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A study is made of the structure and evolution of the interface between hot and cold clouds due to influence 
of bulk energy losses and nonlinear heat conduction. It is shown that in the absence of heat sources the 
general decrease in the temperature of the hot phase is accompanied by the appearance of a cooling wave, in 
which hot gas goes over into the cold phase. Various similarity solutions to the heat conduction equation that 
describe both thermal waves and cooling waves are studied. The evolution of a cold gas cloud moving through 
hot gas is discussed. Some astrophysical applications of the problems are considered. 
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In astrophysical problems, i t  is frequently necessary 
to consider the interface between very hot and compara- 
tively cold gases. Such problems a r i se  in the analysis 
of the nonlinear stage in the development of thermal in- 
stability in a hot gas, in the analysis of the structure 
and evolution of condensations in the nonlinear theory of 
gravitational instability, in the analysis of the motion of 
a cold gas cloud (isolated o r  in a galaxy) through the hot 
gas of a cluster of galaxies, and s o  forth. In cosmo- 
logical problems of this type, a decisive role in the 
evolution of the structure of the interface i s  played by 
bulk radiative energy losses (for example, bremsstrah- 
lung and recombination radiation) and nonlinear heat 
conduction (for example, electron heat conduction). 

All the thermal processes in these problems take 
place much more slowly than the hydrodynamic pro- 
cesses (for estimates, see  Sec. 3). One is therefore 
dealing with a situation similar to the slow propagation 
of a flame through a burning mixture, namely, the 
pressure in the hot and cold phases is the same, and i t  
is only near the front of the thermal wave (or cooling 
wave) that there is a slight excess (or decrease) in the 
pressure due to the transition of the matter from one 
phase to the other. The amplitude of the pressure dis- 
continuity, determined by the ratio of the wave velocity 
to the velocity of sound in the hot phase, is usually 
small, and we shall assume that the pressure is con- 
stant. To take into account the displacement of the 
matter accompanying the change in the volume, i t  is 
convenient to use Lagrangian coordinates to analyze the 
heat conduction equation. 

I t  is well known that in problems with nonlinear heat 
conduction, in contrast to linear problems of the propa- 
gation of heat, there is a sharp boundary between the 
heated region and the cold region; this is the front of 
the thermal wave. 'e2 The same is true for problems 
with nonlinear bulk losses in which the influence of heat 
conduction can be ignored (in this case, the sharp  
boundary is the front of a cooling wave). As is shown 
below, in the general case when allowance is made for  
both bulk radiation of energy and nonlinear heat conduc- 
tion the wave nature of the solution is preserved and 
one can have not only cooling waves but also, under 
certain conditions, thermal waves. 

These questions a r e  intimately related to problems in 
a well-studied field-the theory of combustion and ex- 
plosion and the theory of propagation of a flame through 
a mixture that reacts a t  an initial temperature,3g4 non- 
linear heat release problems,5~6 cooling waves associat- 
ed with strong temperature dependence of the transpar- 
ency of the m e d i ~ m , ~ . ' * ~  and other such problems. Un- 
expectedly, an equivalent problem has arisen in biology 
in the theory of the displacement of an old and less  well 
adapted population by a new and better adapted popula- 
tion produced by a mutation. This problem has been 
considered by Kolmogorov, ~ e t r o v s k f i ,  and ~iskunov,' 
and, independently by Fisher. ' O  

The important part  played by heat conduction in the 
evolution of a two-phase system to a stationary state 
was noted in Ref. 11 by one of the present authors and 
Pikel'ner. In the problem of evolution of interstellar 
gas considered in Ref. 11 there were not only bulk heat 
losses  but also bulk energy sources-x rays, cosmic 
rays, etc. In such a system, there is a critical pres- 
sure  a t  which the bulk sources and bulk heat losses  bal- 
ance on the average. The heat conduction a t  the inter- 
face of the two phases regulates the processes of evap- 
oration and condensation in such a way that the system 
a s  a whole is displaced toward the critical pressure. 
For  the intergalactic medium, bulk energy sources a r e  
not typical, the evolution is determined by the bulk 
losses, and the critical state is the cold phase. In the 
intergalactic medium i t  is therefore natural to expect a 
predominance of cooling waves and condensation pro- 
cesses.  

Problems relating to the interface between hot and 
cold gases were also discussed in Refs. 12-15, and i t  
was concluded on the basis of an analysis of quasista- 
tionary problems'4 and problems without bulk 10sses '~  
that there is effective evaporation of the cold phase if 
the cold cloud has a smaller  than critical size and that 
there is condensation of the hot phase into a cloud with 
larger  than critical size. The analysis below shows 
that when allowance is made for both heat conduction 
and volume energy losses the situation is more compli- 
cated. Among the asymptotically stable regimes under 
cosmological conditions, cooling waves, leading to con- 
densation of matter on the surface of clouds of the cold 

405 Sov. Phys. JETP 53(3), March 1981 0038-5646/81/030405-08$02.40 O 1981 American Institute of Physics 405 



phase, must be predominant because of the absence of 
effective energy sources. 

Thermal waves a r e  possible either in the initial phase 
of contact (when the initial temperature discontinuities 
begin to disappear) o r  in the cases when there a r e  bulk 
energy sources o r  reserves of heat (high temperature 
in some region) sufficient to sustain thermal waves. 

In 81, we consider in detail the problem of contact 
between hot and cold phases when the temperature of 
the hot phase is bounded. We show that bulk heat loss- 
e s  lead to the appearance of cooling waves a s  an inter- 
mediate asymptotic behavior. In 82, we consider sim- 
ilarity solutions to the heat balance equation that de- 
scribe cooling waves, thermal waves, and the evolution 
of inhomogeneities of the temperature in the nonlinear 
regime. In 83, we discuss the conditions of applicabil- 
ity of the results, and in 84 we take into account the in- 
fluence of the motion of cold clouds on their evolution. 
In 85, we consider possible astrophysical applications 
of the results. - 

81. COOLING WAVES 

We consider the plane one-dimensional problem of 
heat propagation described by the heat conduction equa- 
tion 

where T = T(t, x) is the temperature of the medium, p 
=nkT is the pressure, n(x, t) is the density of the par- 
ticles, ~ ( p ,  T) a r e  the bulk energy sources and sinks, 
and X(p, T) is the thermal conductivity of the medium. 
We assume that the propagation velocity of the thermal 
waves and cooling waves is small compared with the 
velocity of sound in the hot phase, and therefore the 
pressure can be assumed to be constant. To take into 
account the displacement of matter in Eq. (I), i t  is 
convenient to go over to Lagrangian coordinates q, 
which a r e  determined by the condition dq =n(t,x)dx. In 
the Lagrangian coordinates, Eq. (1) is transformed into 

We consider successively a number of problems, 
which differ in the assumptions made about the form of 
the function E*(T). 

1. Fi rs t  of all, we recall the situation when c*(t) = 0. 
Then (2) describes an ordinary problem of nonlinear 
heat conduction. In this case  (see, for example, Ref. 
2), the conservation of energy and the dimensions of 
the coefficient of thermal conductivity X* (at fixed tem- 
perature T,) completely determine the nature of the 
solution: 

w h e r e f - l a s t - m a n d f - O a s t - - - .  In thespec ia l  
case of the linear problem (X* = X*(T,) = const), we ob- 
tain the well-known solution [ ~ i ~ .  1 (a)] 

In the case  of the power-law dependence X = X0TB, X* 
= x~*T~- ' ,  a thermal wave propagating into the region q 
< 0 arises,  and at  some 5 = to the temperature vanishes 
in accordance with the law 

[Fig. l(b)]. This situation i s  also well known. ' 1 2  Note 
that because of the obvious relation f(0) = const, T(t, 0) 
= T,~(O) = const the solution to the problem with the ini- 
tial condition chosen above gives simultaneously the 
solution to the problem with boundary condition at  a 
fixed point T(t = 0) = const. At high temperatures 
(f - l ) ,  the nonlinear nature of the heat conduction i s  
not manifested, and in this region the temperature pro- 
file coincides with (4). 

2. We now consider a more complicated problem by ' 

taking into account heat release and heat loss, and we 
assume that the heat release compensates the heat loss 
for both T = T, and T = 0, while in the region 0 < T < T, 
the heat losses exceed the heat release. Thus, we a r -  
rive a t  Eq. (2) with &=Ofor  T=O and T=T,  and c > O  
for 0 <  T < T,. In such a formulation, the problem i s  a 
special case of the problem considered earl ier  in Ref. 
11 of the motion of the interface between two regions 
each of which a r e  themselves stationary. Since c >  0 
and c does not change sign in the intermediate interval 
T,> T > 0, there is no doubt with regard to the direction 
of propagation of the front- the amount of hot gas de- 
creases  and the amount of the cold gas increases with 
the time. The solution has the form (Fig. 2) 

where c* = ~ c / p ,  X* = n 2 ~ k / p .  Since p = const, the de- 
pendence of c* and X* on p can be ignored. 

We assume that at  the initial time t = 0 the half-space 
x >  0 is filled with hot gas a t  temperature T,, and the 
half-space x < 0 with cold gas at  temperature Tc << T,. 
Bearing in mind that c*(TC) = 0 and X*(T,) = 0, we as- 
sume in what follows that T,= 0. 

FIG. 1. Temperature profile for A*= const (a) and temperawe 
profile for A T~ (b). 

I t  is important that in this problem the distance tra- 
versed by the wave is proportional to the time and the 
structure of the front does not change with the time. 
The width of the front and the velocity with which i t  
moves a r e  determined by the temperature T, of the hot 
phase and will be obtained below. By comparing the 
properties of the f i rs t  and the second variant, we can 
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establish the fate of an arbitrary initial temperature 
distribution. 

If a step in the temperature distribution is specified 
at t = 0, then initially a thermal wave arises;  because 
of the steep temperature profile, heat conduction has a 
greater influence than the bulk losses, (a/aq)X*aT/aq 
is greater than c*, [ [ O ~ * ( ~ h ) ] ' f  i s  greater than ut, and 
the influence of c* can be ignored. With the passage of 
time, however, the gradients decrease, the width of 
the front of the thermal wave increases, approaching 
the width of the front of the cooling wave (second vari- 
ant), and a smooth transition to the second asymptotic 
behavior takes place. 

Knowing the law of motion of the front of the thermal 
wave and the cooling wave, we can find an interpolation 
formula describing the motion of the temperature front. 
It is obvious that when t i s  small [ [ o ~ * ( ~ h ) t ] "  > ut and 
the front is displaced to the left, whereas at large t the 
sign of the inequality is reversed and the front moves 
to the right. For  the motion of the front (or, more 
precisely, a point with given temperature, since the 
profiles of the front of the thermal wave and the cooling 
wave differ somewhat) one would be tempted to write 
down an expression of the form 

However, such an expression would lead to an unbound- 
ed growth of the front width, 

in the period when the cooling wave has already been 
established, which is incorrect. The width of the cool- 
ing wave remains constant. The correct  interpolation 
formula is 

where T is the characteristic time of transition from 
the first  to the second regime, a(T) describes the pro- 
file of the front of the thermal wave, and b(T) the pro- 
file of the front of the cooling wave. 

The problem of determining the temperature profile 
and the velocity of the cooling front is completely 
analogous to the same problems in the theory of propa- 
gation of a flame in a medium with nonlinear heat re- 
lease law. For the existence of a solution, it i s  neces- 
sary that the condition c*(T,) = 0 hold. For 

and under some restrictions on the rate of growth of 
the function $(T) = x*(T)&*(T) for T < T,, Kolmogorov- 

FIG. 2. Cooling wave in a medium with Th = const. The tem- 
perature profile at three times, t3  = t2 + At = t 1 + Ut. 

PetrovskG-~iskunov theory9 holds and the wave veloc- 
ity is determined by 

But if $(T) = x*(T)E*(T) increases sufficiently rapidly, 
then, a s  was show: by one of the present authors and 
 rank-~arnenetskii,'~ 

and in this case the velocity u =C may depend on not 
only Th but also on the minimal temperature T, and on 
the form of the function $(T) =x*(T)c*(T). Numerical 
calculations for a combustion wavei7 showed that in 
practice the largest of the values of f i  and u is realized. 

3. We now consider a rea l  problem-the cooling of 
gas with bulk heat losses but without heat sources. 
Such a situation is typical for the extragalactic medi- 
um. The initial stage in the evolution of the tempera- 
ture distribution (small t)  is the same a s  in the f i rs t  
problem. However, the asymptotic behavior in the late 
stages is quite different from the second variant. For  
E*(T,) f 0, the hot phase cools everywhere, over the 
complete region of high temperature, independently of 
the arrival  of the cooling wave. The law of cooling of 
the hot phase is determined by Eq. (2) with aT/aq = 0, 
where 

provided the initial conditions T, I ,, = Th a r e  satisfied. 
The general cooling of the gas does not prevent propa- 
gation of the cooling waves, but the wave now propa- 
gates through a gas of variable (decreasing with the 
time) temperature. 

The solution to the problem in the analogous situation 
in the theory of combustion was recently found in Ref. 
3,  and this method can be transferred fully to the case 
of cooling waves. We seek a solution in the form 

T=T X- u( t )d t , t  =T(E, t ) .  ( J  ) 
Such a form of solution takes into account explicitly 

the variation of the temperature ahead of the cooling 
front, and the solution ( ~ i g .  3) satisfies the boundary 
conditions 

Such a solution obviously exists and is meaningful only 
for a limited time t < t,, since during the time t, the hot 
phase cools through the bulk losses. However, in  real  
problems the time t, may be fairly long. 

FIG. 3. Cooling wave in a medium with decreasing tempera- 
ture. The temperature profile at three times t3>  tz  > ti. 
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Thus, in the considered problem solutions of a cool- 
ing wave type exist only for an interval of time that is 
bounded below (period of establishment) and above 
(cooling time). This is an important difference be- 
tween the problem (3) and the problem (2), in which a 
solution of the cooling wave type exists for an arbitrari- 
ly long time. Therefore, cooling waves in problems 
with E*(T,) > 0 describe an intermediate asymptotic be- 
havior of the solution. 

We note finally that solutions of this type also ar ise  
naturally in the case of initial temperature distributions 
of the most general form. In particular, the develop- 
ment of a perturbation associated with thermal instabil- 
ity of a medium leads to cooling waves. However, one 
can then encounter "kinematic" cooling waves, in which 
neither the temperature profile nor the wave velocity is 
related to the heat transfer but both a r e  completely de- 
termined by the initial (sufficiently smooth) temperature 
profile. 

We find an approximate solution to Eq. (2) in the con- 
sidered situation. We seek the solution in the form of 
a cooling wave: 

where T,(t) is determined in (9). In the region 5 - -, 
far  from the cooling front, T = T,(t), f = 1, f = T, 
=-$c*(~,) ,  whereas a t  the other end, 5 - --, we have 
T = 0, T = 0. Following Ref. 3 and regarding 2' in (11) 
a s  a correction and assuming for it a linear interpola- 
tion satisfying both the limiting conditions, we obtain 

In this approximation, the problem reduces to the sec- 
ond problem considered above. 

We consider in more detail the case of a power-law 
dependence, which is of interest for practical applica- 
tion: E = E ~ T - ' ( ~  > 0) and x = X, ,~(P  > 1) for T a T,, and 
&=Ofor  T<T,. ( F o r P + l - y > 0 ,  thevalue of T, is  
unimportant and we shall assume in what follows that 
T, = 0. ) For example, y = 3/2 corresponds to brems- 
strahlung losses, y = 5/2 to recombination losses, and 
/3 = 5/2 to electron heat conduction. We go over to di- 
mensionless variables 5 and u related to 5 and u by 

where the subscript a is appended to quantities taken 
for T =  T,, f = 1. Then Eq. (12) reduces to the form 

This equation satisfies the requirements of Kolmogor- 
ov- PetrovskiI- Piskunov theory,' and for the eigenvalue 
(the front velocity u) we obtain @ + 1 - y > 0) 

For  the temperature profile near the front, we obtain 

which corresponds to a cooling wave moving in the di- 
rection of large g. Asymptotically, at large 5, we have 
f - 1 in accordance with the law (v = 2y"2) 

But if y - 1 a p, then the ~olmo~orov-PetrovskG-Pisk- 
unov theorys is invalid. In this case, the wave velocity 
depends explicitly on the temperature of the cold phase 
T = T, > 0, and the wave velocity is determined by the 
expression (8). 

$2. SIMILARITY SOLUTIONS OF THE HEAT 
BALANCE EQUATION 

Similarity solutions a r e  important in the analysis of 
steady regimes of evolution of the structure of the inter- 
face between hot and cold gases. It i s  well known that 
in a large c lass  of hydrodynamic and thermal problems 
in which a steady regime exists the initial conditions 
a r e  forgotten and the solution becomes a similarity so- 
lution. Even if this is not correct  for the complete 
studied region, steady solutions can be locally close to 
similarity solutions, in the most dynamic region. In 
this case, similarity solutions can be regarded a s  de- 
scribing intermediate asymptotic  behavior^^-'^'^^ that 
a r e  valid in a bounded interval and in a restricted part 
of the investigated region. 

For the heat balance equation (2), similarity solutions 
can be obtained in the case of the power-law dependence 
E = E ~ T - '  (y> 0), X = X ~ T '  for T >  T,, and E = O  for 
T < T,. As was noted above, we can se t  T, = O  when P 
+ 1 - y > 0. The coefficients E,, and Xo may depend on 
the pressure, but if p = const this dependence is unim- 
portant. Equation (2) reduces to the form 

where 

Equation (17) can be reduced to a self-similar form 
in two ways, which describe somewhat different physi- 
cal situations. In the first ,  

T=(eo'l)"Tf(g),  O<t<m, x=(p+y-1) /2-y ,  
g = g ~ ~ ~ , - ' h e ~ ~ l - 8 ~ ~ 2 , =  E P P / Q I .  (18) 

In this solution, the temperature a t  a point with given 
value of 5 = 5 T, i. e. , at  a given point of the profile 
f (tT), increases with the time, qf - t x  also increases, 
and the point 5 = 5, moves in the direction of large q. 
This solution describes, for example, a cooling wave 
of the type considered in Sec. 1. 

The second method differs by the substitution t - -t, 
--< t K O  in (18). For this choice of the domain of 
definition of t, the temperature a t  the point 5 = 5 de- 
creases  with time, qf - ( 4 ) "  also decreases, and the 
point 5 = tT  moves in the direction of small  q. This so- 
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lution describes, for example, a thermal wave of the 
type considered in Sec. 1. It is convenient to combine 
the two cases, replacing the time t by the new variable 
T = vt > 0, v =fl ,  respectively. For v = 1, T increases; 
for v=-1, T decreases. 

The similarity solution is constructed in the whole of 
space at once, and there is no similarity solution with 
constant temperature a s  q - In the region of large 
f ,  similarity solutions of the type (18) always increase 
unboundedly. Therefore, solutions of the form (18) a re  
helpful primarily a s  an intermediate asymptotic behav- 
ior valid in a bounded region of space near the wave 
front. Solutions of the form (18) together with a ther- 
mal wave and a cooling wave describe the late nonlinear 
stages in the evolution of temperature inhomogeneities. 

In the similarity variables, Eq. (17) reduces to the 
form 

5/2v (of-xgj') +fi-T=$-$ (fP) ": 

a=i/y, x=(y+~-1 ) /2y ,  v=*l. (19) 

The general solution of (19) can be obtained for y =  p = 1. 
However, this solution has a mainly methodological 
significance. 

The solution of (19) that is most interesting from the 
point of view of applications has a t  low temperatures 
the characteristic wave form 

For v = 1, qf increases, and a cooling wave (see Fig. 
2) moves in the direction of the hot phase; for v=-1, 
qf decreases and a thermal wave [see Fig. l(b)] moves 
in the direction of the cold phase. Depending on the 
values of p and y, the following regimes a r e  possible: 

a) for a cooling wave (v=l) :  

$>y+l .  p=l/y, f,-'=2.5x/y, 
(21) 

y+l>$>y-4, p=2(y+p-I)-', f~+'-'=0.5(p+y-l)~(p-~+l)-~~o'; 

b) for a thermal wave (v = - 1): 

$>r+l ,  p= ($-l)-', f ~ - ' = 2 . 5 ~ ~ ~ ~  ($-I),  

In the case 0 > y + 1, the profile of the cooling wave 
(21) is determined by the bulk losses, and the profile of 
thermal wave (22) by the heat conduction. If y + 1 > 0 
> y - 1, both factors a re  important. In all  cases, the 
profile corresponding to the thermal wave is steeper 
than that of the cooling wave. The profile of the cool- 
ing wave is identical to (15), which confirms the valid- 
ity of the approximation (12), (15). However, the ve- 
locity of the similarity waves depends on the tempera- 
ture, and the front width changes. This is due to the 
change in the temperature in the region f > to-there 
a r e  no similarity solutions with T = const a s  q - Oo. 

In the special case 13 = y + 1, Eq. (19) has the exact 
solution 

f'=O.SyL (i6+25S,?)'"-5~%01 (E-So) (23) 

with one arbitrary constant fO. The situation described 
by (21) and (22) corresponds to 

T'=0.5~~'ty[  (16+25boZ)"-5vgo] (t-b,) 

- 0 . 5 ~ ; '  y&-' [ (16+25E,')"--5~g~]~ (I-q,/q) 
(24) 

For  v= 1, (24) describes a cooling wave, and for v 
=-1 a thermal wave. The cold phase is situated at q 
cq,. Asymptotically fa r  from the front in the region 
f >> f 0  (q >> qf ), the solution (24) tends to a stationary 
solution: 

For  f = 0, qf = 0, the expression (24) goes over into an 
exact stationary solution equivalent to the one found in 
Ref. 14. In the asymptotic region q >>qf, the stationary 
solution with to = 0 separates the se t  of solutions de- 
scribing a thermal wave (v < 0) from the se t  describing 
a cooling wave (v> 0). However, in accordance with 
the similarily solution (24) the temperature becomes 
zero for q =qf > 0, whereas in the stationary solution 
this occurs only for q = 0 (the stationary solution in the 
neighborhood of q =qf always passes higher than both 
the thermal wave and the cooling wave and cannot serve 
a s  boundary between them). 

The solution (23)-(25) is realized in a situation that 
is particularly interesting from the point of view of ap- 
plications-bremsstrahlung energy losses (y = 3/21 and 
electron heat conduction @ = 5/2). 

As the expressions (23) and (24) show, similarity 
thermal waves can exist only through heat reserves a t  
the distant periphery, in the region of large q, and they 
a r e  accompanied by a general decrease in the tempera- 
ture in the hot phase in accordance with energy conser- 
vation. 

Similarity solutions of wave type do not exist for P 
c y  - 1. In this case, there a r e  only similarity solu- 
tions having the form of a minimum of the temperature. 
Similarity solutions with an extremum of the tempera- 
ture a r e  also possible a t  other values of 0 and y to- 
gether with wave solutions. These solutions can, for 
example, describe the late nonlinear stages of thermal 
instability. In the neighborhood of the extremum in the 
region If 1 << 1, these solutions have the form 

and if v = 1 then a > 0 and only a minimum of the tem- 
. 

perature is possible, whereas if v = -1 it  is possible to 
have both a minimum (1 > 2.5 uf :) and a maximum (1 
< 2.5of;; a < 0 )  of the temperature. For v= 1, the 
temperature a t  the minimum increases, and the curva- 
ture of the profile decreases, i. e. , the inhomogeneity 
is decreased. In contrast, for v = -1 the temperature 
a t  the center decreases and the curvature of the profile 
increases, i. e. , the thermal inhomogeneity is localized 
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more strongly. This is true both in the case of a min- 
imum of the temperature (when the decrease in the 
temperature leads to an increase in the inhomogeneity) 
a s  well a s  in the case of a maximum of the temperature 
(when the spreading of the inhomogeneity is accompan- 
ied by an increase in the curvature of the temperature 
profile). 

It is to be expected that in real  problems the cooling 
ceases when a certain minimal temperature has been 
reached (for example, lo4 "K), and the solution (26) is 
rearranged into a solution of the type (20), (21) with 
formation of a cooling wave. 

Expressing qf, which determines the curvature of the 
temperature inhomogeneity, in terms of the tempera- 
ture T, a t  the extremum, we obtain 

where the subscript e is appended to the symbols of all 
quantities a t  T = T,. Obviously, there exist two physi- 
cally different situations. The first  is 

$) 12 .hpJe .~1  a ,  q.l=h.T.n.'e.-' (27a) 

in which the curvature of the temperature profile de- 
pends implicitly on the time, through T, = T,(t). This 
regime is realized for sufficiently large values of c,, 
i. e., for sufficiently low temperature a t  the minimum, 
in the late stages of development of thermal instability. 
The q, scale in this case is equal to the critical scale 
for thermal instability in accordance with Ref. 21. In 
the second case, 

and the curvature of the temperature profile depends 
explicitly on the time and does not depend on the (low) 
cooling rate. This regime is realized at high tempera- 
tures, at maxima of the temperature, and, possibly, in 
late stages in the disappearance of a temperature mini- 
mum. 

Besides the solutions (20), (23), and (26)) Eq. (19) in 
the region of small f has a solution of the form 

In this solution a t  the point 5 = 0, f = 0 the heat flux Q 

=f is not zero, and therefore (28) is valid only for  
describing nonstandard situations with localized energy 
sink (boundary condition a t  the point 5 = 0). 

In addition, in Eq. (17) there is a singular stationary 
solution (unstable) corresponding to the one obtained in 
Ref. 14: 

j-fegu(~7-l), joWF'=~,~5y-~(p+r-i)z(p+i-r)-l, (29) 
p>r-i. T-T (q )p~kf"~+' -" .  

I 

Among the stationary solutions of (17) there is, besides 
(29)) a solution with a minimum of the temperature and 
a solution of the type (28) with energy sink a t  the point 
5=0. 

In the region of large 5 and f >> 1, Eq. (19) has a solu- 
tion of the form 

The similarity solutions can be generalized to the 
case of a power-law dependence of the pressure of the 
form p - t a .  
53. EVAPORATION AND CONDENSATION OF 
CLOUDS 

The solutions obtained above solve not only the prob- 
lem of the structure of the interface between hot and 
cold gases but also permit the calculation of the evolu- 
tion of inhomogeneities under conditions of high temper- 
ature of the hot phase, a strong influence of electron 
heat conduction, and bulk energy losses-of brems- 
strahlung and recombination type-for given external 
pressure. 

We assume for the gas with cosmological chemical 
composition (O.7H + 0.3He) the following values of c 
and X (T = 1 0 6 ~ 6  9(, particle density n measured in 
cm4): 

h~=0 .9 .10 '~~ . '"  erg. an-'. sec-' 

E , ~ = ~ . ~ o - " T :  nz erg. cmJ. sec-' 

ets=1,5.10-2'~~'h n2 erg. ~ r n - ~ .  sec-' . 
Then for the scale and velocity of the wave we obtain in 
accordance with (13) (for bremsstrahlung losses) 

where p = ~ o - ' ~ P ~ ~  erg/cm3. The value of q, is equal to 
the critical scale of the region of thermal instability 
obtained in Ref. 21. The temperature profile is deter- 
mined by (15) a t  low temperatures and by (16) a t  high 
temperatures: 

f =0,65E"', E< 1. 
j-l-c(~-~o)e-"" (I-fa1). 

Allowance for recombination radiation makes the pro- 
file steeper in the region of low temperatures, changing 
the exponent to 3. from $. 

As is shown by the estimates (31), the velocity of the 
cooling front is small compared with the isothermal 
velocity of sound in the hot phase up to temperatures 
T, = lo2: 

The cooling front is strongly spread out and a t  low den- 
sities of the hot phase may be wider than a kiloparsec. 
Comparing the dimension of the cooling front with the 
characteristic electron mean free path in ionized (9,) 
and neutral (go) gases, 

q,-(kT)'/i2ne'A=2.35.iOL' Te2 cm-', 
qo=iol* T6 m-', 

where is the Coulomb logarithm (A = 40), we find that 
the diffusion approximation is satisfied with a good 
margin and direct heating and ionization of the cold gas 
by electrons of the hot phase a re  ruled out. The possi- 
ble photoionization by the self-radiation of the hot gas 
is negligibly small. Photoionization by external sourc- 
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e s  may play some part. However, if this radiation can- 
not heat the neutral gas of the cold phase, i t s  part  
merely reduces to changing the degree of ionization of 
both the cold gas and the gas in the region of the front. 
Then the position of the ionization front need not coin- 
cide with that of the thermal front. 

The most important aspect of the problem discussed 
here i s  the question of the conditions under which evap- 
oration or  condensation of a cloud occurs. This ques- 
tion has been discussed in a se r i e s  of papers. i2'4 The 
principle conclusion of these studies is that small  
clouds evaporate and large clouds condense and that 
there exists a critical cloud radius separating evaporat- 
ing and condensing clouds. The ra te  of evaporation of 
clouds obtained in the quoted papers is widely used in 
astrophysical applications. i2*i5  However, both the 
analysis of the problem made in the quoted studies and 
the conclusions reached in them come up against a num- 
ber of serious objections that can be seen clearly by a 
comparison with the results  obtained above. 

We note f i rs t  that in Refs. 13 and 14 only stationary 
equations a r e  considered, and the evaporation ra tes  a r e  
calculatedi3 with neglect of bulk energy losses. The 
approximate stationary solution in Ref. 14, obtained for 
a complicated cooling law, is actually identical to (29) 
when allowance is made for the change in the geometry 
(plane instead of spherical) and the expression for the 
bulk losses. It can be seen from the results  of Secs. 1 
and 2 that this solution contains very little information 
about the predominance of evaporation or  condensation 
processes. In a steady regime, a s  is shown by the re-  
sults of Secs. 1 and 2 (see also Ref. 111, thermal 
waves and evaporation a r e  always associated either 
with bulk heat sources (for example, in the Galaxy) o r  
with heat reserves,  as ,  for example, in the similarity 
solution (24). But i f  bulk heat sources a r e  absent, E > 0 
in the range of temperatures in which we a r e  interested, 
and the temperature of the hot phase i s  bounded (T T, 
a s  q - m), then a steady regime always corresponds to 
a cooling wave and condensation of the matter of the hot 
phase. Heat conduction, which leads to a spreading of 
the interface between the hot and cold phases, helps to 
cool the hot phase. 

Under real  conditions, the motions of the gas of the 
hot phase may distort locally the temperature profiles. 
However, this applies mainly to the outer, hotter re- 
gions of the region of contact. In the low-temperature 
region, the width of the interface is small, and the 
temperature profile is established rapidly. The chosen 
value of the coefficient of electron thermal conductivity 
may be distorted in the presence of magnetic fields, 
and the question of their influence remains open. It is 
clear however that the main conclusions of the paper do 
not depend on the particular choice and value of E and X. 

$4. MOTION OF COLD CLOUDS IN HOT GAS 

The fate of clouds of cold gas is determined by not 
only the processes of evaporation and condensation but 
also to a considerable extent by their motion in the hot 
gas, which can result in appreciable deformations of a 
cloud. A cloud of cold gas a t  r e s t  in a hot gas acquires 

a spherical shape under the influence of gravitation. 
However, if the mass  of the cloud is small, so  that the 
gravitational energy of the cloud is small compared 
with the thermal energy, the spherical shape is readily 
distorted by fluctuations of the external pressure, and 
the cloud of cold gas may be flattened and break up. 

If a spherical cloud of cold gas moves through hot 
gas, then the pressure  on i t s  surface depends on the 
polar angle 8, measured from the direction of the veloc- 
ity22p23 (we ignore the acceleration): 

(e) 1.i2Sphu2 (cos2 o-'/s), (32) 

where p(8) and Po a r e  the pressure  of the hot phase on 
the surface of the sphere, p, is the density of the hot 
phase, and u is the velocity. The pressure difference 
between the points 8 = 0 and 8 = r/2 is ~p = 1. 
and this Ap tends to flatten the sphere, transforming it 
into an  ellipsoid. However, this deformation is asso- 
ciated with work done against the gravitational forces. 
Therefore, strong contraction is possible only in the 
case of a sufficiently high velocity u (or low mass M) of 
the sphere. 

We estimate roughly the connection between the criti- 
cal velocity u leading the flattening of a sphere and the 
mass  M of the sphere. A particle is maintained on the 
surface of the sphere by the gravitational force F, 
= GM~,/R', whereas the pressure  gradient displacing i t  
is of order p h u 2 / ~ ;  we therefore find that deformation of 
the sphere requires 

where G is the gravitational constant, R is the radius of 
the sphere, p, and a, a r e  the density and velocity of 
sound in the cold gas, M, is the Jeans mass corre- 
sponding to approximate equality of the thermal and 
gravitational energies in the sphere, and a, is the ve- 
locity of sound in the hot gas. The condition (approxi- 
mate, without allowance for  gravitation) of constancy 
of the pressure in the cold and hot phases leads to the . 

condition p,a: =pha,2. Rewriting (33) in the form 

we obtain a convenient formula for  estimating the de- 
gree of deformation of the cold gas cloud when i t  moves 
in the hot gas. 

If the velocity of the cloud exceeds the value (33), 
then the cloud is flattened, i t s  gravitational energy de- 
creases,  and i t  can be dissipated during the hydrody- 
namic time, i. e., before thermal processes become 
important. In contrast, slight flattening of the cloud 
may accelerate the process of condensation of hot gas 
due to the increased surface of the cold cloud. 

$5. EVOLUTION OF EXTRAGALACTIC 
INHOMOGENEITIES 

We consider a s  a f i r s t  example the evolution of a 
cloud of cold (T = lo4 %) gas in the hot gas of a rich ' 

cluster of galaxies. If such a cloud enters such a 
cluster from without, then in the process of establish- 
ment of the cooling wave regimes considered above the 
mass  of such a cloud may decrease appreciably and, 
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in particular, i t  is possible that i t  will evaporate en- 
tirely. However, if the mass of the original cloud is 
sufficiently large and the cooling wave regime has be- 
come established, the mass of the cloud increases ra- 
pidly, mass being accumulated in proportion to the 
surface area  of the cloud. 

We assume that the surface area  of a cloud containing 
N particles a t  temperature T = 104 9( is 

where is a factor which takes into account the possible 
influence of a departure of the surface area  of the cloud 
from the surface area  of a homogeneous sphere, and 
p = 1 0 - ~ ~ p ~ ~  erg/cm3. Using (31), we obtain 

dNldt=nS, N"=N: +200~: j o p t  dt 

r. 113 
=N> +200T, plr o't 

(assuming pi5 = const and lodt =u*t)  and in the most in- 
teresting case N>> No 

for  t =H;' = 3 X 10'~h-', where Ho = lOOh km . sec-' .Mpc-' 
is the Hubble constant. Taking the Coma cluster a s  a 
guide, we assume that in the hot phase T6 = 100, n, 
=lo5 cmJ, fii5 =3X lo4. Comparing the obtained mass 
with the critical mass of an isothermal sphere a t  tem- 
perature T = 1 0 4 ~ ~  "K, 

we find that 

Thus, during a time several times shorter than the 
cosmological time gas clouds under the conditions of 
clusters of galaxies reach the critical mass and col- 
lapse, being transformed into stars.  Therefore, under 
the conditions of rich clusters of galaxies i t  is hard to 
expect the presence of fossil cold gas clouds. On the 
other hand, the formation of new cold clouds in the hot 
gas of clusters is also difficult. It is possible that the 
formation of SO galaxies in rich clusters i s  due to 
these effects. 

In poor clusters o r  in superclusters such a s  the Virgo 
cluster o r  A1367-A1656 the pressure in the hot phase 
is lower by one o r  two orders of magnitude, and there- 
fore the effects of growth of the mass of cold clouds 
a r e  expressed much more weakly and H1 clouds may 
exist both within galaxies and outside them. 

Problems associated with the cooling and condensa- 
tion of hot gas also ar ise  in connection with the analy- 
sis of the structure of the outer zone of the gas disk of 
galaxies, in problems of the evolution of inhomogenei- 
t ies in the nonlinear theory of the gravitational insta- 
bility, in connection with thermal inhomogeneities in 

the hot gas of clusters of galaxies, etc. These ques- 
tions will be considered separately. 
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