g., Ref. 9) 

Here A W  =qZ - w1 +wz,p =pl - R, wlz is the frequency 
of the molecular transition 1 - 2; pl ,, and El ,, a r e  the 
wave vectors and the complex amplitudes of the incident 
and scattered fields, Nmi =ni/(2ji +1) is the equilibrium 
population, m, a r e  the components of the level with 
angular momentum ji, W(v) is  the Maxwellian velocity 
distribution function, (Y,, is the molecule scattering 
tensor, and tZ is  Planck's constant. 

The intensity of the Raman-scattering line is given by 

I (o)  = -2Reioz x Q' (m,m,) jp (m,m,v) dv. (1.2) 
mlmr 

In the case of linear absorption, the transition density 
matrix is  

p(q=Oj,m,, q=lj,m,, v, t)--er"'p(m,m,v), 

where w is the frequency of the absorbed wave, and 
Eq. (1.1) remains unchanged if it is kept in mind that 
in this case Aw = wl, - w, p and E a r e  the wave vector 
and amplitude of the absorbed wave, Q =E . d,l,l ,,z,,, z, 
and d i s  the dipole moment of the transition. Expres- 
sion (1.2) for the intensity likewise remains unchanged. 
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The collision term in (1.1) is written in the impact 
approximation; the quantities v and A can be expressed 
in terms of the scattering amplitudes fl and f, of the 
molecule in the states 1 = (q, j,) and 2 = (q, j,) by the 
molecules of the exciting gaslo: 

Here k, k', and q a r e  wave vectors; M ,  and M, a r e  the 
masses of the perturbed particles, 

W ,  is the Maxwellian distribution function of the wave 
vectors of the perturbing particles and N, is the density 
of the perturbing particles. The presence of a d-func- 
tion under the integral sign in (1.3) and the symmetry 
of the scattering process with respect to inversion of 
the coordinate system and of the time lead to an im- 
portant property of the kernel of the collision integral 

If the molecule scattering amplitudes in states 1 and 2 
coincide, the angular momentum is not reoriented by the 
collisions, and there i s  no inelastic scattering, then the 
optical theorem leads to the relation 

v ( v )  = S A (v', v) dv'. (1.5) 

In this case the line contour becomes monotonically 
narrower with increasing density. In a real situation 
the relation (1.5) can be satisfied only approximately 
and, a s  will be shown later on, this relation is more 
accurate the more strongly pronounced the narrowing 
of the Doppler line contour by the collisions. Bearing 
this in mind, we represent the amplitudes of molecule 
scattering by the perturbing particles in the form of 
the sum 

f , (m,  m') =fP6,,.+Ak(m, m'), (1.6) 

in which the first term describes elastic scattering, 
and the second the reorientation with respect to the 
magnetic moment. It follows from the foregoing that 
to obtain narrowing of the Doppler line contour by col- 
lision it suffices to satisfy the relation J A ~  1 <<If ,I ;  
this relation will subsequently be made more precise. 

From (1.6) follows an analogous subdivision of the 
kernel of the collision integral: 

and of the parameter v, which we represent a s  a sum 

of three terms: 

The parameter 4 v  is obtained from (1.3) by substituting 
for fl and f ,  the quantities Af, and Af ,; vo + Av, a r e  
obtained from (1.3) by the substitution f ,  =,fa =f ,, while 
v, is  determined by (1.5) with A =A,. The quantity A,v 
reflects the role of the inelastic scattering channel and 
vanishes in the absence of the latter. The quantity AA 
satisfies a relation similar to (1.4). From the inequali- 
ty 1 ~f 1 << 1 fo( and from the additional assumption that 
the inelastic-scattering cross section is small, an 
assumption needed for the line narrowing, it follows 
that lAAl <<(A,l,and l ~ v , l  and I A V , ~  <<I v,l. 

It is convenient to change from the representation 
p(m,m,v) to the irreducible representation p(LMv) 
(Ref. 11): 

where C a r e  Clebsch-Gordan  coefficient^.'^ In this 
representation, Eq. (1.1) and the expression for the 
intensity (1.2) take the form 

- J A ,  (v,  V O ~ ( L M ~ ~ ) ~ ~ ~ -  AA(LMV, L'M'V,) CS 
L ' M I  

x p (L'M'v') dv'=DW ( v )  BLM (Zj+l)"', (1.10) 

Z(m) = -2 Re io, ~ B , , ' ( ~ ~ + I ) ' "  J p ( ~ ~ v ) d v .  (1.11) 
LM 

The kernel of the collision integral U ( L  Mv, L'M'v') i s  
connected here with the kernel in the m,, m, represen- 
tation by the relation 

a similar relation makes it possible to calculate the 
coefficient A,v(LM, L'M', v) in the new representation. 
The quantity B,, i s  given by 

where D and S a r e  respectively the scalar part and the 
symmetrical part with zero trace of the scattering 
tensor a, E X  a r e  the spherical components of the vec- 
tors,  (i1:,2$,3) is  the Wigner 3j-symbol, and 
(jll s 11 j )  is  the reduced matrix element." 

At a low density of the perturbing particles ( v , ~ p .  u )  
the collision term in (1.10) can be neglected, the equa- 
tions for each LM component of the density matrix be- 
come independent and can be easily solved. In this case 
the intensityI(w) is represented a s  a sum of two Doppler 
contours corresponding to the values L = O  (scalar scat- 
tering) and L =2 (symmetrical scattering). 

With increasing pressure of the perturbing gas, the 
parameters v,,, A, v, A,v, A,, and A.4 increase in pro- 
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portion to the density, and Eqs. (1.10) a r e  made more 
complicated not only because it contains an integral 
term, but also because the density matrix elements 
with different L and M become coupled. Naturally, it 
is impossible to solve such a system of integral equa- 
tions in general form. It turns out, however, that 
under the assumptions made concerning the relative 
smallness of the quantities Alv, A,v, and AA this sys- 
tem can be investigated by perturbation theory, which 
yields a solution in the form of an expansion in the 
parameter AoD/vo, where AUD is the Doppler line 
width, and no model assumptions need be made con- 
cerning the form of the kernel of the collision integral. 

2. We change over in (1.10) to a new function 
~~(LMv)  = [W (v)]-lhp(L~v), and introduce the notation 

XQ(v,  v') = [ W (v') lW ( v )  ]'"AQ (v ,  v') , 
krp=v&-j A, (v ,  v')  .cp (v')  dv', 

AX (LMv, L'M'v') = [ W (v') /W ( v )  ] "AA (LMv, L'M'v') , 
u ( L M ,  L ' M ' ) ~ ~ = A ~ v ~ ~ ~ . ~ M ~ ~ ~ + A ~ v  (LM, L'M', v ) ~  (1.13) 

- j AX (LMv, L'M'v') cp  (v')  dv'; 

V (LM, L'M') = i p ~ 6 , , . 6 ~ ~ - + O ( L M ,  L'M'). 

In this notation, Eq. (1.1) takes the form 

idop (LMV)  +z ~ ( L M ,  L'M') p (L'M'v) + K ~ ( L M V )  
L'Y' 

Using (1.13) and (1.4), it is easy to verify that the 
kernel A0(v,v1) is a symmetrical function with respect 
to the permutation of v and v'. It is  also seen from 
(1.5) that the following relation holds for the kernel 
Ao(v, v') 

At high densjties, kesides the customarily employed 
inequality IlK 11 >> IIU 11, the relation IIRII >> ( p -  vl also be- 
comes valid, and consequently IIR ll >> 11 fll . In this case 
i t  is natural to seek the solution of (1.14) in the form 
of an expansion in the eigenfunctions of the operator B. 
Let us note some of the properties of the eigenfunctions 
of this operator. 

Since the function A0(v,v1) is  symmetrical in the 
yariables v and v', al l  the eigenvalues of the operator 
K a r e  real. The equality (1.15) shows that the function 
[w(v)]Ih i s  the eigenfunction of the operator i? corres- 
ponding to the eigenvalue A, =O. It can be shown that a l l  
the remaining eigenvalues of the operator K a r e  posi- 
tive, A n  > 0. Indeed, using the Cauchy inequality and 
relation (1.15), we obtain for an arbitrary function 
cp(v) 

< jcp2(v) [ W (v) ] "AQ(v,  v')  [ W ( v r )  ] ' A d ~ d ~ , f  j cpZ(v') [ W ( v )  ]"'Ao (v. v') 

x [ W ( ~ ' ) ] ~ d v d v ' =  ( I  c p 2 ( v ) v o ~ ( v ) d ~ ) ' ,  

or, introducing a new arbitrary function ~ ( v )  
= [ ~ ( v ) ] ~ ~ g ( v ) ,  we obtain 

from which i t  follows in fact that a l l  the eigenvalues 

a r e  nonnegative. With respect to the minimum non- 
zero eigenvalue X I  we assume, a s  is customary, that 
it does not differ from vo by an order  of magnitude, 
so  that when the inequality 1IK 11 >> 11 ? 11 is satisfied we 
also have A n  11 VII a t  n + 0. 

We proceed now to solve Eqs. (1.14). During the 
f i rs t  stage of the ~ l u t i o n  of the problem we assume 
that the operator U i s  diagonal in the indices LA4 and 
L'M'. In this case the system (1.14) breaks up into 
separate integral equations for the quantities ~(LMV). 
We shall seek the solutions of these equations in the 
form of expansions in the eigenfunctions of the operator 
2: 

Substituting this expansion in (1.14), multiplying by 
cpk(v), and integrating with respect to v, we obtain 

A direct solution of (1.16) by perturbation theory is 
made difficult by the smallness of the coefficient of a,. 
We therefore proceed a s  follows. We express formally 
a, in terms of a, and an, using (1.16b), and substitute 
in (1.16a). As a result, we get 

where 

(Do .  =x (iAofh,)-iVo,V,,. (1.18) 
n + O  

Expressing a, from (1.17) in terms of a, and substituting 
in (1.16b), we obtain 

+z Vk.a.=-DBLM(2~+1)"Vk,(iAo+V,,-Q,o)-'. (1.19) 
s f 0  

In the vicinity of the line center I Aw - Im V,,I <<@, the 
last two terms in the left-hand side of (1.19) a r e  of the 
order of Va,, whereas the first  term - Aka,, so  that the 
solution can be sought in the form of a perturbation- 
theory ser ies  in the small parameter V/A. The first  
term of the series is  of the form 

Substituting this expression in (1.17) for a,, we obtain 

Changing now again to the function 

substituting it in the expression (1.11) for the intensity, 
and integrating with respect to v (the function [w(v)]lh 
i s  orthogonal to cpn a t  n * O), we obtain 
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Thus, formulas (1.20) and (1.21) enable us to investi- 
gate the line contour. 

3. We stop first  to discuss the expression for the in- 
tensity near the line center. In first-order approxi- 
mation in V/A we can retain in (1.20) only unity in the 
square brackets, after which the expression for the 
intensity becomes 

The matrix element (p-v),, =O. Therefore the quantity 

yields the impact width and the line shift, which differ 
from their ordinary-impact-theory values in that 
Alv and 4 v  depend on the velocity v, and in that an in- 
tegral operator is present. 

It is necessary next to calculate the matrix elements 
of the operator @, which according to (1.18) i s  ex- 
pressed in terms of the off-diagonal elements of the 
operator f at  n # 0: 

V,,=i(pv) o,+y,n+i6,,=i j [ W (v) 1'" (pv)cp,(v)dv 

Using (1.24) and (1.18) and neglecting Aw compared 
with X ,, we obtain 

We now substitute (1.25) in (1.22), retaining only the. 
terms of order (p. v)2/X, p. v6/A, p. vy/A. AS a result 
we get 

We can now refine the condition I ~f 1 << I f  ,I used to 
justify the applicability of perturbation theory in (1.16). 
It is  seen from the system (1.16) that actually the con- 
dition I Vonl << A ,  could be satisfied a t  n+ 0. In the case 
L # 0 (linear absorption L = 1 and depolarization scat- 
tering L =2), the inequality I A ~  1 <<If ,] and the small- 
ness of the inelastic scattering I Alvl << I vol a r e  the 
necessary and sufficient conditions for the satisfaction 
of I VonI << A,. In scalar scattering L =0, however, this 
condition may be relaxed. In this case there is no 
need for requiring the cross  section for the reorienta- 
tion of the angular momentum to be small, and it suf- 
fices to have the amplitudes of the scattering accom- 
panied by reorientation to differ little in the upper and 
lower states. In fact, if, e.g., these amplitudes coin- 
cide exactly and there i s  no inelastic scattering, then 
by virtue of the optical theorem there follows from 
(1.3) and (1.12) the relation 4 v  = AA(v1,v)dv', which 
ensures the vanishing of all  the matrix elements Yo, 
and 6,,. 

Equation (1.26) describes the narrowing of the line 
contour by collisions. At low densities, when 

A -l(p. v)' >> yoo, we have r' >> Y,, so that the width of 
the Lorentz contour (1.26) decreases monotonically 
with increasing density (A EN,). At a certain per- 
turbing-gas density these quantities become compara- 
ble (7, a N,), and the line width reaches a maximum. 
With further increase of the density, Y, increases and 
the inequality Y,>> r' begins to be satisfied. In this 
region the line width r and the shift A a r e  given by 

This equation takes into account the density-independent 
width and line-shift increments that a r e  preserved a t  
high densities of the perturbing gas far  beyond the nar- 
rowing region. We emphasize that it i s  precisely these 
terms which distinguish qualitatively expression (1.28) 
from the analogous expression obtained with the aid 
of the model collision integral. Their appearance is due 
to the dependence of the quantities Alv and A,von the 
velocity of the investigated molecule and to the presence 
of the integral operator in (1.24). Even thoughat very 
high pressures these terms result in small additions 
to the quantities J? and A, i t  is important that they de- 
pend on the geometry of the experiment and take on 
different values, e,g., in the case of forward and back- 
ward Raman scattering. This fact, experimentally 
observed in Ref. 13, cannot be explained within the 
framework of the model solutions. 

The next term of the expansion (1.20), while much 
smaller than the first, does lead to a new qualitative 
effect-the line contour becomes asymmetrical. Since 
the general expression for the density is very compli- 
cated, we confine ourselves to the limiting case of high 
densities, when A-'(p.v)'<< y, 6. In the calculation of 
the matrix elements a, and V, we can neglect the 
quantity p . v and retain only the term yo, +is,,. We can 
simultaneously neglect the quantities r' and I'", after 
which we get 

Expression (1.29) is  of interest because it leads to 
the asymmetry of the line in the pure impact region of 
the broadening, and the asymmetrical increment is of 
the order of (Y/A )a, and is consequently independent of 
the gas density. We recall that this distinguishing fea- 
ture of the broadening of the impact contour is  due en- 
tirely to the dependence %f Alv and A,v on +e velocity v 
and to the integral term U inthe operator V. If the 
integral term U is neglected and A,v a n d 4 v  a r e  as -  
sumed to be constant, then the coefficients a and b 
vanish and (1.29) goes over into the usual Lorentz con- 
tour. In those cases when a substantial narrowing of the 
Doppler contour of the investigated line i s  observed, i t  
is certainly obvious that the parameter (y/A)a is very 
small and the deviations of the contour (1.9) from a 
Lorentz shape could hardly be observed in experi- 
ment. However, if the narrowing i s  small o r  not ob- 
served a t  all, and all  the more if y is  several times 

459 Sov. Phys. JETP 53(3), March 1981 V. A. Alekseev and A. V. Malyugin 459 



smaller than the parameter A ,  then these deviations can 
be substantial. The fact that the expansion a t  high 
densities is actually carried out with respect to the 
parameter (y/A)a ensures the validityof (1.29) in this 
case. 

Equation (1.27) for the quantity r =r' +irn is valid 
in the region Aw<< A,. In the far  wing of the line 
Aw>> A, it is possible to retain Aw in the calculationof 
@,, and neglect the quantities A,. As a result, the real 
and imaginary parts of the parameter r change place, 
s o  to speak, in the line wing, and the intensity takes the 
form 

It is  seen from this formula that the asymmetry of the 
line is  preserved also in quite remote wings. It is of 
interest to note that if yo, and yo, a r e  equal to zero, 
then the right-hand side of (1.30) vanishes. This means 
that in this case the intensity in the wings decreases 
like the fourth power of Aw. 

4. In the entire preceding investigation of the line 
contour-we started from the assumption that the op- 
erator U(LM, L'M') is diagonal in LM and L'M' or,  
equivalently, that the different irreducible representa- 
tions of the density matrix p(LMv) a r e  not intermixed 
by the relaxation processes. Let us examine how the 
line contour is altered if we disregard this assumption. 

We seek the solution of the system (1.14) in the form 

where a stands for the pair of indices LM. For the co- 
efficients a: we obtain 

iAoaoa +x (VaI,,~)ooa,"'+ z (Va.*)o,a.a'=DB,(2j+i)", (1.31a) 
a' .'."+O 

( i ~ m + h . ) a , ~ + z  (V..~),oao"+ (V,,.),,a."=O, k#0. (l.3lb) 
a' a'.n+O 

We solve (1.31b) formally with respect to a:' and sub- 
stitute in (1.31a). As a result we get 

In the zeroth order in V/A we can put in (1.32)af=0 a t  
s * O .  If the operator U,,t, and with it also V,,#,  a r e  
then assumed to be diagonal, we obtain from (1.32) 
for a: a solution that coincides with the first  term of 
(1.20). On the other hand, if the operator U,,t i s  not 
diagonal, then to find a; it is  necessary to solve a 
system of linear equations already in the zeroth order 
in V/A. Naturally, this procedure can be carried 
through to conclusion only by considering a concrete 
molecular transition. Without dwelling on this question 
here, we note the following. 

The complex operators U,,, and @,,I a r e  symme- 
trical with respect to permutation of the indices a and 
a', so that the matrix of the coefficients of (1.32) is  
not Hermitian. Therefore neither a Lorentz contour, 

nor even a superposition of Lorentz contours, can 
represent the solution for  a:, and hence also the line 
intensity. It is obvious, however, that the width of the 
resultant contour is as before of the order of 
U + (p- V)~/A, first  increasing and then decreasing with 
increasing density. Other qualitative features of the 
broadening a r e  also preserved, including the line-width 
increment that does not depend on the density. 

The form of Eqs. (1.32) allows us to refine the mean- 
ing of the approximation wherein the operator U,,r 
i s  assumed to be diagonal. It is  seen from (1.32) that in 
the zeroth order in V/A only a connection between the 
coefficients a t  is  produced. For this reason, the co- 
efficients of the equation likewise contain only matrix 
elements of the form (U,,J),. The detailed expression 
for the matrix element of the integral part of this op- 
erator is  

J cp,(v) AiT(LMv, L'M'v') [ W ( v l )  1'" dv dv' 

= J q . ( v )  [ W ( v )  ]'"AA(LfM'v',  LMv) dvdv' .  

Thus, the diagonality of the operator U follows auto- 
matically from the assumption that the coefficients 
hv(LM, L'M1,v) and hA(LMv, L'M'vf)dv a re  diagonal. 
The last assumption i s  fully equivalent to the approxi- 
mation of spherical symmetry of the relaxation pro- 
cesses, which is traditionally used to describe the 
broadening of a degenerate transition without allowance 
for collisions with change of ~eloci ty .""~ Although in 
most cases the applicability of this approximation can- 
not be strictly c ~ r r o b o r a t e d , ' ~ " ~  one can expect the 
off-diagonal parts of the operator (U,,r),, to be rela- 
tively small and not to lead to qualitative deviations 
from the broadening picture described above. 

5. Murray and Javan13 measured carefully the line 
width of the Q-branch of Raman scattering by hydrogen 
molecules. The line width a s  a function of the density, 
for forward and backward scattering, is shown in Fig. 
1 by the dark and light circles, respectively. In back- 
ward scattering one observes a strong collision narrow- 
ing of the Doppler line, Aw, =0.34 cm-'. In the case of 
forward scattering, the Doppler width i s  much smaller, 
Aw, ~ 0 . 0 3 5  cm", the line narrowing sets in a t  low 
density, and the line width in the narrowing region be- 
comes comparable with the experimental error ;  this 
region is not shown in Fig. 1. The measurements re- 
sults a r e  compared in Ref. 13 with the linewidth calcu- 
lations used in the strong and weak collision models. 
It turns out that to reconcile the calculations with ex- 
periment it must be assumed that the plot of the impact 

FIG. 1. Experimentally measured3  backward-scat ter ing l ine  
width (0). Curves  1-theoretical dependence of the backward- 
sca t te r ing  l ine  width on  the density; 2-experimental depen- 
dence3 of the forward sca t te r ing  l ine  width on t h e  density. 
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line width against the gas density has different slopes 
for forward and backward scattering. The actual rea- 
son is that, a s  seen from Fig. l, the difference between 
the forward and backward scattering line widths in the 
density region1) from 40 to 100 amagat remains con- 
stant a t  approximately 0.02 cm-', whereas within the 
framework of the models of both strong and weak col- 
lisions these widths should come close together with 
increasing density. Naturally, the different dependence 
of the pure impact line width on the density for forward 
and backward scattering does not agree with the premi- 
ses  of the impact theory. 

Formula (1.27)resolves this contradiction completely. 
As already noted, owing to the dependence of the pa- 
rameters of the broadening on the velocity v and owing 
to the presence of an integral term in the operator V, 
a density- independent increment appears in the pa- 
rameter r', equal in order of magnitude to the differ- 
ence between the experimentally measured forward and 
backward scattering line widths. We assume for our 
estimate that 

where Aw, is the Doppler width. For the backward 
scattering Aw, ~ 0 . 3 4  cm-' we assume the shift to be 
6 = 1.5 xlO-, [cm-'/amagat] N,, where N ,  is the gas 
density, and we estimate Aw,/A from the equation 
AW;/A = y,, which holds true a t  the density No =20 
amagat a t  which the width is a minimum. In the case 
of backward scattering we obtain 

For forward scattering Aw, ~ 0 . 0 3 5  cm-', so  that the 
corresponding increment is  decreased to approxi- 
mately one-tenth. We thus obtain that the difference 
between the line widths in forward and backward scat- 
tering is approximately 6 ~ 1 0 - ~  cm-', which differs 
by only a factor of three from the experimentally ob- 
served value. Naturally, it is  difficult to expect from 
the foregoing estimate a better agreement. It follows 
from (1.28) that a similar density-independent incre- 
ment appears also in the line shift. This fact, how- 
ever, cannot be compared with experiment, inasmuch 
a s  the line shift was measured in Ref. 13 only for 
backward scattering. 

The values of A ,  and bOn in (1.27) a r e  proportional to 
the gas density N,. It follows therefore from (1.26) 
that the total line width i s  r =A,/N,+A, +A,N,, where 
A,N, = y, and A, = 1.5 xlO-= cm-'/amagat [the experi- 
mentally measured slope of the y,(N,) curve], and 

is also the experimentally measured difference between 
the forward and backward scattering line widths a t  high 
densities. 

The only remaining unknown is A,, which can be de- 
termined, e.g., by requiring that the minimum of the 
width be reached a t  the experimentally obtained value 
No =20 amagat. From this we get A, =A,. (20)' =6x10-' 

cm-leamagat. The r(N,) curve plotted with these pa- 
rameters is shown in Fig. l. The agreement is within 
the limits of the experimental error .  

6. It is  of interest to compare the foregoing approach 
to the description of the broadening with the extensively 
used models of weak and strong collisions. 

In the strong-collision model AA(v, v') = O  and 
Ao(v, v') = voW(v). From Eq. (1.4), which takes the form 

v, (v) W (v) W (v') =vo (v') W (v') W (v) , 

it follows that vo(v) = v0(v1), i.e., the parameter vo does 
not depend on the velocity. It would therefore be in- 
consistent to retain in this model the dependence~ of 
A, v and A,v on v, and a s  a result the sum A, v +A,v 
must be set  equal to velocity-independent parameter 
y+i6 that describes the impact broadening. The equa- 
tion for the eigenfunctions of the kernel 

2, (v, v') =va [ W (v) W (v') ] ' 

takes the form . 

vocp. (v) -vo[W(v) 1 ~ s  [ W ( v l )  I"*cp,(v') dv'=h,cp, (v). 

This equation has one eigenvalue A, = 0 and an eigen- 
function qo =[w(v)]lh. All the remaining eigenvalues 
a r e  the same and equal to A, = vo, n# 0. All the matrix 
elements yon and 6,, in (1.27) vanish, and r takes the 
form 

If, despite the inconsistency of this step, we retain the 
dependence of y and 6 on v in the strong-collision mod- 
el, the density-independent increments to r' and r" 
still vanish because the functions 6 and y a r e  even. For 
this reason, e.g., 

Thus, the strong-collision model is  by its very nature 
a two-parameter model and does not yield in principle 
the density-independent increments to the line width. 

In the weak-collision mod_el, a transition is made, 
after assuming the kernel Ao(v, v') to be narrow, from 
integral equations of the type (1.14) in their diagonal 
variant to an equation of the Fokker-Planck type.5 The 
two coefficients that appear in this equation a r e  as- 
sumed to be constant parameters, inasmuch as only in 
this case does the equation admit of an analytic solution 
that leads to the same qualitative results as the strong- 
collision model. If we retain in the equation the ve- 
locity dependence of the coefficients, a procedure per- 
missible in principle, the problem becomes no less 
complicated than the analysis of the initial integral 
equation in general form. 

2. NARROWING OF THE Q-BRANCH OF THE 
VIBRATIONAL BAND OF THE RAMANSCATTERING 
SPECTRUM IN A GAS 

1. In the preceding section we considered the 
broadening of an isolated j component of the Q branch. 
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Naturally it was assumed here  that the frequencies of 
the different j components differ quite strongly and that 
they do not overlap in the entire considered range of 
pressures. The splitting of the j components is deter- 
mined by the interaction between the vibration and ro- 
tat ion 

oo-o,=Aj=2nca,j(j+1), 

where w, is the frequency of the vibrational transition, 
c is  the speed of light, and a, is the constant of the 
interaction between the vibration and rotation. The 
splitting hj for the light molecules H,, D, and HD is 
large, so  that the j components broaden independently 
up to very high pressures. For  a l l  the remaining 
molecules the constant (Y, is  small, and the different j 
components of the Q branch begin to overlap even at 
pressures of several atmospheres. Starting from this 
stage, the broadening of the entire structure a s  a whole 
depends essentially on the interference of the over- 
lapping components. In the case of depolarized scat- 
tering, this interference, while restructuring the 
broadening picture a s  a whole, does not lead to quali- 
tative singularities, since contributions to the line width 
a r e  made only by collisions accompanied by a reorien- 
tation of the angular momentum. The situation is  dif- 
ferent in the case of the scalar part  of the Q branch. 
In this case the collisions accompanied by reorientation 
of the angular momentum do not influence the broaden- 
ing, a s  a result of which the scalar  part of the Q branch 
of simple molecules (such as ,  e.g., N, and 0,) begins 
to narrow with increasing density. This phenomenon 
was considered theoretically in Refs. 3, 7, and 8, where 
model representations were used concerning the col- 
lision integral, and was observed experimentally nu- 
merous  time^.^^^"^ 

It will be shown below that the narrowing of the Q 
branch is  similar in many respects to the collision 
narrowing of the Doppler line contour. The main quali- 
tative features of this phenomenon follow from the law 
of conservation of the number of particles (unitarity 
of the collision Smatrix), and can be described within 
the framework of a theory based only on the exact prop- 
erties of the collision integral. 

2. At those densities a t  which narrowing of the Q 
branch takes place, the impact width of the line ex- 
ceeds substantially the Doppler width, so  that the 
Doppler broadening can be neglected. As a result one 
can neglect also the change of the velocity of the mole- 
cules in collisions, and it can be assumed that the 
colliding particles move along classical linear tra- 
jectories. Nonetheless, the dependence of the relaxa- 
tion constants on the relative particle velocity is sub- 
sequently This dependence, however, 
i s  of no principal significance in our problem and will 
also be neglected. Within the framework of this ap- 
proximation, the relaxation processes have spherical 
symmetry and interrelate only density matrix elements 
with identical L and M. 

The system of equations for the elements of the 
density matrix p(L =0, M = 0, j )  sp( j ) ,  which describe 
the broadening of the scalar part of the Q branch, is 
easiest to obtain formally from (1.lO)by replacing the 

parameter p - v  by Aj, the molecule velocity v by the 
discrete index j, and the function W(v) in the right-hand 
side of (1.1 0) by unity, and by introducing a new relaxa- 
tion matrix A(j, j') that describes transitions of the 
molecule from the level j' to j in collisions. After this 
we obtain for the density matrix p( j )=p(L =0, M =0, j), 
which is  connected by relation (1.9) with the matrix 
elements p(q, = Ojm,, q, = ljm,) in the jm representation, 
the system of equations 

In Eqs. (2.1) is  retained only the connection between 
the matrix elements that a r e  a t  resonance a t  close 
frequencies, i.e., that correspond to radiative transi- 
tions without change of the rotational quantum number. 
The expression for the line intensity is analogous to 
(1.11): 

The relaxation constants A(j ,  j') a r e  connected by a 
relation similar to (1.12) with the relaxation constants 
r (q l  jm,, q, jm,; q, j'm',, q, j'm',) in the jm representa- 
tion. In the case of interest to us L = L' =M =M' =0, 
taking into account the explicit form of the  coefficient^'^ 

we obtain 

Thus, to investigate the shape of the Q-branch contour 
it is  necessary to solve the system of coupled equations 
(2.1) for the quantities p(j). In general form, naturally, 
this problem cannot be solved. In the particular case 
of broadening of the Q branches of simple molecules, 
however, the relaxation matrix r has certain dis- 
tinguishing properties that make it possible to estab- 
lish a number of qualitative properties of the broaden- 
ing picture. 

In the quasiclassical molecule-trajectory represen- 
tation the coefficients r a r e  of the form" 

r(q l jm,  yam; q,jrm', qzi'm') 

=- [6;,,6,,,-S(q,jm, q,jTm', b)S'(q,jm, q2j'mr, b )  ]F(b)db. (2.4) 

The elements of the S matrix for the scattering of the 
investigated molecule by the perturbing particles de- 
pend on the vibrational quantum number and on a num- 
ber  of other collision parameters, designated by the 
collective symbol b, with respect to which the averag- 
ing is performed. It is  very important in what follows 
that all the l? a r e  proportional to the density N ,  of the 
perturbing gas. Reference 3 contains detailed argu- 
ments in favor of the statement that in our case the S 
matrix depends very little on the vibrational quantum 
number and that the probabilities of transitions between 
different vibrational states a r e  small. Bearing this in 
mind, we represent the S matrix a s  a sum of two terms 

S(qjm, qj'm', b )  =S,(im, i'm', b )  +AS(qjm, qj'm', b ) ,  

the first  of which is  independent of the vibrational state 
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of the molecule, whereas the second takes into account 
the small difference between the scattering matrices in 
the upper and lower states of the molecule a s  well a s  
the possible presence of transitions with change of q 
(quenching of the oscillations). Naturally, I AS] << ISo/. 
Equations (2.4) and (2.3) can be represented in the form 
of a similar sum: 

The quantity r, is expressed in terms of the transition 
probability. Therefore, by virtue of the unitarity of 
the S matrix (the particle-number conservation law) we 
have 

The succeeding transformation, a s  well a s  the sub- 
division in (2.5), a r e  completely analogous to the trans- 
formations of the preceding section. The values of I+,, 
just a s  the probabilities of the j'm' - jm transitions per 
unit time, satisfy the detailed-balancing condition 

N, (2j+ 1) -'To (j'm'; jm) =Ni. (2jf+ 1)- 'ro( jm; j'rn'), 

from which it follows that 

A transition to new functions 

symmetrizes the relaxation matrix 

i (Am+Aj)p( j )+  z~~(j,j')~(j')+ z ~ X ( j , i ' ) p ( j ' )  
,. I'  

The matrix z o ( j ,  j') is  symmetrical and, a s  seen from 
(2.6), satisfies the relation 

i,e., the vector (N jph  is  an eigenvector of the matrix 
A, and corresponds to the eigenvalue A ,  =O. 

3. At low pressures, the A, a r e  small, Z,<<A*. 
Therefore each of the functions p(j)  has a resonance a t  
the natural frequency Aw =- Aj, so  that the contours of 
the lines corresponding to different j transitions do not 
overlap. As a result, the system (2.7) breaks up into 
independent equations for the quantities ji(j), with 
trivial solutions. For  the intensity of the entire Q 
branch we obtain from (2.2) in this case 

Thus, a t  low density of the perturbing gas the in- 
tensity Z(w) of the Q branch is a superposition of 
Lorentz contours. Equation (2.9) is valid so long a s  
these contours do not overlap. With increasing density, 
the components begin to overlap and to find ~ ( w ' )  it i s  

necessary to solve the complete system (2.7). In the 
intermediate pressure region, when the shifts A, and 
the relaxation coefficients A, a r e  of the same order, it 
i s  necessary to spetify for such a solution the explicit 
form of the matrix A,, after  which the problem can be 
solved numerically. At high pressures,  however, when 
the relaxation terms in Eqs. (2.7) become dominant, 
i.e., IA,( j, j' )I >>A,, the problem can again be solved 
analytically. 

In this case it i s  natural to seek the solutjon in the 
form of the eigenvectors x,, of the matrix A,: 

The following is  known concerning the eigenvectors and 
eigenvalues of the matrix. Since the matrix A, i s  
symmetrical, a l l  its eigenvalues a r e  real, and the 
eigenvectors corresponding to these eigenvalues a r e  
orthogonal. Next, it follows from (2;8) that one of the 
eigenvalues is  equal to zero, A, =0, and corresponding 
to this eigenvalue is  the vector 

xm= (0) -'" (N,)  ", =z N.. 
S 

Using the property (2.6) and the inequality J o ( j ,  jl)>O 
a t  j +  j', which follows from (2.4), it can be shown that 
a l l  the remaining eigenvalues a r e  larger than zero, 
A ,  > 0. The relative magnitudes of these eigenvalues 
depend on the explicit form of the relaxation matrix A,. 
It is  obvious, however, that a l l  a r e  proportional to the 
perturbing-gas density N,, and we shall also assume 
that they do not condense towards zero. 

Substituting the expansion (2.10) in (2.7) and intro- 
ducing the symbol V,,, =iA,6j,t + d ( j ,  j'), we obtain 
for  the coefficients a, by the standard method the sys- 
tem of equations 

L 
( i ~ o + ~ ~ , ) a ~ + ~  V,,e, = - Bo'", 

ti (2.12a) 
* f O  

which differs from (1.16) only in the right-hand side. 
At high pressures A,>> V a t  k+ 0, s o  that the solution 
of this system is similar to (1.16), and a, differs from 
(1.20) only by a coefficient. 

4. Changing back from the functions ;(j) to ~ ( j )  and 
substituting in (2.2), we obtain 

I(")  =-2a, ~e [i~z ( ~ ~ ) ~ a , , ~ ~ , ]  =-2ol Re[iBa0dh]. (2.1 3) 
1* 

We have taken into account here (2.11) and the ortho- 
gonality of the eigenvectors 

Substituting a, in (2.13) we obtain in the zeroth order in 
V/A 

Taking into account the explicit form of the operator V, 
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we obtain the expression 

from which i t  is seen that the quantities A, a r e  real 
and do not depend on the density N,, while 

coincides with the center of gravity of the structure 
(2.9) a s  N,- 0, and the parameters Y,=Y&,+~Y:,, 
a r e  generally speaking complex and proportional to 
N, At Aw<< A ,  we can neglect Aw in the denominator 
of (1.18). The line intensity (2.14) then takes the form 
of a Lorentz contour of width r' and with the maximum 
shifted by r", given by 

+ [r, ,̂ .I + [r, A+] 9 

"*O 0+0 

In the square brackets of (2.15) a r e  combined terms 
having the same dependence on the gas density N,: the 
first  term is proportional to N ,  the second is inde- 
pendent of N,, and the third i s  inversely proportional 
to N, It is  therefore clear that the line width can be 
represented in the form r1(NP) =CIN,+c, +c,/N,, where 
c, a r e  coefficients independent of the density. The line 
width r' f i rs t  decreases with increasing N, reaches 
a t  a density No = (c,/clph a minimum equal to 
r 'w,) =c, +2(c1c,yh, and increases with further in- 
crease of density. Since yon/An<< 1, the second term 
in the first square bracket of (2.15) is  much smaller 
than the first, so that clN,= YL. The order of magni- 
tude of c2 is AY"/A. The parameter y"/k is small, 
y"/A << 1, but since it may turn out that A >> y&,, the 
first  and second terms of (2.15) can be of the same 
order. Moreover, we shall present below reasons why 
the inequality Y >> y' may be valid. In this case the 
second term can be much larger than the first  in the en- 
t ire range of pressures accessible to experiment. 

It appears that the line shift can always be repre- 
sented with high accuracy as I"' = y& +A,, since 
Y'/A <<I. We recall that Eqs. (2.14) and (2.15) were 
obtained in zeroth order in the parameter V/A. With- 
out dwelling on the investigation of the next terms of the 
expansion, we note that allowance for these terms, 
just a s  in the case of the narrowing of a Doppler con- 
tour, leads to asymmetry of the line. 

5. It is of interest to compare the formulas obtained 
above with the results to which the strong-collision mod- 
e l  leads. In this model 

and consequently 

It is seen directly from the eigenvalue equation that 

A ,  = 0, and a l l  the remaining values A, a r e  the same 
and equal to A n  = v. The last term in (2.15a) takes in 
this case a particularly simple form 

All the qualitative features of (2.15) a r e  preserved. 
However, beskdes the assumption concerning the form 
of the matrix Ao(j, j'), in the strong-interaction model 
it is  actually assumed that the matrix d ( j ,  j l ) i s  
diagonal and does not depend on j o r  j'. In this case a l l  
the yon = O  a t  n*O, and (2.15) becomes a two-parameter 
formula 

6. We discuss now the possible relative values of 
y;,, and Y&. As seen from (2.4) and (2.5), the quanti- 
ties yon a r e  proportional to the difference between the 
collision S matrix in the upper and lower states, 
y, aSAS. We express the S matrix in the upper state 
Sl in terms of the S matrix in the lower state So in the 
form 

s , ( b ) = S o ( b )  exp [ i q ( b ) - r ( b ) ] ,  

emphasizing by the same token the role of change of the 
phase shift (p(b) in collisions because of the differences 
between the Van der  Waals constants in the vibrational 
states q=O and q = l ,  and the role of the damping of the 
oscillation. Since ~ ( b )  and r ( b )  a r e  small, the exponential 
can be expanded in a series,  after whichwe get 

If there is  no phase change in the collisions, (p =0, then 
the A A ( j , j ' )  are  real and only in this case can the Q 
branch width a t  high pressures yo, (in the region where 
the width increases with increasing density) be identi- 
fied with the vibration-damping rate averaged over j. 
If, on the contrary, (p2(b)>r(b), the width of the Q 
branch a t  high pressures is  determined by the loss of 
phase. In this case, as seen from (2.16), the imaginary 
part of yon is much larger than the real part, 
Y:,,>> Y;,, thus justifying the retention of the second 
term in (2.15a). 

7. Smirnov and ~abelinski;'' investigated experi- 
mentally the narrowing of the Q branch of acetylene 
C2H2 by pressure of nitrogen N,. The dependence of the 
width and of the shift of the Q branch on the nitrogen 
pressure p, was measured a t  different acetylene pres- 
sures p,, and in the region of effective narrowing of the 
Q branch (p, = 70-120 atm) the nitrogen pressure ex- 
ceeded substantially the acetylene pressure (p2 =0.55 
- 3.7 atm). Under these conditions it can be assumed that 
the matrix A, and its eigenvalues a r e  determined by the 
collisions of the acetylene molecules with the nitrogen 
molecules, and consequently, the values of A in (2.15) 
a r e  proportional to p,. 

The line broadening of acetylene by i ts  own pressure 
can be treated a s  a perturbation, by including the re- 
sults of the actions of these collisions and the quantities 
yo,. In this case the quantities yon a r e  linear functions 
of both the nitrogen density and of the acetylene densi- 
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ty: yon =c$,+c&,. Substituting these values of yon in 
(2.15) we can easily verify that the dependence of the 
Q-branch width on the density takes the form 

where A, B, and c a r e  constants independent of the 
density. At constant nitrogen pressure and with in- 
creasing acetylene density, the width of the Q branch 
increases in proportion to p, with a proportionality 
coefficient A, +B,/p, that depends on the nitrogen pres- 
sure. Therefore, with increasing nitrogen pressure 
the r l (p , )  curves corresponding to different acetylene 
pressures come closer together, a s  is  qualitatively 
confirmed by experiment.'' Similar increments appear 
also in the line shift I'"(pl,p2), s o  that the shift be- 
comes a nonlinear function of the nitrogen density p,. 
This nonlinearity i s  also quite noticeable on the ex- 
perimental rM(p1) curve obtained in Ref. 16. 

CONCLUSION 

From the physical point of view, the two considered 
phenomena have a common property, which is ap- 
parently typical of all  the cases  in whicha narrowing 
of collision lines can be observed. In both the lower 
and the upper states there is a level substructure (con- 
nected in the former case with the kinetic energy of the 
molecules and in the latter with the rotational energy), 
and the quantum numbers characterizing the substruc- 
ture do not change in radiative transitions. At the same 
time, the collisions of the molecules in a gas lead 
mainly to transitions between states of only one and the 
same substructure and a r e  identical in the initial and 
final states that a r e  connected by the radiative transi- 
tion. The narrowing is the result of interference be- 
tween the spectral components that make up the transi- 
tion. 
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