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The problem of the existence of a causal particle horizon near the initial singularity in anisotropic 
homogeneous cosmology is examined. Some new types of null singularity (one vacuum and three material) in 
Bianchi type VI models are presented in which there is no causal particle horizon along a preferred direction 
of the homogeneous space V,. It is established that the special vacuum metric of type VI, , which is identical 
to the Lifshitz-Khalatnikov solution, has a wave algebraic structure II(N) of the curvature tensor, which has 
vanishing invariants. It contains a null Killing-Cauchy horizon which is regular in vacuum and includes in 
addition a stationary inhomogeneous L region of V,. This Lifshitz-Khalatnikov vacuum asymptotic behavior 
in models of VI, type determines a specific nonscalar null singularity, at which all the components of the 
Riemann and Ricci tensor are infinite (together with the physical characteristics of the dynamically 
unimportant matter), although the curvature invariants of the V ,  wave metric are zero. 

PACS numbers: 98.80.Dr 

1. In an isotropic Friedmann cosmology there neces- 
sarily exists (if the cosmological constant is  zero,  
A =  0) an initial singularity in the past, a t  which the 
gravitating matter i s  collected a t  a point and its phy- 
sical characteristics (energy density E , pressure P, 
temperature T, etc . ) and the curvature of the space- 
time V4 become infinite. This singular spacelike bound- 
ary  r=0  of V4 is impenetrable for causal influences 
and prevents the establishment of causal correlations in 
the initial singular state of the Universe through the 
physical processes one could presume in the preceding 
phase of cosmological contraction. Therefore, the in- 
itial singularity in classical cosmology must be a source 
of all matter and the necessary information that deter- 
mines the subsequent evolution and physical processes 
for the expanding Universe. 

In isotropic Friedmann models near the singularity 
r =  0 there i s  always a particle horizon, so that at the 
time T after the beginning of the expansion phase the 
causal connection can encompass only restricted spatial 
regions with scale 1 s  c r .  This generates the problem 
of the causal connection of the Universe, and it is  rath- 
e r  difficult to explain the observed large-scale (I 
2 cr)  correlation of i ts  properties, namely, the high 
degree of isotropy and homogeneity extending beyond 
the Hubble radius [currently, R .=c T H =  3 x 10'' cm (Ref. 
I)]. In particular, it i s  hard to understand why the 
temperature T 1;. 2 . 7  OK of the microwave background 
i s  the same to a high accuracy (-0.1%) over the whole 
of the celestial sphere despite the fact that on angular 
scales 9 > 30" this radiation was emitted by causally 
disconnected regions of plasma a t  red shifts z -  10 (or 
even 9 > 10' if there was no secondary ionization of the 

Refs. 2-15). The main motive for investigating the 
problem of the existence and possible nature of cosmic 
singularities, and also the structure of their causal 
horizon8-l6 was the hope that in general relativity it will 
be possible to find a fairly large class of anisotropic 
models in which the initial singularity does not have a 
particle horizon, so that a l l  the spatial regions of the 
Universe near it a r e  causally connected. The existence 
of such singularities without causal particle horizon 
would justify Misner's conjecture of a random (mix- 
master)  cosmology" and would make it possible in 
principle to explain the high observed isotropy and 
homogeneity of the Metagalaxy by means of physical 
dissipative processes in the initial phase of the expan- 
sion (such a s  neutrino o r  graviton viscosity) rather than 
by the a priori hypothesis of maximal symmetry of the 
Universe. 

In anisotropic cosmology it i s  also impossible to 
avoid an initial singularity, at which the invariants of 
the vacuum Weyl conformal curvature tensor and all  
the physical characteristics of the matter a r e  infinite; 
in fact, the typical singularities a r e  here of vacuum 

determined by the f ree  gravitational field and 
independent of the presence of material sources, in 
particular, a fluid with PC c (Refs. 12-15): 

Near general vacuum singularities with Kasner (as, for 
example, in the homogeneous Bianchi types I-VII)'~"~ 
and oscillator (in Bianchi types VIII and IX)',' asymp- 
totic behavior there exists a causal particle h o r i ~ o n , ' ~ * ~  
a s  for a material quasi-isotropic singularity of Fried- 
mann type. 

plasma and i ts  interaction with the radiation ceased a t  
There i s  only one known example1) of partial elim- the recombination e ra  z - lo3).' 

ination of the causal horizon near an anisotropic special 
The attempts to solve the problem of the causal hori- singularity, which, according to the ~ i f s h i t z - ~ h a i a t -  

zon give up the cosmological postulate of isotropy and nikov c la~si f ica t ion,3*~ corresponds in a comoving, 
homogeneity in the early stages in the cosmological ex- synchronous coordinate frame to degeneracy of the V, 
pansion and have been undertaken in the framework of metric with simultaneous vanishing of one of its prin- 
anisotropic and, mainly, homogeneous cosmology (see cipal values and determinant quadratically with re-  
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spect to the proper time 7. The singularity i s  mani- 
fested a s  a simultaneous collapse of the space V, (7 

=const) into a pancake, the world lines being focused, 
a s  it were, on a two-dimensional focal caustic with 
& > P - a. Such a material singularity i s  realized for 
axisymmetric homogeneous metrics of the Bianchi types 
I, II, III, V$ , VIII, M (excluding Vh), which form the 
family of so-called T (N = 0) (Ref. 17) and Taub-NUT 
models with matter a t  rest  and P <  E (for details, see 
Refs. 14 and 15): 

sin z COP x 
0 (I, v11.3; 111) (1) 

I ( z ) = (  sinh x : h ( x ) = { x ~ , Z ;  cosh x A'=[ 1 (11, VIII, IX). 

This singularity in the axisymmetric T and Taub-NUT 
models (1) i s  characterized by a kinematic Kasner 
asymptotic behavior of the collapse of V,  co con st) into 
a pancake of the following form for P=nc  (0 Gn < 1) 
(Ref. 14): 

8 ,  paV-''+"'a~-('+~)-+w. (I, p=const. 

Near such a singularity there i s  no causal horizon along 
the symmetry axis, since a light ray (ds2 = 0) traverses 
an infinite spatial distance x, cc IlnTl - - when 7- 0, so 
that all  events in an infinite cylinder of radius cT- 0 
can be causally connected. 

For vacuum Einstein fields (and also in the presence 
of a free electromagnetic field and A#O), such an 
asymptotic behavior of simultaneous collapse of V ,  into 
a pancake with kinematic set  of Kasner exponents p, 
= 1 ,p,  = p ,  = 0 (Refs. 3 ,  4, and 7)  corr'esponds to a 
fictitious singularity of the metric (1) like the Schwarz- 
schild pse~dosingularity, '~ which can be eliminated by 
coordinate transformations and can be observed only 
from the nonstatic homogeneous T region within the 
gravitational radius (see Refs. 14 and 15). Suchpseudo- 
singularities of the metrics (1) and (2) a r e  actually 
regular but physically singular null hypersurfaces with 
isotropic normal (n,ni= 0) that a re  tangent to the local 
light cones and a r e  cauchy event horizons in V4, i. e . ,  
semipermeable causal membranes through which light 
rays and all causal signals can pass in only one direc- 
tion. They a r e  invariant Killing horizons on which the 
V ,  field changes i ts  symmetry-from being homogeneous 
to be static-so that these regular null boundaries 
in vacuum separate causally connected homogeneous 
T and stationary L regions of a space-time V4 of fairly 
complicated global structure (for details, see Refs. 
14 and 151.') 

If a gravitating fluid with P = n &  (0 c n <  1) i s  present 
in the T regions (11, the fictitious singularity (2) on 
the boundary null horizons i s  transformed into a physi- 
cal material singularity a t  which c  ,Pcc v-('+") 
cc T-(l+n) - -. If P <  E , it preserves its previous null 
orientation, which i s  why there is  no causal horizon 
along the symmetry axis of V,. Note that a maximally 
hard fluid with P =  & in the T regions (1) completely de- 
stroys the vacuum null horizons and replaces them by 
singular spacelike boundaries of V4, which do have 
a causal horizon; this i s  because the gravitation of such 

a fluid leads to an asymptotic behavior of anisotropic 
point collapse different from (2). 1 4 9 1 5  

It should be emphasized that the kinematic Kasner 
asymptotic behavior (2) can be regarded locally a s  the 
metric of a flat space-time in a noninertial frame of 
reference of moving test particles. For example, the 
axisymmetric metric of Bianchi type I with homogen- 
eous Euclidean space V, (T= const) of the form 

can be reduced by the coordinate transformation X 
= T  sin hx and T = r- cos h x  to the Minkowski metric. 
Therefore, the removal of the causal horizon in (2) can 
be regarded a s  a kinematic effect independent of gravi- 
tation in the framework of special relativity alone. 
Namely, the free motion of the test particles used 
to construct the synchronous frame (3) i s  such that 
there i s  an infinite number of ultrarelativistic particles 
within the light cone a s  T- 0. 

2. In the present paper, we wish to point out that a 
similar partial elimination of the causal horizon occurs 
for a number of anisotropic singularities of special 
form [and very different from (1)-(3)] in homogeneous 
cosmological models of Bianchi type VI with a common 
"diagonal" m e t r i ~ ' ' * ~ ~ . ' ~ ~  

- d s ' = - d ~ ~ + X ~ ( r ) d z ~ ~ + Y ~ ( z )  exp [ - 2  (a,+k,)x,]dxZ2+ 
+ Z 2 ( t )  exp [ - 2 ( a , - k o , ~ , ] d z s z .  (4) 

This metric belongs to class B ,  has negative aniso- 
tropic curvature of a V, space of "open" type, 

KSi=-2(ao2+kp2)/X', K,2=-2(a,2+a,ko)/X, K,3=-2(aoz-aoko)/X', 

K=-2(3aOz+k,Z)/XZ<O; a,, k,=const , (5) 

and includes the axisymmetric VIo type of class A a s  
a limiting case with a,= 0, Y(T)= Z(T). l2 

We consider first the special solution of the Einstein 
vacuum equations R,, = 0 for the metric (4) found in the 
analytic form15b 

which augments the general vacuum solution for VI, 
type. '' The special metric (6) has an anomalous 
vacuum singularity a t  T = O  with infinite components of 
the Riemann curvature tensor, which i s  of algebraic 
type II(N) in the Petrov c l a s ~ i f i c a t i o n ~ ~ ~  and has 
vanishing values for all  i ts  invariants (such as 
I - R .  RijkJ '0): 

1-  r j k l  

Ro,"'=R,s'"-R,,"=-Ro,03=ti (1-ti2)/ ( 1 + 6 2 ) 2 t Z = ~ ;  

R,202=-R,so~=ILTe-~~. (7) 

This singularity of (6) i s  qualitatively different from the 
linear Kasner s i n g ~ l a r i t ~ ' ~ * ' ~  characteristic of the VI, 
type models and corresponds to a singular degenerate 
regime of anisotropic collapse of V ,  into a line ( 1  6(> 1) o r  a 
point ( 1  6)< I), the spatial anisotropic curvature of (5) being 
dynamically important in this case: 

lKIaX-2a~-Z+m. 

It was found that the special vacuum solution (6) for 
the Bianchi type VI, (4) i s  actually equivalent to the 

41 4 Sov. Phys. JETP 53(3), March 1981 Ruban etal. 



homogeneous variant of the anomalous asymptotic be- 
havior near the singularity, being a degenerate special 
case of the Kasner singularity in null coordinates. This 
special case was noted and investigated earlier by 
Lifshitz and Khalatnikov (Ref. 7, Appendices B and F)  
on the basis of the following self-similar representation 
of its metric in a synchronous system3: 

Here, the dependence on the spatial coordinate x i s  un- 
important, a s  in (41, since the components of the cur- 
vature tensor of V4 a r e  functions of the time 7 alone and 
a re  equal to (7), while the metric (8) itself can be read- 
ily transformed to the homogeneous canonical form (41, 
(6) of the Bianchi type VI,. The solution (81,161 can also 
be written down in the null coordinates 7 = T / ~ X ,  5 
=-xr/D, which a r e  more natural for it7: 

and it then depends explicitly on only a single null coor- 
dinate. 

But this form of the solution (9) in the null coordin- 
ates is  more general than the original VI, metric (6), 
(81, since it contains not only this homogeneous T re-  
gion but also a static inhomogeneous L region of V4 in 
vacuum with a new metric related to (8): 

The transition from the extended metric in the null 
coordinates (9) to this static inhomogeneous solution of 
the vacuum Einstein equations R,,=O i s  realized by 
means of the substitution 77 = 5 / a t ,  5 = - c t / a  o r  by the 
formal substitution T - i5, x - it in (8) and, accordingly, 
in (7). The resulting metric of i ts  curvature tensor 
(7), depends essentially on only the single spatial coor- 
dinate 5. Therefore, the spatial singularity at 5 = 0 
can be interpreted a s  a localized 6-functional source of 
gravitating mass,  which follows from qualitative analy- 
sis of the motion of test particles and light rays in such 
a field (101, (9) (like the static variant of the Kasner- 
Weyl metric). l8 

However, the timelike singularity (7 = 0) [for the 
homogeneous vacuum solution (6), (8)] and the spacelike 
singularity (5 = 0) [for the static variant ( lo)] corre- 
spond to a physical singularity q = O  of the metric in the 
null coordinates (9), at whichthe components of the Rie- 
mann curvature tensor a r e  infinite (although I, 
=R.. 1)kI Riik'=O): 

Therefore, the singularities a t  T =  0 and 5 = 0 of the 
solutions (61, (81, and (10) a r e  in reality null and form 
a common boundary null surface 7 = 0 in the global 
coordinates (9). Such a general metric (9) gives a 
simple analytic continuation between the causally con- 
nected homogeneous T region of (61, (8) and the static 
L region of (lo), these forming together a single space- 
time V4 (see Fig. 1). As i s  shown by the analysis below 
of the behavior of the geodesics for the metric (91, this 
metric gives a maximally extended V4, since it posses- 
ses  geodesic completeness in the sense that all  possible 

FIG. 1. Global structure of the complete space-time V p  with 
Lifshitz-Khalatnikov vacuum metric (9). Here, 1 is the radia- 
tive null singularity q = 0; 2 is  the regular null Killing-Cauchy 
horizon separating the stationary L region and the homogeneous 
T region of Bianchi VI,  type (6); 3 and 3' are the homogeneous 
spacelike V3 and invariant timdike Vi sections, the transi- 
tivity hypersurfaces of the VI, group G3; 4 and 4' are the geo- 
desic rays which are orthogonal to them and in the T region 
coincide with the world lines of the fluid particles for the cos- 
mological models of Bianchi type VI,. 

trajectories of test particles and light rays  can be con- 
tinued without limit with respect to the affine parameter 
or  terminate on the true singular boundary 7 = O .  

The special vacuum solution (6), (8) for the Bianchi 
type VI, has a specific feature-the elimination of the 
homogeneity of the original V., metric due to the exis- 
tence of the locally regular null Cauchy event horizon 
(6 = 0 in Fig. I),  beyond which there i s  the additional 
static L region (10). Through this invariant null bound- 
ary the world lines of particles and light rays (i. e ,  
al l  causal influences) can pass only in one direction: 
from the T to the L region or vice versa, a s  for a 
semipermeable causal membrane. Such intermediate 
singularities in the form of regular Killing-Cauchy 
null  horizon^'^ a r e  inherent in T-NUT universes,'4s15 
and also for the axisymmetric Bianchi type V model 
with moving fluid. 20 They a r e ,  apparently, an excep- 
tional phenomenon in general relativity. 

In the T region (6), (8), the homogeneous spatial sec- 
tions V3 (?=const) degenerate in finite proper time into 
isotropic but different boundaries-the singularity 77 = 0 
and the regular Cauchy horizon 5 = 0; when they pass 
through this horizon, they change their orientation to 
timelike and become transitivity hypersurfaces V, 
(x= const) of a group of motions G, of the same alge- 
braic type VI, in the static inhomogeneous L region 
(10). 

In what follows, we shall be interested in only the 
homogeneous T region (6)-(9), which becomes an or- 
dinary cosmological model of Bianchi type VI, when it 
i s  filled by a gravitating fluid a t  res t  with, for example, 
the equation of state P = n& (0 sn < 1). For this special 
case, the vacuum asymptotic behavior (6)-(8) of the col- 
lapse of V, into a line i s  preserved near the initial 
singularity if 
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when the dynamical influence of the gravitating fluid 
is unimportant, although it always eliminates the 
vacuum regime of point V3 collapse (6148) with 16 I 
< 1.15b If matter i s  present in the T region (6)-(81, 
there is  a radical change in the global structure of the 
V, (9), since the null Cauc hy horizon is transformed 
into the physical singularity 7 = 0  ( E  , P - G O ) ,  and one 
can no longer have causal connection with the L region, 
which i s  eliminated from the cosmological models. 

It i s  natural to expect that in these special type VI, 
models near the initial singularity with vacuum (differ- 
ent from Kasner) asymptotic behavior (6)-(8) there will, 
because of the null orientation of the singularity, be no 
causal horizon in a t  least one of the directions of V, 
(?=const). But to prove this, we must investigate the 
null geodesics in the T region (6)-(9), since even in 
"diagonal" models of class B the direction of propaga- 
tion of the light rays in V, i s  not preserved,12 so that 
the time dependence x a ( r ) a  7% of the scale factors along 
the principal axes near the singularity T =  0 does not 
by itself indicate elimination of the causal horizon even 
if some exponents satisfy s, 1, as ,  for example, for 
the asymptotic behavior (6148). 

3. The equations of geodesics for the V4 metrics 
(6)-(10) a re  obtained from the variational principle 

B 

6 ds=0 
A 

and can be expressed in the Lagrangian or  Hamilton- 
ian forms 

1 dx' d 2  1 L = - g .  -- da? 
,A dh , , H - g'kpspr, pc=gcr - =grrd 

2 dh 

Here, h i s  an affine parameter determined by the nor- 
malization condition 

respectively, for timelike, spacelike, and null geo- 
desics, respectively, i. e. ,  it i s  equal to the proper 
time of test particles when e = 1. 

Because of the high symmetry of V,-the explicit homo- 
geneity of the metric (9) in the chosen null coordinates 
with no dependence a t  all  on the spatial variables z ,  y,  
and [-the equations of the geodesics have three ob- 
vious integrals of the motion: 

and these, in conjunction with the normalization con- 
dition (13) in, for example, the case of null geodesics 
(e = 0) of the form 

permit a complete investigation of the behavior of light 
rays in the V4 vacuum field (9). They can be integrat- 
ed in a closed analytic form and give the following ex- 
pressions for p, + O,s,,s, # ;: 

where x,, yo, [,=const. If s2= (1 + 6 ) / ( l +  fj2) > 0 or s, 
= (1 - 6)/(1+ 62) = ; (6 = fl f l ) ,  when the corresponding 
divergent factor ql"Sa/(l -2s,) must be replaced by lnq. 

In the degenerate case when p, = 0, we have one-di- 
mensional motion: py = 0,p,= 0, and the rays q = const 
parallel to the singular null boundary of V4 form togeth- 
e r  with the family [ = const the coordinate mesh of the 
null system (9) in Fig. 1. 

It i s  readily seen from the relations (16) that for s,, 
s, < ; the light rays reach the singularity q = 0 at  finite 
values of all the coordinates 5 ,xa = const, so that it has 
a causal horizon in the null system (9). However, if a t  
least one of the exponents satisfies s, ;, the rays  
reach the singularity 11 = 0 only asymptotically with 

and necessarily in the static L region, some of them 
(or even a l l  for sa= ;) passing through the null Cauchy 
horizon 5 = 0 from the homogeneous T region of V,. 
Therefore, around the null singularity q = 0 of the 
vacuum metric (9) it is  only for sa 2 ; that the causal 
horizon i s  eliminated along the two different directions 
(17) o r  even along all three when s, > l,s, > ; (6 < fi 
- 1). 

Note that the special vacuum solution (6)-(10) has a 
higher symmetry and admits the complete group G , ,  
since besides the group G ,  of the Bianchi type VI,, 
which acts transitively on the homogeneous spatial sec- 
tions V, (?=const), there is  a further group operator 
2, = a, with Killing null vector corresponding to a shift 
along the null coordinate 5 in (9). This additional sym- 
metry agrees with the interpretation of the homogen- 
eous vacuum metric (4)-(10) a s  a purely radiative V4 
field with curvature tensor of wave type II(N), for which 
all the scalar invariants a r e  zero (as for a plane gra- 
vitational wave2), although its physical components a r e  
nonzero, R,,,, t 0, and may even become infinite, which 
leads to a completely new type of singularity of V4 (see 
Refs. 2 and 19). 

By direct transformation from the null coordinates 
(9) to the homogeneous canonical form (4), (6) of the 
Bianchi type VI*, using transition to the metric (8), 

we obtain from (16) the corresponding equations of null 
geodesics in the parametric form (p, * 0, s,, s, + ;) 

. - 
These expressions describe the propagation of light rays 
in the comoving, synchronous coordinate frame with the 
metric (4),  (6) and hold even during the vacuum stage of 
the expansion of the special cosmological model of type 
VI, with gravitating matter near the initial singularity 
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In the case of one-dimensional degenerate motion in 
(14),(15), when p, = O  and p,=p,=O, the light rays (9 
=const) transverse an infinite distance Ix, I a llnrl - in approaching the singularity T =  0 independently 
of the choice of the exponents s, [and even for the exotic 
variant of point collapse of V, with s2 > 1 , 0 <  s3 < 1 in the 
purely vacuum metric (6)-(10) when 6 < 11. 

For the vacuum linear collapse of V, remaining in 
the type VI, model with matter and asymptotic behavior 
(41, (6) the exponents a r e  

so that we obtain from (19) in the neighborhood of the 
singularity T = O  a simple picture of the behavior of the 
null geodesics. As the singularity T =  0 is approached, 
the velocities along the y and z axes die away, x , a  T - 0, so  that all  light rays tend asymptotically to the 
distinguished x ,  direction in V ,  ( T = c o ~ s ~ ) ,  along which 
a causal particle horizon is always eliminated: 

Ir,(al lnzl- .m, when T+O. (20) 

Note that the fraction of rays  propagating in the pos- 
itive direction of the x, axis decreases with increasing 
exponent s, < $, and for s, 2 $ there remains a unique 
ray moving in the positive x ,  direction strictly along this 
axis. 

Thus, in this model of VI, type near the initial sin- 
gularity T = 0 of vacuum nature (4), (6) there i s  indeed 
no causal horizon along the one direction of V,, so that 
all events within the infinite cylinder along the axis x ,  
with radius C T -  0 can be causally collected. 

The cosmological type VI, model (4) with anomalous 
vacuum singularity T = 0 (6), (8) admits approximate iso- 
tropization during the intermediate expansion stage, 
when the gravitating fluid with P <  c predominates in the 
dynamics and the spatial anisotropic curvature (5) is  
negligible (although its influence then increases and 
again gives like (6) an asymptotic behavior of unlimited 
expansion of V, a s  7- m; see Ref. 15). Therefore, 
such an anisotropic model of VIll type, having near the 
initial singularity no causal horizon along one direc- 
tion of V,  co con st) in a frame comoving with the mat- 
ter ,  can, like the axisymmetric T and Taub-NUT mod- 
els (I) ,  also pretend to a description of the Universe 
in the quasi-Euclidean variant if the energy density i s  
close to the critical value c ,= E,, "0.5 x lo-" g/cm3. 

4. We give three further new examples of anisotrop- 
ic material singularities (for which the gravitation of 
the matter is important and determines their nature) 
in special Bianchi type VI cosmological models (4) and 
show that they too have no causal horizon along one 
distinguished direction of V, ( T =  const) in a coordinate 
system comoving with the matter. 

For the "diagonal" triaxial type VI, model (4) filled 
with gravitating fluid with P = n c  (0 s n <  1) when 6, 
> (1 + 3n)/ (1 - n) o r  n < (6' - 1)/(3 + 6'), 6 > 1,  a special 
solution of exact power-law form i s  possible13*15b: 

It has an initial singularity T= 0 with anomalous asymp- 
totic behavior of anisotropic collapse of V3 into a line 
for 

o r  into a point if 6 > (1 + 3n)/(l -n), and i s  character- 
ized by the fact that the dynamical influence of the gra- 
vitating matter and the anisotropic spatial curvature 
(5) a r e  always of the same order: c , IK 1 a 7"- .o. 

A similar special solution exists for the axisymmetric 
model of Bianchi type VI, of the 

-dsZ=-drZ+XZ ( T )  dxla+Y2 ( T )  [exp  ( -2k ,x , )  d2,2+exp (2k ,x , )  &,'], 

when the gravitating fluid with P = n c  (0 sn< 1) and the 
anisotropic V3 curvature, 

-K,*=-K=2k,Z/Xzar- '+m,  

jointly determine the dynamics and a t  the singularity 7 

= 0 lead to an anisotropic point collapse. 

We also draw attention to an unusual general singular 
asymptotic behavior in the axisymmetric Bianchi type 
VI, in the presence of a free electromagnetic field 
H(T)11E(r)llxl in vacuum. The field prevents a Kasner 
linear collapse along lines of force along the symmetry 
axis and, in view of the impossibility of the kinematic 
collapse (2) of V, into a pancake for type VI,, it leads 
in conjunction with the spatial curvature to a new form 
of anisotropic point collapse15b: 

this asymptotic behavior being identical to that of the 
exact special solution of the Einstein-Maxwell equa- 
tions in vacuum: 

q Z = ' / l ,  E.Z=ko2/xoZ=3/, .  

The physical singularity, a t  which the intensity and en- 
ergy density w = (E2 + H2)/8a of the electromagnetic 
field (together with the spatial curvature) a re  infinite. 
is  eliminated by a gravitating fluid with P #O: 

Therefore, in cosmological "magnetic" models of axi- 
symmetric VI, type with matter the singularity is  al- 
ways replaced by the special regime of anisotropic V, 
collapse to a point (22), at which the influence of the 
magnetic field i s  negligible: w/  c - r4"'(lrn' - 0 (see 
Ref. 15b). 

We now consider the equations of null geodesics in the 
general "diagonal" type VI metric (4) and show that for 
all  these specific singularities (6), (21)-(23) there is  a 
partial elimination of the causal horizon along the dis- 
tinguished direction Ix, I cc llnT l - a ,  a s  for the kine- 
matic Kasner collapse (2) of V, into a pancake. 
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The isometries of the V4 field lead to corresponding 
conservation laws in (12), and with each independent 
Killing vector there is  associated a f irst  integral 
of the dynamical equations of the  geodesic^^*'^: 

Using the canonical form of the generators and the Kil- 
ling vectors of the Bianchi type VI group G,t2 we ob- 
tain for the homogeneous "diagonal" metric (4) the fol- 
lowing expressions for the conserved characteristics 
of test particles and light rays: 

These integrals of the motion together with the normal- 
ization condition (13) for e = O  of the form 

c,Z +- c*= 
e x p [ - 2 ( a , + k , ) x , ] +  - 

YZ(r) z2 (.r) e x ~ [ - 2 ( a ~ - k ~ ) x , l  (26) 

for the system of coupled equations 

&I_ 1 [C,-  (ao+ko)x2Cz- (ao-kD)xSCSl ,  
dh X Z ( z )  (27) 

dxz Cz -=- d ~ s  Cs 
e x p [ 2 ( a o + k o ) x , ] ,  -= - 

dh Y 2 ( r )  . dh Z 2 ( ~ )  
e x p [ 2 ( a o - k o ) ~ , l ,  

which makes it possible to investigate qualitatively the 
behavior of light rays in the cosmological models of 
Bianchi type VI. 

When light propagates along the distinguished axis 
x,, then x,, x, = const, C, = C, = 0, and in accordance with 
(26) and (27) 

Therefore, for all the singularities (61, (21)-(23) there 
is, because of the same dependence X(T) a 7 - 0 of the 
scale factor, a characteristic divergence of the dis- 
tance traversed by light along this distinguished axis: 

By an analysis of Eqs. (26) and (27) near material sin- 
gularities with the power-law asymptotic behaviors 
(21)-(23) one can show (for example, when C, = 0, C, 
=O,x, =const) that a l l  light rays must tend in the limit 
T - 0, a s  for the vacuum singularity (61, to the dis- 
tinguished direction of V,, Ixl I a llnr l - .o, so that 
along it there is  no causal horizon. 

But such anisotropic type VI models with material. 
singularities do not admit even intermediate isotropiza- 
tion, and, like the "magnetic" vacuum metric (23), they 
can hardly be used to describe the Universe. 

5. Thus, i t  may be concluded that even partial re-  
moval of the horizon for causal connectedness near the 
initial cosmological singularity i s  a rather r a r e  and, 
apparently, exceptional phenomenon in classical general 
relativity. In anisotropic homogeneous cosmology, the 
spatial direction and only near certain special singul- 
ari t ies with null orientation, namely, for one vacuum 
(of Lifshitz-Khalatnikov type7) and three material null 

singularities with special asymptotic behavior of aniso- 
tropic linear and point collapse of the homogeneous 
spatial sections V, (T = const) in special Bianchi type VI 
models. A causal horizon i s  absent similarly along one 
distinguished direction of space for kinematic Kasner 
collapse of V, into a pancake (p, = 1 ,p, = p ,  = 0) on null 
caustics, which replace the vacuum null Cauchy- Killing 
horizons, in the axisymmetric T and Taub-NUT mod- 
els,  and also for the purely vacuum "quasi-Milne" 
asymptotic behavior of point collapse of V, in the "non- 
diagonal" wave metric of VII, type. l6 

One can hardly expect complete elimination of the 
causual particle horizon in more general inhomogeneous 
cosmological models, since their typical Kasner and 
oscillator singularities a r e  locally the same a s  for the 
homogeneous case. 3*7*9  However, this question re -  
quires further study, relating, in particular, to a num- 
ber of degenerate s i n g u l a r i t i e ~ ~ ~ ' ~ " ~  and locally regular 
cosmological metrics.14 Although the Penrose-Haw- 
king theorems2 predict that in general relativity a 
cosmological singularity, manifested in the form of the 
impossibility of extending the world lines of particles 
and light rays ,  is unavoidable for normally gravitating 
material sources, the physical origin of this causal 
incompleteness of V4 has not been fully elucidated even 
in homogeneous models with moving matter. 1g920 

The special vacuum asymptotic behavior (6) of linear 
V, collapse for type VI, models, which is  identical with 
the Lifshitz-Khalatnikov solution (8), (91, demonstrates 
a qualitatively new type of null singularity. It i s  char- 
acterized by the circumstance that a l l  the physical com- 
ponents of the Riemann tensor i s  a homogeneous coordi- 
nate frame tend to infinity (together with the energy 
density and pressure of the fluid, whose gravitation is 
negligible), although the scalar invariants of the con- 
formal Weyl curvature of V4 a r e  zero and always regu- 
lar .  

The Lifshitz-Khalatnikov metric (8)-(10) i s  a very 
special wave field with homogeneous T region of VI, 
type (which can be interpreted by analogy with a "con- 
verging" gravitational wave of Bianchi type VIIh),'6 since 
the curvature tensor of V4 has the purely radiative alge- 
braic structure II(N) with zero invariants. This homo- 
geneous metric (6), (81, a s  can be seen from its analy- 
tic extension in null coordinates (91, contains a regular 
vacuum null Killing-Cauchy horizon. This is  a semi- 
permeable causal membrane, beyond which there is  a 
stationary inhomogeneous L region of the geodesically 
complete space-time V4 (Fig. 1). This special example 
of Bianchi type VI, complements the very small set  of 
known spatially homogeneous solutions of the Einstein 
equations that possess a null Killing-Cauchy horizon 
and include in addition to homogeneous T regions sta- 
tionary inhomogeneous L regions of V4 a s  well. The 
set  consists of: a )  the axisymmetric family of vacuum 
T and Taub-NUT universes V4 (A + O), including the 
case when a free electromagnetic field is  present14*15; 
b) the axisymmetric type V models with moving fluid. 20 

In a l l  the above cases,  a removable intermediate sin- 
gularitylg i s  realized in the form of the disappearance 
of the original homogeneity on the null Cauchy-Killing 
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horizons and the appearance of additional stationary 
L regions of V,, since the transitivity hypersurfaces 
V, (r=const)  and one of the Killing vectors of the cor- 
responding groups of motion G, change their orienta- 
tion from spacelike to timelike. It is probable that 
these exceptional examples of various form do not ex- 
haust all possibilities with a removable intermediate 
singularity in the class of spatially homogeneous Ein- 
stein-Maxwell vacuum fields and cosmological mod- 
els.19*15 However, they must be a degenerate set  of 
measure zero, since all  such known solutions have 
higher G, mobility, although the requirement of axial 
V, symmetry i s  not necessary, a s  can be seen from the 
example of the special wave metric of VI, type (cf. Ref. 
15). In addition, for the Lifshitz-Khalantnikov vacuum 
solution (6)-(9) the regular null Killing-Cauchy horizon 
is unstable against perturbations of the free field, which 
destroy the higher symmetry of V,, a s  for T and Taub- 
NUT universes. l5 Similarly, if the T region is filled 
with a gravitating fluid at res t ,  it i s  also transformed 
into a local vacuum singularity of the curvature (and not 
into a material singularity such a s  Kasner V, collapse 
into a pancake, a s  for the axisymmetric T and Taub- 
NUT models). 

It is  known7 that the Lifshitz-Khalatnikov asymptotic 
behavior adjoins the Taub-Kasner behavior in a special 
null coordinate system of the form 

~ ~ + s , = s , ' + s ~ ~ ,  S ~ = ~ / ~ ( I - S ~ - S ~ ) ,  A=const, 

which can be interpreted a s  a comoving coordinate 
frame attached to relativistically moving test matter 
(P=O) on a vacuum background near the Kasner singu- 
larity q=Q. Such a metric form i s  more general than 
the canonical form in a homogeneous synchronous sys- 
tem for Bianchi type I, and it includes a s  limiting degen- 
erate case for A =  0 the special vacuum type VI, solu- 
tion (6)-(9), which now has null singularity = 0. 
This singularity does not have a causal horizon along 
two or even along all  three spatial directions of the 
metric (9) when one or  both exponents satisfy s, > $. 

We emphasize that the existence and nature of the re-  
moval of the causal horizon may, a s  can be seen from 
the example of the Lifshitz-Khalatnikov null singular- 
ity (17), (20), depend on the choice of the various coor- 
dinate systems (6) o r  (9). However, it follows from 
our investigation of the geodesics for the metric in the 
null coordinates (30) that near the Kasner singularity 
q = 0 there always remains (except for the kinematic 
regime with s, = s, = 0, s, = 1) a causal horizon with re-  
spect to relativistically moving test fluid of the frame, 
i. e. , essentially in the most general regimes of initial 
expansion of an anisotropic inhomogeneous Uni- 
verse. 3*7*9 

We note that the degenerate vacuum asymptotic be- 
havior with the null Lifshitz-Khalatnikov singularity 
(6)-(9) certainly admits inhomogeneous generaliza- 
tions: but the extent of its generality is not yet known. 

The problems of the initial cosmological singularity 
and its causal horizon a re  intimately related, and it is  
natural to assume that they will be resolved only when 

allowance i s  made for quantum effects in general rela- 
tivity:' which must eliminate the classical singularity 
and ensure a regular transition at 

from the preceding contraction phase to the present 
expansion of the Universe." 
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' ) ~ o t e  that for  the "nondiagonal" Bianchi type VII, an exact 
vacuum solution is  known in the form of a "converging" grav- 
itational wave with anisotropic "quasi-Milne" asymptotic 
behavior of V3 collapse into a point a t  T = 0, for which there 
i s  also no causal horizon along one direction. But this de- 
generate singularity is possible only in vacuum, and it is 
eliminated in the presence of matter,  being transformed into 
a l inear Kasner singularity with causal particle h ~ r i z o n . ' ~  

"Note that an  improbable "long" e ra  of oscillations of the os- 
cillator asymptotic approach to the can be in- 
terpreted a s  a slightly perturbed kinematic regime of v3 
collapse into a pancake with approximate Kasner exponents 
p = l , p z  = p 3  = 0. It describes the initial stage of development 
of instability on the null Killing-Cauchy horizons of the or- 
iginal axisymmetric variants of Bianchi types VIII and IX 
under the influence of small  perturbations of the f r ee  grav- 
itational field, when, a s  a result  of deviations from axial 
symmetry of V3  co con st), the null horizons regular in the 
vacuum a r e  eliminated and transformed into an  oscillator 
singularity.i4~L5 It i s  precisely because of the proximity to 
the kinematic Kasner asymptotic behavior (2) in the oscilla- 
tory regime of the long e r a  that light can traverse long spa- 
tial distances along the direction of monotonic expansion of 
V3 (and even go several times round the closed 3-spherical 
space in the Bianchi type IX)." 

3'0n the basis of a more  general self-similar metric form of, 
for  example, the power-law type 

one can show that in general relativity there do not exist 
vacuum inhomogeneous solutions of the type of self-similar 
Einstein-Rosen gravitational waves with cylindrical sym- 
metry. Indeed, the vacuum Einstein equations R,,= 0 impose 
stringent restrictions on, the values of the exponents, 

with which only the flat Minkowski metric i s  compatible for 
p = y  = 0, cr = 1 +p . In addition, one can also have a special 
vacuum solution, which is  actually homogeneous and of VI, 
Eianchi type (8). when p = 0. cx = 1, p2 +y2=p +y; it i s  a purely 
radiative field of type II(N) (cf. the wave interpretationi6 
of the vacuum fields for  the neighboring type VII). 

"The interesting question of the nature and back reaction of 
the quantum effects of particle pai r  production and vacuum 
polarization in the strong gravitational wave field near a null 
vacuum Lifshitz-Khalatnikov singularity requires a separate 
investigation. 
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