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A new class of solutions to the classical Yang-Mills equations in Minkowski space that leads to nonlinear 
color oscillations is studied. The system describing these oscillations appears to be stochastic. Periodic 
trajectories corresponding to these solutions are found and studied and it is shown that they form at least a 
countable set. 

PACS numbers: 11.1O.Lm 

1. INTRODUCTION. THE SIMPLEST NONLINEAR 
COLOR OSCl LLATIONS 

There  has recently been much discussion of solution 
of the classical Yang-Mills equations and the possibility 
of obtaining on the basis of them (without the use of 
perturbation theory) effects associated with the ground 
state of quantum chromodynamics. '~ In this  connec- 
tion, interest attaches to analysis of the  classical  
Yang-Mills equations without external sources;  this 
may be helpful for the construction and investigation 
of the structure of the vacuum and the problem of a s -  
ymptotic states of the theory. 

In the  ear l ie r  Ref. 3, a study was made of periodic 
solutions of the classical Yang-Mills equations in 
Minkowski space without external sources describing 
very simple nonlinear oscillations of the color degrees 
of freedom and the analog of plane waves in classical 
electrodynamics. In the present paper, we make a fur- 
ther  investigation of nonlinear oscillations in classical 
Yang-Mills theory. We begin with some results  of the 
previous Ref. 3 needed in what follows. 

We consider the Yang-Mills equations without exter- 
nal sources corresponding to  the group S U(2): 

8,G,"+g~"~"A,bG,'=0, 

G,"=a,A:-dJpa+g~"bcA~A.' 
(1) 

( a , b , c = l , 2 , 3 ;  y , v = 0 , 1 , 2 , 3 ;  i , j , k = l , 2 , 3 ) i n a c o -  
ordinate system in which the Poynting vector G:,Gi, 
(G, ,, = ajG,) vanishes. For this, it is sufficient (in the 
gauge a,  A; = 0, 4 = 0) that one of the following relations 
be satisfied: a )  A;,, =O), b) A; = O ,  C) A:,, - A;,, = O  (the 
dot denotes differentiation with respect  to the time). 

In case a), when the potential in a chosen system de- 
pends only on the time, the Yang-Mills equations take 
the form 

The system described by Eqs. (2) is actually equivalent 
t o  a discrete nonlinear mechanical sys tem with Hamil- 
tonian 

which i s  equal t o  the energy density of the Yang-Mills 
field system (1). 

On the  basis of this ,  it is natural t o  speak of the classi- 
cal (nonlinear) Yang-Mills mechanics described by Eqs. 
(2). We note that the corresponding classical Maxwellian 
mechanics i s  t r ivial  and described by the equation A, =0, 
which corresponds to  constant electr ic  field A, = - E , t ;  
a s  we shall  s ee  below, it is only because of the nonlin- 
eari ty of the Yang-Mills equations that complicated non- 
linear color oscillations a r  ise. 

In the  simplest  case  admitting analytic solution, we 
obtain a nonlinear plane wave that varies in t ime in ac- 
cordance with the Jacobian elliptic cosine. Indeed, if we 
seek  a solution to  the sys tem (2) in the nine-parameter 
form 

A,"=O,"f'"' ( t )  / g  

(no summation over a), where 0; is a time-independent 
orthogonal matrix, 

0,"0,"=6"~, 

then from (2) we obtain the system of equations 

f'"'+f'"' ( f ' - f ' " " )  =o, 

where 

f Z = f i l l Z + f ( 2 ) 2 +  ( 3 1 %  f .  

In the ea r l i e r  Ref. 3, a study was made of the simple 
case, admitting analytic solution, when a l l  three  colors 
vary  in t ime in the s ame  way: 

I '"( t )  =f '%'( t )  = f i S 1 ( t ) = f ( t ) .  

Then the system (4) reduces t o  a nonlinear equation 
with one degree of freedom whose solution has the form3 

where cn(x; k) is the  Jacobian elliptic cosine of argument 
x and modulus k, to is the arb i t ra ry  origin of the time, 
and g4 is the energy density in the considered coordinate 
system. 

The  chromoelectric field 

EP=Oinf/g 

and the chromomagnetic field 
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corresponding to  (5) a r e  mutually parallel in the "rest" 
frame, and the three  vectors E ', E ', E a r e  mutually 
orthogonal. Such a picture differs from the one realized 
in a plane wave in classical electrodynamics, for  which 
ElE 

The intensities Ea and Ha vary  in t ime with period 

where K(x) is a complete elliptic integral of the f i r s t  
kind. The nonlinear wave with argument kx = k,x,, 
where k, = p y ,  k, =pv,y (y = ( I -  9)-'12), P = p 2  (Ref. 3), 
that a r i s e s  from (5) under Lorentz transformations 
differs from Coleman's4 non-Abelian linear plane wave 
(kZ =0) in that the magnitude of the Poynting vector in 
Ref. 3 is  not equal t o  the energy density (k2 =p2).  

Thus, we s e e  that if we investigate the mechanical 
system (4) we can then make a Lorentz transformation 
t o  obtain a solution of the system (1) in an arb i t ra ry  
coordinate system.') Such a solution will always be a 
plane wave. Therefore, our problem actually reduces 
t o  studying the classical Yang-Mills mechanics (2). 
In connection with what we have said above, it is  inter- 
esting to  make a further study of the nonlinear color 
oscillations in the classical Yang-Mills theory. The  
solution to  this  problem with more than one degree of 
freedom reduces to investigation of the system (2) 
[or-in the simpler  variant-the system (4)]. 

It is also interesting to study the system (2) [or (4)] 
from another point of view. It is well known that the 
conservation laws in nonlinear field theory models make 
it possible to advance f a r  in their  study. However, a l l  
attempts t o  find a se t  of conserved integrals in Yang- 
Mills theory have hitherto been unsuccessful.2) The  
system (2) [(4)] is much simpler  than (1), and the 
situation with regard t o  the general system (2) could 
be clarified by establishing whether the simpler  system 
is completely integrable or not. 

In the present paper, we give the results  of qualitative 
analysis and numerical integration of the system of 
equations (4), and we also study some general proper- 
t ies  of the system (2). 

2. QUALITATIVE INVESTIGATION OF THE 
NONLINEAR SYSTEM (4). THE TWO-DIMENSIONAL 
CASE 

We begin our study of the system (4) with the case 
when f f 3 )  =0,  SO that, introducing the  notation x ~ f " ) ,  

y = f ('I, we a r r ive  at  a nonlinear mechanical system 
on a plane with Hamiltonian 

and corresponding equations of motion that we shall 
investigate here  : 

It follows from the form of H that any conserved inte- 
gra l  F(x,y,p,,p,) of the sys tem (7) must satisfy the 
part ial  differential equation 

a~ aF 

from which it can be s een  that F cannot depend on only 
two of variables x, y, p,, p, o r  be a polynomial of finite 
degree in these variables. 

We now analyze the two-dimensional nonlinear 
mechanical system described by Eqs. (7). 

Since the Hamiltonian (6) is positive-definite (H 2 O), 
the "material  point" described by (7) cannot leave 
the region bounded by the equipotential curves xy 
=inp' (Fig. I) ,  where p 4  is  the "total energy of the 
point." The  equipotential lines a r e  symmetr ic  with 
respect  t o  the origin and the  coordinate axes and the 
straight  lines x = iy .  It is obvious that if the "point" 
with "total energy" p 4  described by (7) and (6) is at  
some  instant on the equipotential curve xy = i f i p 2 ,  then 
it will leave this  curve along the normal into the 
region. 

It follows from the symmetry of the problem that the 
trajectory will be periodic if any of the events listed 
below occur twice (in any combination): a )  the trajectory 
passes through the origin; b) the trajectory i s  perpen- 
dicular t o  one of the symmetry axes; c )  the trajectory 
reaches an  equipotential curve. 

These  sufficient conditions of periodicity a r e  helpful 
for the classification and description of the trajectories 
given below (see Sec. 3), but we do not rule out the pos- 
sibility that one could find other weaker sufficient 
c r i te r ia  of periodicity of the trajectories of the system 
(7). 

Along the  symmetry axes x = i y ,  the  system executes, 
of course,  the periodic oscillations (5) [events a )  and 
c)]. Along the  axes x=O and y = O  the point, a s  in 
electrodynamics, goes away t o  infinity (2 =j' = 0, i ,  j 
+O). But if a t  some instant the velocity of the system 
is not directed along the x o r  y axis ,  then it will not go 
t o  infinity, though in some cases it may travel  an arbi-  
t ra r i ly  la rge  distance from the center and re turn  in a 
finite t ime t o  the  region x -y ,  a s  is readily seen from 
the negativity of 3/x and 3/y .3) We describe th is  quali- 
tatively by considering the motion of the  point when it 
moves away from the center in one of the narrow 
"channels" bounded by the  equipotential lines. 

In polar coordinates ( x = p  coscp, y =psincp), Eqs. (7) 
have the  form 

FIG. 1. 
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In the case of motion away from the  center (p>> p ;  
note that in our problem x, y, p have dimensions of 
mass and not length!), for  example, along the channel 
q<< n/4, s i n 4 q = 4 q ,  f i> 0, it can be s een  from Eq. 
(8') that the "frequency" of the oscillations with respect  
to the coordinate 9 increases with increasing distance 
from the center, while the amplitude decreases  until 
fi = O  ("turning p in t " )  khis last occurs in a finite inter- 
val  of t ime,  since ;= - a(t)p3, a> 01, after  which the 
"damping" regime is replaced by an "excitation" 
regime. Figure 1 shows a characterist ic  example of 
such behavior obtained on a computer. 

The motion with respect  t o  p, averaged over the rapid 
oscillations of q, consists of a random walk with la rge  
amplitudes (b + up3 = 0) from channel t o  channel with 
complicated motion in the region x-y  [which can be 
followed in a numerical integration of the system (7) 
on a computer]. In the language of the variation in t ime 
of the color amplitudes f ( I )  and f ('I, this  picture cor- 
responds alternately t o  rapid oscillations and decrease 
of one color amplitude and growth of the other. 

As will be shown in Sec. 3, the system (7) also has 
at  least a countable s e t  of periodic trajectories satisfy- 
ing the sufficient conditions listed above [events a)-c)]. 

With regard to  the  behavior of the system with three  
degrees of freedom (4), it will follow from the general 
analysis of the system (2) in Sec. 4 that it reproduces 
qualitatively the main features in the behavior of the 
system (7), whose periodic trajectories we shall  now 
investigate. 

3. PERIODIC TRAJECTORIES OF THE SYSTEM (7) 

In Fig. 2, we show examples of some periodic t r a -  
jectories photographed on the display of the computer 
used to  integrate the system (7). In Figs. 2(a)-2(f), 
we show trajectories that pass through the coordinate 
origin and a r e  perpendicular t o  ei ther  an equip tent ia l  

FIG. 2. 

line [ ~ i g s .  2(a), 2(b), 2(d), and 2(f)]or the symmetry 
axis  y = O  [ ~ i g s .  2(c) and 2(e)]. The  trajectories a r e  
arranged in the order of decreasing slope relative t o  
the x axis at  the origin. The trajectory in Fig. 2(a) 
corresponds to  the  oscillations in accordance with the 
elliptic cosine law (5) studied ear l ie r  in Ref. 3. 

A further decrease in the slope leads to an  increase 
in the number of intersections with the x axis a s  in the 
trajectories in Figs. 2(c) and 2(e) and 2(d) and 2(f). We 
denote these angles for  t ra jec tor ies  of the type in Figs. 
2(c) and 2(e) by a: and for  t rajectories of the type in 
Figs. 2(d) and 2(f) by f l ,  where n is the number of 
intersections of the trajectories with the x axis. In the 
limit n-  m, the angles a: and 8: tend to  zero. It is 
obvious that t rajectories with slope a', where a: a a0 
a &, do not go deeper into the channel than the trajec- 
tory  with slope e. 

These  figures clearly reveal  the tendency to an 
increase in the frequency and decrease in the amplitude 
of the oscillations a s  the "particle" moves further into 
the  channel along the x axis the smal ler  is  the angle 
between the x axis  and the trajectory a t  the origin-in 
agreement with the qualitative analysis made above 
(Sec. 2) for  large p(>> p). 

In Figs. 2(g)-2(m) we show examples of t rajectories 
that pass perpendicular t o  the y axis a t  different dis- 
tances from the center  and perpendicular to either the 
coordinate axes [ ~ i g s .  2(g), 2(j), 2(1), and 2(m)], o r  the 
equipotential lines. With decreasing distance of these 
trajectories along the y axis f rom the  center, they a l l  
then enter  the channel, and the  picture considered in 
Sec. 2 for large p is again reproduced qualitatively. 
Figures 2(p), 2b) ,  and 2(r) show trajectories that a r e  
twice perpendicular t o  the equip tent ia l  lines. Finally, 
Figs. 2(s)-2(x) represent  t rajectories perpendicular to 
the symmetry axes x =&yo 

On the basis  of the above analysis of the trajectories 
in Fig. 2 it can be s een  that the number of periodic t r a -  
jectories of the type of Figs. 2(c)-2(f), and also of the 
type in Figs. 2(n) and 2(m) is countable, s o  that we can 
a s se r t  that the se t  of periodic solutions of the system 
(7) with fixed energy density p 4  is a t  least countable. 

We now make a r emark  concerning the initial condi- 
tions. 

Since no trajectory of the sys tem (7) can lie entirely 
in a signal quadrant of Fig. 1 (which is obvious from the 
nature of the "force field" of the problem), it follows 
from this and the  symmetry of the problem that a l l  
possible trajectories of the system (7) can be obtained 
by specifying initial conditions in the  form 

y =0, s=zo>O, i= l 'Zpa ccos a, d=)'2pa sin a (OSaSn). 

It is a lso  helpful to compare the system (7) with the 
system in which the  potential energy U(x, y)  has the 
form (iy2)". In the  limiting case n-  m in the plane x y ,  
we a r e  concerned in this case  with the motion of a 
material  point which undergoes perfectly elast ic  colli- 
sions with an infinite ba r r i e r  in the form of the hyper- 
bolic cylinder g y 2  =l. Thus, the trajectory at  the 
point in the  xy plane is a sequence of rectilinear seg- 
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ments, and it can be constructed by means of the laws 
of geometrical optics. 

The  periodic ("broken") trajectories of this sys tem 
correspond completely t o  the smooth trajectories of 
the system (7), examples of which a r e  given in Fig. 
2. Note that for the system with n =a one can in 
principle calculate analytically, for  example, the 
characterist ic  angles a: and fi: discussed above. 

To  conclude this section, we give an example of a 
periodic trajectory of the system (7) found by numerical 
integration on the computer (Fig. 3) that does not satisfy 
any of the sufficient c r i te r ia  of periodicity [events a)- 
c)] listed in Sec. 2. 

4. QUALITATIVE ANALYSIS OF THE GENERAL 
SYSTEM (2) 

The analysis of the two-dimensional system made in 
Secs. 2 and 3 facilitates the qualitative understanding of 
a number of characteristic features of the solutions of 
the classical nonlinear Yang-Mills mechanics described 
by Eqs. (2). 

As follows from the foregoing, an important part is 
played here by knowledge of the shape of the equipoten- 
t i a l  surface (A; = 0) 

in the nine-dimensional space of the components of the 
vector potential AS. The  functional u(A;) can be repre-  
sented in the following form, which shows explicitly 
that it is positive definite: 

It is readily seen  that the sum in (10) is  a sum of the 
squares of the cofactors of a l l  the elements At of a 
3 x 3 matrix; this will be helpful in what follows. 

Let us consider different sections of the surface (lo), 
increasing their  dimensionality, i.e., the number of 
nonvanishing elements of the matrix At, successively. 

The  two-dimensional sections of the  surface (10) a r e  
of two types. The  f i r s t  of them corresponds to  a ma- 
t r i x  At in which the nonzero elements (two) belong one 
row o r  one column. In this case,  the equations for these 
elements of the matrix decouple, and the trajectories 
always go to  infinity, corresponding to ei ther  a constant 
electr ic  field of Abelian electrodynamics (for example, 
when A:, A' # 0) o r  two independent "electrodynamics" 
(when, for  example, A:, A; # 0). 

A nontrivial case a r i s e s  when the two-dimensional 
sections of (10) correspond t o  nonvanishing elements 
of the matrix Af that do not lie on one column o r  one 

FIG. 3. 

row. The  case A:, 4 ,a+ 0, which corresponds to  the 
system (7), was the subject of detailed analysis in Secs. 
2 and 3. 

For the three-dimensional sections, we begin with 
the  case when the three  nonvanishing elements in the  
matrix Af a r e  each on a different row and a different 
column. There  a r e  s i x  such sections. One of them 
(A:, 4, A: # 0) corresponds t o  our system (4). In these 
cases,  U degenerates into a sum of squares of products 
of the components At in pairs. For the system (4), for  
example (the matr ix  Af is diagonal) we have4' 

In a l l  these  s i x  cases,  the behavior of the three-  
dimensional system i s  qualitatively s imi lar  to the be- 
havior that we considered in detail in Secs. 2 and 3 for  
the nontrivial two-dimensional system. In this  case,  
there a r e  s ix  channels along the coordinate axes, and the 
motion in them is analogous to  the motion in the four 
channels of the two-dimensional system, i.e., with in- 
creasing distance from the  center, the frequency of the 
oscillations of the trajectories increases,  and the am- 
plitude decreases  until it stops,  after which the regime 
of damping with respect  t o  the spherical  angle 8 is r e -  
placed by an  excitation regime. As in the two-dimen- 
sional case,  the particle goes t o  infinity only in the 
case of motion along the coordinate axes. 

The  general picture of the variation of the  color 
amplitudes in this  three-dimensional case is character-  
ized by alternate rapid oscillations and decrease of two 
color amplitudes and growth of the third. There  is  a 
"transfer" of color between the amplitudes ("beats"). 
The periodic trajectories of the  three-dimensional sys-  
tem have as projections onto the corresponding planes 
trajectories of the type of those shown in Fig. 2 in the 
analysis of the two-dimensional case. 

We now consider the three-dimensional sections when 
two and only two of the three  nonzero elements of the 
matrix Af belong to one row o r  one column. Suppose, for  
example, only the matrix elements A:, 4, A: a r e  
nonzero: 

The re  a r e  here  just two channels along the A: axis, 
their  shape being specified by a figure of revolution 
with hyperbolas as generators. The  motion in the 
plane A: = O  is here  infinite, while in the planes (A:, A:) 
and (A', A:) it is analogous to the two-dimensional 
motion considered in Secs. 2 and 3. 

One further type of three-dimensional section of the 
surface (10) is obtained if the nonvanishing elements of 
A: belong to  one row o r  one column of the matrix At. 
Then U=O, and the motion along al l  directions of the 
corresponding three-dimensional space  is infinite. If, 
for  example, the nonvanishing components a r e  A:, Aa, A! 
( a=  l , 2 ,3 ) ,  which lie on one row, we a r r ive  at  the well- 
known configuration of t he  covariantly constant chromo- 
electr ic  field introduced in the investigation of vacuum 
polarization in non-Abelian gauge t h e o r y . " ~ ~  
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The sections of higher dimensionality can be studied 
similarly. The general picture obtained is again that of 
beats of the color like those described in detail above. 

The question a r i s e s  of whether the dynamical system 
(2) considered here  is stochastic. An argument in favor 
of this i s  the factS that, a s  we have seen, the trajectories 
of the system (2) a r e  unstable with respect  to smal l  
changes in the initial conditions (x,, CY; s e e  Sec. 3), to 
which the failure of searches  for new integrals of the 
motion of the general system (1) can be attributed. 

All the foregoing analysis was done in the chosen 
coordinate system, in which the vector potential AP(t) 
depends only on the time. In an  arb i t ra ry  coordinate 
system, a s  noted in Sec. 1, we shall  have solutions in 
the form of nonlinear plane waves AP, that depend on the 
argument 5 = kx = k,x, : 

where a,,(v) is the matrix of the  Lorerttz t ransforma- 
tion x, = a , x l ;  k, = p y ,  kt =pv ty ,  # =$. 

Thus,  we see  that the solutions a r e  analogous to the 
plane waves of classical  electrodynamics. It is of 
interest to establish whether these solutions could play 
the s ame  part in quantization of Yang-Mills theory a s  do 
plane waves in quantum electrodynamics. A difficulty 
in the realization of such a program obviously a r i s e s  
because of the absence of a superposition principle for 
such solutions, s o  that the ordinary quantization scheme 
does not apply here. 

5. CONCLUSIONS 

In this paper, we have investigated in detail a new 
class ~f solutions of the classical Yang-Mills equations; 
it leads t o  nonlinear plane waves in Minkowski space. 
The analysis of these solutions has led to a fairly inter- 
esting nontrivial picture of the oscillations of the color 
amplitudes, and this could be helpful in the development 
of our ideas about the nature of vacuum fluctuations in 
quantum chromodynamics. 

The stimulus for  this investigation was the conviction 
that although the study of the Yang-Mills equations at  
the classical level has already led t o  numerous r e -  
markable results  instantons,' merons,14-l6 
and so  forth) we have st i l l  (in contrast to the situation 
in electrodynamics) not yet studied in adequate detail 
the numerous manifestations of unusual properties of 
the Yang-Mills fields associated with their  nonlinearity. 

At the same time, it must be borne in mind that al- 
though classical solutions play an important part in 
quantum field it is entirely possible that 
deeper penetration into the essence of the purely quan- 
tum aspects of Yang-Mills fields will radically change 
our notions about the nature of the vacuum fluctuations 
of non-Abelian gauge fields based on classical  solutions. 
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"1n linear theories describing a particle of mass p(oA + p%i =0)  
and in the rest frame, the amplitude of the corresponding 
wave oscillates in accordance with the law cospt, which cor- 
responds in the case considered here to oscillation in accord- 
ance with (5). In a massless linear theory such a s  electro- 
dynamics (oA = 0), there does not exist a coordinate system 
moving with the wave, which, as  we see, is not correct in 
Yang-Mills theory (oA + A  = 0).  I t  should be noted that one 
could from the start seek a solution of the system (1) in the 
for A; ( x )  =A; ( k x ) ,  where k2 = p 2 ,  without making a special 
choice of the coordinate system. However, the analogy with 
classical mechanics given here appears to be helpful. 

2 ) ~ e e  Ref. 5 for conservation laws on the manifold of contours 
in Yang-Mills theory for  the case of three dimensions. 

3 ' ~ n e  can say that such a motion occupies an intermediate posi- 
tion between finite and infinite motions. 

4 ' ~ h i s  case corresponds to a configuration of three mutually 
perpendicular color fields a s  considered earlier in Ref. 6. 
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