
(with u,,). 

The perturbation that induces the single-phonon tran- 
sitions was taken in the present paper to be only the dy- 
namic strains c , . They a r e  expressed in terms of 
products of components of u and q [Eq. (5)] that trans- 
form likea second-rank symmetric tensor. Yet anactive 
role can be played in principle in the transitions also 
by dynamic rotations w = b X q (Refs. 8 and 15), which 
have the transformation properties of an axial vector. 
The relative contribution of the strains and of the ro- 
tations to the matrix element (1 IH '1 2) of a single-phon- 
on transition i s  determined by the ratio of the deforma- 
tion potential (b) to the transition energy (A). In our 
case b x 3  x lo3 cm" and A,,,,,r: 30 cm", therefore the con- 
tribution of the rotations to the transition probability 
is  -(A/bIZ r: lo4 and can be neglected. In general, the 
role of the rotations, compared with strain,  can be re-  
garded a s  small for all PPD of the terahertz band, for 
which b 7> A always. 

The authors thank G. E. Pikus and E. L. Ivchenko for 
a helpful discussion. 

 he velocities of the TA and LA phonons w e r e  calculated 
from the  e las t ic  constants of CaF2 a t  T =  4K. The velocity 
indicated for  the phonon propagation direct ion q 11 [110]  i s  
that of the fas t  FTA phonons. 

"A perfectly analogous mat r ix  for  rj with the corresponding 
parameters  A and B i s  given in Ref. 7 [Eq. ( 6 ) )  for  the 
s t r e s s e s  hi,. T h e  relat ions between the parameters  ( 3 )  and 
( 6 )  of Ref. 7 a r e  b = ( C l l - C 1 2 ) B  a n d a = ( C , , +  2Ci2)A. 

 he calculated transi t ion probability in c a F 2 : ~ u h  c rys ta l s  at  
v =  30 cm-I and T;' =6 x109 sec-' exceeds by two o r d e r s  of 
magnitude, say ,  the probability of the 2A4 E t ransi t ion in 
~ r * *  ions in ruby ( v =  29 cm-', T;'= 3 x  109 sec-',  Ref. 1 1  ). 

4 ' ~ e  point out a genera l  analogy between the spatial  distr ibu- 
tion of acoustic-phonon emiss ion  (absorp t ion)  and the  dis-  

tribution of electromagnetic radiat ion in the  c a s e  of electr ic  
quadrupole transt ions.  The la t te r  are knowni4 to b e  de- 
sc r ibed  by an expression of the type l~i,eiqkQik 1 2 ,  where 
e i s  the e lec t r ic  v e c t o r ,  q i s  the  wave vector  of the electro-  
magnetic wave,  and Qi,= ex tx ,  i s  the e lec t r ic  quadrupole 
moment of the transition. 
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Anomalous skin effect on a rough surface in a magnetic 
field 

L. A. Fal'kovskh 

L. D. Landau Institute of Theoretical Physics, USSR Academy of Sciences 
(Submitted 4 August 1980) 
Zh. Eksp. Teor. Fiz. 80,775-786 (February 1981) 

The impedance of a metal in a magnetic field parallel to the surface is calculated with allowance for the 
scattering of the conduct~on electrons by surface roughnesses. The monotonic part of the impedance is 
determined by the multiply reflected electrons and depends on the competition of their scattering by bulk or 
surface defects. The cyclotron oscillations are small, except when the mean free path is very large and in a 
narrow vicin~ty of the resonance the contribution of the electrons that do not collide with the surface becomes 
predominant. 

PACS numbers: 73.25. + i 

1. INTRODUCTION from the sample boundary. The reason i s  that the in- 
fluence of the surface comes into play a t  a distance de- 

The surface impedance of a metal in a magnetic field termined either by the electron mean free path 1 or by 
parallel to the surface depends substantially on the the Larmor radius r, i .e. ,  by parameters that can be 
character of the scattering of the conductions electrons large compared with the skin-layer depth 6 (we assume 
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these conditions to be satisfied). 

Yet the theory of cyclotron resonance' was initially 
constructed under the assumption that the electrons a r e  
diffusely reflected. In this case the oscillating part of 
the impedance i s  comparable with the monotonic one, 
 herea as in experiment it i s  a s  a rule smaller by a 
factor of 100 even for samples with 1 >> r. An attempt 
to explain this contradiction was made by Chambers: 
who advanced the hypothesis that the large monotonic 
part i s  determined by the contribution of nonresonant 
points on the electron trajectory. The corresponding 
quantitative theory was developed by ~e ie rov ich ;  who 
showed that under conditions of specular reflection 
from the boundary, the "hopping" electrons (see orbit 
s in Fig. 1) with glancing angles cp- ( b / ~ ) " ~ ,  which 
spend a long time in the skin layer, determine the large 
monotonic part of the impedance, which i s  roughly 
speaking of the same order as the impedance in the ab- 
sence of the field. The electrons that do not collide 
with the boundary but land in the skin layer (Fig. 1, 
orbit v ) ,  which we shall name glancing, introduce a 
relatively small oscillating part. 

Thus, the fact that the cyclotron oscillations ob- 
served in experiment a r e  small i s  proof of the almost- 
specular reflection of the electrons from the boundary. 
Another proof is  the observation, in weak fields ,5 of 
resonances due to transitions between the quantum sur- 
face levels, which ar ise  a s  a result of the periodicity 
of the motion of the hopping electrons. 

Just a s  in most kinetic problems, the theory of Ref. 
4, makes use of the Fuchs boundary condition 

f ' ( ~ ) = ( * - q ) t < ( p ) .  (1) 

which connects, with the aid of the phenomenological 
diffuseness coefficient q , the nonequilibrium increment 
f> to the electron distribution of the electrons moving 
away from the boundary, with f < for the reflected elec- 
trons; f' and f< a r e  taken a t  the same values of the tan- 
gential projection of the momentum p and of the opposite- 
ly directed normals. It turns out that, depending on the 
proximity of the coefficient q to zero, a distinction must 
be made between two limiting cases. In one of these 
cases, an error  entered in the calculation of the oscil- 
lating increment; this error  found i ts  way a s  well a s  
was rejected in many later papers (the last one of this 
cycle i s  Ref. 6). Since the theoretical results depend 
to a strong degree on the proximity of q to zero, the 
question ar ises  of the bearing that these calculations, 
based on the phenomenological condition (I), have on 
the real  phenomenon. 

In the present paper we use a boundary condition7 that 
takes into account scattering by random surface rough- 
nesses 

d'p' 
~ ' ( P ) = ~ ~ ( P ) + P ~ J P , ' W ( P ' - P ) [ ~ ~ ( P ' ) - ~ ' ( P ) I ~ .  

Here W(p) i s  the Fourier component of the binary cor- 
relator of the roughnesses, p, is  the modulus of the 
normal component of the momentum and depends on the 
tangential component of p,and on the energy E . For a 
quadratic dispersion law (our calculation i s  made for 
this case) 

We assume in the estimates that W(p) is a function 
that differs from zero in the region p < d-', where its 
value i s  W(0)-a2d2; a and d have the respective mean- 
ings of the average size of the roughness and of the 
characteristic scale in the tangential direction. 
Planck's constant i s  set equal to unity. 

Condition (2) reflects correctly the general features 
of scattering by a surface. It i s  automatically satis- 
fied by an equilibrium distribution function and ensures 
the absence of current through the surface. The inte- 
gral term is an increment to pure specular scattering 
and vanishes a s  p, - 0, i. e .  , for hopping and glancing 
electrons. The condition (2) was used earliers to ana- 
lyze the influence of the roughness on the anomalous 
skin effect and on the conductivity of thin plates in the 
absence of a magnetic field. 

Although the integral equation to which (2) reduces 
cannot be solved in general form, it can be easily 
analyzed in two limiting cases that depend on which of 
the factors under the integral sign i s  the sharper func- 
tion. As already noted, the most important role in the 
problem is played by small glancing angles cp- ( b / r ) l  12. 

If the electron approaching the surface moves almost 
parallel to it withpep, ( p , = 2 r n ~ ~ ) ' / ~  i s  the Fermi mo- 
mentum; we a r e  interested in electrons close to the 
Fermi surface), then after scattering by the roughness 
we have p'- I p, - l /d  I .  The corresponding angle 

cp,"-min (1, (pod)-"-) 

characterizes the width of the function W(pf-p) at 
small glancing angles p - p,. Since the largest con- 
tribution to the current is  made the effective hopping as 
well a s  effective glancing electrons moving within the 
skin layer, the distribution function changes significant- 
ly over angles pf - (b/r)ll'. 

When f i s  determined for the effective electrons, the 
integral terms with f ' ( p ' )  can be neglected if cpw>> pf. 
The result i s  the Fuchs condition (1) in which, however, 
q depends on the angle: 

@P ' 
q  (cp) = P. 5 P". ( P ' - - P ) ~ .  ( 3 )  

At small cp (p< cp,) 

FIG. 1. 
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where the factor 2 will be found convenient in the equa- 
tions that follow. An estimate yields 



The conditionp&<< 1 may be satisfied in semimetals, 
and then Q -  (adpi)'. 

In the other limiting case,  i. e .  , at  cp,<< cpf, to deter- 
mine f in the region cp > cp, it i s  necessary to expand 
p i  [ f(P') -Ap)] under the integral sign in powers of 
( p ' - ~ ) ~ .  The first-order term vanishes because 
W(pl-p) is  odd. The second-order term i s  propor- 
t ional to 

d2p' j (P ' -P ) ,  (PI -P ) ,  W(P'-P)--;- = 6,,Q,, (5) 

where Q, - (a/&'. The boundary condition (2) i s  trans- 
formed into the differential equation 

where the differentiation is with respect to the tangen- 
tial components of p a t  a given value of the energy c .  
The boundary condition for (6) i s  obtained by matching 
to the region cp< cp,. It can be seen that, in order of 
magnitude, 

The condition (2)  was derived under the assumption 
that the integral term in it i s  small compared with 
unity, i.e., 

Q I  at q,,~>cp,, (8a) 

Since we a re  justified in considering from the Markov 
point of view only a roughness that is  large in the atom- 
ic scale, these requirements can be satisfied in a ty- 
pical metal for effective electrons with small angles 

cpf. The condition (2) thus allows us to consider the 
transition to the specular case. At the same time it 
permits also an analysis of the diffuse limit if the num- 
ber n of the collisions of the electron with the surface 
is large during the free-path time: 

n=liJ (6r)-'">I. ( 8 ~ )  

It is  easily seen (as will be shown later) that the dif- 
fuseness is  not small if the product of n by the diffuse- 
ness coefficient in one collision (8a), (8b) is  not small. 

2. GENERAL SOLUTION 

In the solution of the kinetic equation 

[E(x) i s  the electric field in the metal] it i s  customary 
to use in momentum space the following variables: the 
energyc , the momentum projection p, on the magnetic 
field, the rotation angle q =  a t  around the magnetic 
field, an angle connected with the time t by the equa- 
tions of motion in the magnetic field: dv,ldt= -nu, 
and dud&= Qv,, where =eH/mc i s  the cyclotron fre- 
quency. It i s  convenient to use v,= -v, sincp, v, 

2 112 =vl cosp,  and v ,  = (vt - v,) . In terms of these var- 
iables, the phase-space element i s  d3p = md&dp,dV. 
In the calculation of the current, the integral with re- 
spect to E i s  evaluated with the aid of af,.,/ a& = -6 (c  
- cF), SO that we can put E = c F  in a l l  the quantities 
that depend on c . We use the complex mean free path 
v d l =  7-' - iu and the Larmor radius r = vo/ a. 

If the characteristic of Eq. (9) 

1=<1-~ ju, d c p = ~ - ~  u u ( v )  + co~lst 

does not cross the sample boundary x =  0, then the sol- 
ution of (9) is obtained from the requirement of period- 
icity with respect to cp ~ i t h  period 2n: 

* 
f(cp)= dcplv(cp')E{z+[u,(cp')-  u , ( q )  lQ-l)exp[r(cp'-cp)/l] ,  (11) 

-- 
the factor -ea-'afJa& will be written in the expres- 
sion for the current. 

If the characteristic crosses the boundary, then the 
constant in (10) can be taken in the form -a"v,(~,) ,  
where cp, is  the angle of approach to the surface, cp 

cpO sn, The region corresponding to colliding elec- 
trons i s  shown shaded in Fig. 2. The solution takes 
here the form 

'P 

j ( r )  = e-*" [ j dq l  u(cpJ, qo)erv'fl  + F(-Q-' u ~ ( L ) ) ]  , (12) 
-v* 

u(cp1, c p )  = v ( ~ ' )  E {Q-' [uy  (q ' )  -uy (cp) I } .  

The arbitrary function F i s  obtained from the boundary 
condition (21, the left-hand side of which contains 
A-cp,) and the right side Avo). Using (12), we express 
A-cpo) in terms Acp,) and substitute in (2). We obtain 

v 

[ea7v/' - l ] f (cp) - j dcp' u (cp', q )  eT'*'')/' 
4 (13) 

dy 
= P . ~ P ; w ( P ' - P )  l f  ( 9 ' )  - l (cp)  I ,  ; cp=c~c>O. 

Solving (131, we obtain f(cp)  and calculate the current 

where the integration with respect to cp within the limit 
of the shaded region should be carried out with the func- 
tion (12), and with the function (11) outside this region. 

Continuing in even fashion the electric field and the 
current into the region x <  0 and changing over the Four- 
ier components, we write down the connection between 
the current and the field in the form - dk ' 

, , ( k ) = o , ( h ) b , ( l ~ ) -  j o , ( k k ' ) 8 , ( k ' ) - .  (15) 
0 

we see that in terms of the employed coordinates the 
conductivity tensor u,,(k) ,  o&kk ') is diagonal. 

Solving next  axw well's equation 
lbZ8,(l,) ~ ~ h ~ ( x = O )  = 4 x ~ u c - ' j , ( k ) ,  

we obtain the surface impedance 

FIG. 2. 
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This program can be used in the two limiting cases re-  
ferred to in the Introduction. 

3. LOW EFFECTIVENESS ANGLES cp, <<pW 

In this case we can introduce the angle-dependent 
diffuseness coefficient (3), (4). Equations (13)-(16) 
can then be solved exactly. Leaving out of (13) the 
small term with f(cpf), we obtain 

We then obtain with the aid of (12) 
* .b 

j ( e ) = ~ 1 5 . d c p ' + [ l - ( l - q ( c p o ) ) e - ~ r ~ / c ] - 1 ~  F d m ' .  
mr -e% 

(18) 

It i s  important that the solution (18) goes over contin- 
uously into (11) when we go over from electrons that 
collide with the surface to non-colliding ones. To veri- 
fy this, i t  suffices to represent the integral in (11) in 
the form 

and use the periodicity of the integrand. We obtain 

e 9 

J . . . = J . .  . + [ ~ - e - ~ ~ ~ ' l ] - '  J . . . . (19) 
- m -a 

The transition considered corresponds to cpo - T .  It i s  
seen now that (18) goes over into ( l l ) ,  since q(n) - 0 (as 
cp, - a the projection p, - 0). We emphasize that this 
continuity of the distribution function i s  a consequence of 
the specularity reflection of the glancing electrons that 
have orbits of the v type and approach the surface tan- 
gentially. 

In the calculation of the Fourier component of the cur- 
rent, the integral with respect to x over the unshaded 
region (see Fig. 2) i s  taken of the function (111, and of 
(18) over the shaded region. We shall instead integrate 
(11) with infinite limits, omitting expression (11) in the 
shaded region. The first integral yields the conductivity 
of an infinite sample. Its asymptotic form i s  known: 

where u, = Nee21pi1; here and elsewhere k > 0. 

Expression (20) does not depend on the polarization of 
the field and i s  valid in the case kr>> 1, (r/k)'/'/ I1 l<<l. 
The last condition allows us  to disregard the change of 
the field during the time of motion of the electrons with- 
in the limits of the skin layer. This condition i s  equi- 
valent to (8) with k = 6-'. We note that the "bulk" con- 
ductivity (20) receives equal contributions from the 
hopping electrons on the orbit s a t  the point cp=O and 
by the electrons glancing on the v orbit a t  the point 
cp=n. 

We change over in the integral over the shaded r e -  
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gion from z to the variable cp,, using the last Eq. of 
(18). Using (191, we get 

The integration with respect to cp, cp', and cp, can be 
easily carried out by the saddle point method. The sad- 
dle points a r e  cp, = 0 and ir . 

We consider f i rs t  hopping electrons, i. e . ,  the point 
rp,=O. The first term in the curly brackets, in which 
the important role i s  played by small  rp,- (6/r)1/2, 
makes the principal monotonic part of the conductivity. 
At small cp, 

1 - [ l - q (q , ) ] e - l r* l '  - n-I + p (q , )  < 1. (22) 

The monotonic part of the conductivity 

differs by a factor (1 + lQ,/r)-', which depends on the 
on the magnetic field and on the mean f ree  path, on the 
specular-reflection conductivity ~ ~ ( k k ' ) .  The quantity 
am is defined by the integral 

00 * %  

a, ,m(kkt)=  6,,** 7 u 1 v , y c p = ~ ) d u z ~  . i U u  J s 1 2' 
Ibnu, 

- l a  5 X . k '  U -.n -'Po 

x oxp[ih (cp2-cp,') - ih' ( cp 'Z -~uZ)  1 ; 
h=ku,/ZQ, h'=k'u,/2Q. 

After making the substitutions cp= cpg and cp' = (Pay 
we calculate first the integral with respect to cp,. The 
subsequent integrations with respect to x, y,  and v ,  
a r e  trivial: 

3 ~ ~ r - ' ~  m ~ : ( ~ ) d ~ ,  ' d x d y  
o,jm (kk' )  = a+---- 2%,,' I-Y;.;;E 1 ~ [ - ~ ( z ~ - l ) + i r ~ ( Y z - ~ ) ~ v ,  

** X '  0 

where 

cz=l, ~ ~ = a / ~ ,  A=3. 2' in2/5r ' ( ' / , ) .  

Since Q-v, in (22) [see (4)], (23) i s  an interpolation 
formula. After integrating with respect to v,  we see 
that the value of Qi in (23) i s  smaller by approximately 
a factor n1/2 for the case lQ,>> r than for the opposite 
case. In addition, Qi depends on the field polarization: 
Qy = 2Q,. We shall neglect these quantities hereafter. 

The last two terms in (21) lead to the oscillating part  

To obtain the last expression it i s  convenient first to 
integrate with respect to y and then with respect to x 
and symmetrize the result relative to k and k'. 



We see that following the integration in (15) expres- 
sion (25) cancels out completely the contribution of the 
point cp = 0 to the bulk conductivity (20). This fundamen- 
tal cancellation should always take place under con- 
ditions of cyclotron resonance. It has a simple physir  
cal meaning: the point cp = 0 cannot contribute to the 
cyclotron resonance, inasmuch a s  on the s orbits such 
electrons a r e  nonresonant, and on the v orbits they 
move outside the skin layer, and any point, except cp 
=n, has an equally probable position on such a tra- 
jectory. 

The oscillating term (20) i s  large compared with the 
monotonic (23) if the following condition i s  satisfied: 

The coefficient of the hyperbolic cotangent i s  under our 
conditions (8) and (8a) a small parameter. The ratio 
of the scattering by the surface and in the interior i s  
given by the quantity QZ/r. At a large number of im- 
pact, the influence of the surface prevails i s  

Qlll/r=nq(cpt)>I. 

Thus, the condition (26) can be satisfied only if 517 

>> 1 in a small vicinity of the resonance points w =NO,, 
and it can be expressed in the form 

We consider now the contribution of the glancing elec- 
trons mith q o = a  to the "surface" conductivity (21). The 
factor preceding the first  integral in the curly brackets 
takes in the vicinity of the point qo=u  (qo = a - qo, $o - (6/r)"') the form 

The subsequent calculations a r e  different in the weak 
and strong resonance cases distinguished by the con- 
dition (26). If the resonance i s  weak, then we must 
omit from (22') the terms that depend on the angle $. 
The terms in the curly brackets of (21) a r e  then effec- 
tively cancelled out, and we get an integral with respect 
to cp' from rpo to n (and an analogous integral form -n 
to -cpo) with a resonant denominator. The change of 
variables cp = *(u - $1 yields an integral that differs 
from (25) in the integration limits, which a r e  from 1 
to with respect to x and from 0 to 1 with respect to 
y. Calculating this integral and symmetrizing relative 
to k and k', we verify that it vanishes. This means that 
the correction of the resonant value of the conductivity 
30" is  small in terms of the parameter (26) under the 
conditions of weak resonance. 

Thus, the conductivity under conditions of weak reson- 
ance i s  determined by the relations 

a )  / ( k )  ; 04,(kk1) = ( l+Ql/r)  - 'a47(kkJ) ,  (27) 

where oV and om are  given by (20) and (24), and the es- 
timate of Q follows from (4). 

If the resonance i s  strong, then in a small vicinity of 
the resonance, where the condition (26) i s  satisfied, 
we must set the exponentials in (22') equal to unity. 
The contribution of the point q0=r to the first term in 
the curly brackets i s  given by the integral 

30,r-" 
o.," (kk')  = 8,, 

" dv - dz dy 
2xnmi*(- l+lp/r)  C *k.k' I c *I [ - i k ( i - ( )  +iV ( y z - ~ )  1% 

where u =kl/k. The second term in the curly brackets 
makes no contribution, as can be verified by a calcula- 
tion similar to (25). We see  that the conductivity in 
the vicinity of a strong resonance is given by 

where ov, 00, and d a r e  given by (201, (23), (24), and 
(28). 

The most typical experimental situation i s  described 
by (27), when the condition (26) does not hold and the 
resonance is weak. In the principal approximation, the 
impedance depends monotonically on the magnetic field. 
Equations (15) and (16) a r e  made dimensionless with the 
aid of the parameter 

where w,, is the plasma frequency. With the aid of (30) 
we obtain the skin-layer thickness 6, = Ik ,I-'. 

The monotonic part of the impedance is 

The small oscillating increment i s  calculated by the 
perturbation method: 

xcth - exp 6-4- i-8 . ( 3  3 
The constant g,, and with it also g,, can be found by the 
Harman-Luttinger methodg : 

In the opposite limiting case when the condition (26) 
can be satisfied, the resonance i s  strong. In the vicin- 
ity of the resonance it is necessary to use  formulas 
(29) for the conductivity, and the principal term is 
+aV. We obtain the corresponding values of the reci- 
procal of the penetration depth 

and the impedance 

The correction due to the second expression of (29) 
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h i m  - 1  h i m  -1 
Z : i ) = ~ . ( . . j o , ( k k ' ) [ ~ - - a , ( k ) ]  [ k " - T O 1 ~ r ) ]  a k a ' .  

cL  c8 

An estimate of this integral 

shows that it is small to the extent that condition (26) 
holds; g, and g, a r e  coefficients of the order of unity. 

4. LARGE EFFECTIVENESS ANGLES cp/>>pW 

In this case the integrand in (13) must be expanded in 
powers of p ' -p in analogy with (6) and (7): 

1 - i ) f - Q l p . ( p , ~ p d +  2Vfvp . )=  dq' u (q ' ,  q)er'v'+q'f' .  (36) 
-v 

We were unable to obtain the solution of this equation. 
It can be estimated, however, without difficulty. The 
rate of change off with changing angle p is determined 
by the right-hand side, the characteristic angle inter - 
val of which is pf -(6/r)'I2. Therefore an estimate of 
the differential term yields 

For hopping electrons cp - cpf << 1, and we obtain in the 
left-hand side of (36) 

(rfi) '" 
3-(i+Q,1P6-2h). 

I 

The influence of the roughness is  determined by mul- 
tiplying the number n of the impact by the diffuseness 
Q,r/6 in one collision with the surface. The contri- 
bution of the hopping electrons to the conductivity i s  
thus 

~ " = 6 - ~ o ( k ,  k'-6-I) =aa(S/r)  '"(1+Q,lr'"6-")-I. (37) 

The factor (6/r)'/' is  determined by the smallness of 
the angle interval of the effective electrons. 

The distribution function of the glancing electrons that 
collide with the surface (rp -n - 12) contains the fac- 
tor 

{e'"/'-l-k[Q~/fi-2(rs)"l-~]}-~. 

The quantity in the square brackets i s  small in our ap- 
proximation [see (8b) and (8a)l. We therefore encount- 
e r  here the same two cases of weak and strong reson- 
ance, distinguishable by the condition (271, in which, 
however, we must make the substitution 

Q-Q, ( r / 6 )  .&. (38) 

If the resonance is weak, then the monotonic part of the 
conductivity is given by (37), and the oscillating part i s  
equal to $@' [see (20)l. In the opposite case the term 

i s  the principal one, while the reciprocal depth of 
penetration and the impedance a re  given by (34) and 
(35). 

5. DISCUSSION OF RESULTS 

We now compare our results with those obtained in 
the traditional approach in which the phenomenological 
diffuseness coefficient q is  used,6 and which leads to 
the following qualitative formula 

from which we determine 6 and then the impedance Z 
=4nwb/ic2. The expression in the curly brackets i s  
the ratio of the total conductivity to @/l. Therefore 
adding for k and k ' - F1 
and taking (27) and (37) into consideration, we see  that 
the expression in the square brackets of (39) must be 
replaced by 

(6r)  "/l+ (fi/r)'"Q, if p,d<r/&, (40a) 
r ) -  ( 6 )  Q, if pad>>r/6. (40b) 

We note that both terms in (40) a r e  assumed small with- 
in the framework of our treatment, but their ratio can 
be arbitrary. 

Thus, the quantity named the diffuseness coefficient by 
Kaner et at!. actually depends on the magnetic field and 
on the depth of the skin layer. This is the consequence 
of the dependence of the surface scattering on the glanc- 
ing angle. The very strong dependence on the 
of the diffuseness coefficient q t o z e r o  thus vanishes. 
The ratio of the two terms of (401, which i s  determined 
by the competition between the scattering in the bulk 
and on the surface, i s  for example in the case (40a), 
of the order of 1Q/r. For a surface with up,- 10 and 
p&- 10' we have Q-  10, and this competition i s  per- 
fectly realistic. 

The ratio of coth(nr/l) to the term in the square 
brackets in (39) i s  determined by our parameter (261, 
and can be neglected everywhere except in a narrow 
vicinity of the resonance a t  very large fir.  Leaving out 
this ratio, we obtain 6. Its plot i s  shown in Fig. 3 for 
the most general case. Region 1 corresponds to a weak 
magnetic field and i s  beyond the scope of our treatment, 
since condition (8) i s  not satisfied here. In region I1 
the effectiveness angles a r e  small, pf << cp,, and the 
order of magnitude of the impedance is 

while its exact value i s  given by (30) and (31). Region 
III corresponds to relative large effectiveness angles 
cpf >> cp,, and the impedance here i s  

Region IV corresponds to strong magnetic fields, which 
a re  not considered here, with the orbit located inside 
the skin layer. 

At weak resonance, when (39) must be expanded in 
powers of the hyperbolic cotangent, the oscillating in- 

FIG. 3. 
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crement i s  given by (32), with the substitution (38) 
necessary in the region qf>> qw. A strong resonance is  
described in a somewhat more complicated manner. 
Outside the narrow resonance region, the resonance 
i s  weak a s  before. In the immediate vicinity of the 
resonance, however, where the condition (26) i s  satis- 
fied, it i s  necessary to use Eqs. (34) and (35). 

We note in conclusion that the study of the anomalous 
skin effect in a magnetic field has been shown here to 
be a most effective method of investigating the surface 
scattering of conduction electrons. The calculations 
presented apply to an isotropic metal. This restric-  
tion, however, i s  not essential, since the current i s  
determined by a narrow "strip" on the Fermi surface, 
where v,=O. The specularity of reflection of such elec- 
trons and the vanishing of the diffuseness coefficient 
in accord with Eq. (4) a r e  simple consequences of the 
indistinguishability of the electronic states near this 
strip. In the other limiting case (qf>> q w )  we used in 
general form only the sharp directivity of the scattering 
indicatrix. 

I take the opportunity to thank sincerely V. G. Peschan- 

ski; for a discussion of the work. 
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The phase diagram and isobaric heat capacity of NH,Br are investigated up to 2.65 kbar using an improved 
adiabatic calorimetric technique. The pressure is maintained constant to within lo-' bar. The coordinates of 
the triple point are T,, = 203.35 k0.15 'K and P,, = 1730k20 bar. The coordinates of the tricritical point on 
the 8 4  transition line are T,,  = 207.9*0.3 "K and P,, = 2250*35 bar. The heat of the 6-y transition is 
found to vanish in the vicinity of the triple point, which can thus be regarded as a "distorted" bicritical point. 

PACS numbers: 64.70.Fx, 64.60.Kw, 65.20. + w 

I. INTRODUCTION ions, and the Y phase with antiparallel ordering. As 

A large number of e ~ p e r i m e n t a l ~ " ~  and t h e ~ r e t i c a l ~ ~ " ~  has been shown14"" both types of ordering a r e  due to 

papers a r e  devoted to the study of the phase transitions the ammonium octupole interaction: direct interaction 

in ammonium halides. Ammonium halides a r e  of in- leads to parallel ordering, and indirect interaction 

terest because of the nature of the phase transitions in (through the hydrogen-halogen dipole) leads to anti- 

these compounds changes with pressure. Ammonium parallel ordering. The interaction potentials depend 

halides have a l l  important advantage over ferroelec- 
primarily on the polarizability of the halide ion, which 
is a strong function of pressure. t r ics  and magnets: they have no depolarizing and de- 

magnetizing fields complicating the interpretation of Previously available data on the NKBr phase diagram 
the experimental data. Ammonium bromide is especi- have been very crude. Thus, in Ref. 6 the pressure a t  
ally attractive; in this compound, there a r e  three types the tricritical point1' on the 6-P transition line is indi- 
of orientational phase transitions in a relatively acces- cated to be in the interval 2.5-3.65 kbar, and the uncer- 
sible pressure range. tainty in the triple point coordinates amounted to sev- 

Two orientations of the NH,' tetrahedron a r e  possible era l  hundreds of bars. We have set  ourselves the task 
within the crystal lattice. On the NH4 phase diagram of significantly refining the nature of the phase diagram 
(Fig. 1) there a r e  the orientationally disorderedp phase, and investigating the isobaric heat capacity of N h B r  
the 6 phase with parallel ordering of the ammonium up to pressures of 2.6 kbar with an accuracy that is no 
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